code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : str= logging.get_logger(__name__) _a : Optional[int]= "▁" _a : str= {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} _a : List[Any]= { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } _a : Union[str, Any]= { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } _a : Tuple= { "ernie-m-base": 514, "ernie-m-large": 514, } _a : Union[str, Any]= { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = ["input_ids"] UpperCAmelCase : Any = VOCAB_FILES_NAMES UpperCAmelCase : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = RESOURCE_FILES_NAMES def __init__(self : Tuple , _A : Tuple , _A : Optional[int]=None , _A : Optional[int]=False , _A : Union[str, Any]="utf8" , _A : Optional[int]="[UNK]" , _A : Dict="[SEP]" , _A : Tuple="[PAD]" , _A : Any="[CLS]" , _A : Optional[Any]="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Any = do_lower_case __snake_case : Optional[Any] = sentencepiece_model_ckpt __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : Optional[int] = self.load_vocab(filepath=_A) else: __snake_case : Optional[int] = {self.sp_model.id_to_piece(_A): id for id in range(self.sp_model.get_piece_size())} __snake_case : int = {v: k for k, v in self.vocab.items()} def _lowercase (self : str , _A : Optional[int]) -> Dict: if text is None: return None __snake_case : Optional[int] = self.tokenize(_A) __snake_case , __snake_case : Tuple = '', [] for i, ch in enumerate(_A): if ch in self.SP_CHAR_MAPPING: __snake_case : List[Any] = self.SP_CHAR_MAPPING.get(_A) else: __snake_case : Union[str, Any] = unicodedata.normalize('NFKC' , _A) if self.is_whitespace(_A): continue normalized_text += ch char_mapping.extend([i] * len(_A)) __snake_case , __snake_case , __snake_case : Any = normalized_text, [], 0 if self.do_lower_case: __snake_case : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_A) + offset __snake_case : List[str] = start + len(_A) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1)) __snake_case : Union[str, Any] = end return token_mapping @property def _lowercase (self : Union[str, Any]) -> List[Any]: return len(self.vocab) def _lowercase (self : List[Any]) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder) def __getstate__(self : Optional[Any]) -> List[str]: __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[int] = None return state def __setstate__(self : Optional[Any] , _A : Dict) -> Union[str, Any]: __snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : str = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.sentencepiece_model_ckpt) def _lowercase (self : Dict , _A : int) -> Optional[int]: return "".join((self.SP_CHAR_MAPPING.get(_A , _A) for c in text)) def _lowercase (self : Dict , _A : Union[str, Any] , _A : Optional[int]=False , _A : int=64 , _A : Any=0.1) -> Any: if self.sp_model_kwargs.get('enable_sampling') is True: __snake_case : Dict = True if self.sp_model_kwargs.get('alpha') is not None: __snake_case : List[str] = self.sp_model_kwargs.get('alpha') if self.sp_model_kwargs.get('nbest_size') is not None: __snake_case : Dict = self.sp_model_kwargs.get('nbest_size') if not enable_sampling: __snake_case : Tuple = self.sp_model.EncodeAsPieces(_A) else: __snake_case : Optional[Any] = self.sp_model.SampleEncodeAsPieces(_A , _A , _A) __snake_case : Tuple = [] for pi, piece in enumerate(_A): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A) and pi != 0: new_pieces.append(_A) continue else: continue __snake_case : Tuple = 0 for i, chunk in enumerate(_A): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A) or self.is_punct(_A): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) new_pieces.append(_A) __snake_case : List[str] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) __snake_case : List[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) __snake_case : Union[str, Any] = i if len(_A) > lst_i: new_pieces.append(piece[lst_i:]) return new_pieces def _lowercase (self : Optional[int] , _A : List[Any]) -> Tuple: __snake_case : List[str] = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Tuple , _A : Optional[Any]) -> List[str]: __snake_case : Tuple = self.convert_ids_to_tokens(_A) __snake_case : List[Any] = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Optional[int] , _A : Optional[Any]) -> List[str]: return self.vocab.get(_A , self.vocab.get(self.unk_token)) def _lowercase (self : str , _A : Any) -> List[Any]: return self.reverse_vocab.get(_A , self.unk_token) def _lowercase (self : Tuple , _A : List[Any] , _A : Optional[Any]=None) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase (self : List[Any] , _A : List[Any] , _A : Tuple=None) -> List[str]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase (self : Union[str, Any] , _A : Dict , _A : Dict=None , _A : str=False) -> List[str]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A)) + [1, 1] + ([0] * len(_A)) + [1] return [1] + ([0] * len(_A)) + [1] def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_A) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A) + 1) + [1] * (len(_A) + 3) def _lowercase (self : Union[str, Any] , _A : List[Any]) -> Optional[int]: if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase (self : Union[str, Any] , _A : List[Any]) -> Any: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase (self : Optional[int] , _A : List[str]) -> Union[str, Any]: if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase (self : List[str] , _A : Optional[int]) -> List[Any]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A) == 1: __snake_case : List[str] = unicodedata.category(_A) if cat == "Zs": return True return False def _lowercase (self : Optional[int] , _A : Optional[Any]) -> int: __snake_case : Any = {} with io.open(_A , 'r' , encoding='utf-8') as f: for index, line in enumerate(_A): __snake_case : Optional[Any] = line.rstrip('\n') __snake_case : Dict = int(_A) return token_to_idx def _lowercase (self : List[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : Union[str, Any] = 0 if os.path.isdir(_A): __snake_case : Dict = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) else: __snake_case : List[str] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_A , 'w' , encoding='utf-8') as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!') __snake_case : List[str] = token_index writer.write(token + '\n') index += 1 __snake_case : int = os.path.join(_A , 'sentencepiece.bpe.model') with open(_A , 'wb') as fi: __snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_A) return (vocab_file,)
172
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( snake_case : list , snake_case : int | None = None , snake_case : int | None = None )-> None: if start is None: _lowerCamelCase = 0 if end is None: _lowerCamelCase = len(snake_case ) - 1 if start >= end: return _lowerCamelCase = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: _lowerCamelCase , _lowerCamelCase = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ : Any =None A_ : Optional[int] =logging.get_logger(__name__) A_ : List[str] ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A_ : List[Any] ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } A_ : Any ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } A_ : Union[str, Any] ="""▁""" class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : int = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case_ ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
80
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[int] = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = IMAGENET_DEFAULT_MEAN , __A = IMAGENET_DEFAULT_STD , **__A , ) -> None: super().__init__(**__A ) lowerCAmelCase_ :Optional[int] = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase_ :Optional[Any] = get_size_dict(__A , default_to_square=__A ) lowerCAmelCase_ :int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase_ :Dict = get_size_dict(__A , param_name="""crop_size""" ) lowerCAmelCase_ :int = do_resize lowerCAmelCase_ :Optional[Any] = size lowerCAmelCase_ :str = resample lowerCAmelCase_ :str = do_center_crop lowerCAmelCase_ :List[Any] = crop_size lowerCAmelCase_ :Optional[Any] = do_rescale lowerCAmelCase_ :Optional[int] = rescale_factor lowerCAmelCase_ :Any = do_normalize lowerCAmelCase_ :List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ :Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: lowerCAmelCase_ :Any = get_size_dict(__A , default_to_square=__A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCAmelCase_ :Optional[Any] = int((256 / 224) * size["""shortest_edge"""] ) lowerCAmelCase_ :Tuple = get_resize_output_image_size(__A , size=__A , default_to_square=__A ) lowerCAmelCase_ :str = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __A , size=(size_dict["""height"""], size_dict["""width"""]) , resample=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: lowerCAmelCase_ :Any = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: return rescale(__A , scale=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: lowerCAmelCase_ :Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ :Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase_ :Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ :str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ :str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ :Any = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ :List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase_ :List[Any] = size if size is not None else self.size lowerCAmelCase_ :str = get_size_dict(__A , default_to_square=__A ) lowerCAmelCase_ :Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ :int = get_size_dict(__A , param_name="""crop_size""" ) lowerCAmelCase_ :Optional[Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ :Any = [to_numpy_array(__A ) for image in images] if do_resize: lowerCAmelCase_ :Tuple = [self.resize(__A , __A , __A ) for image in images] if do_center_crop: lowerCAmelCase_ :int = [self.center_crop(__A , __A ) for image in images] if do_rescale: lowerCAmelCase_ :Optional[int] = [self.rescale(__A , __A ) for image in images] if do_normalize: lowerCAmelCase_ :List[str] = [self.normalize(__A , __A , __A ) for image in images] lowerCAmelCase_ :Tuple = [to_channel_dimension_format(__A , __A ) for image in images] lowerCAmelCase_ :List[str] = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A )
84
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : Union[str, Any] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Dict=[1, 2, 1] , _UpperCAmelCase : Dict=[2, 2, 4] , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=2.0 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-5 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Optional[Any]=8 , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = patch_norm _A = layer_norm_eps _A = initializer_range _A = is_training _A = scope _A = use_labels _A = type_sequence_label_size _A = encoder_stride def lowerCAmelCase_ ( self : int ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any ): _A = SwinvaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _A = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ): _A = SwinvaForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _A = 1 _A = SwinvaForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): _A = self.type_sequence_label_size _A = SwinvaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCAmelCase : Dict = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : List[str] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : str ): _A = SwinvaModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowerCAmelCase_ ( self : int ): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Tuple ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : Dict ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.attentions _A = len(self.model_tester.depths ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = config.window_size**2 _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _A = len(_UpperCAmelCase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _A = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _A = 2 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase ) ) _A = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.hidden_states _A = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # Swinv2 has a different seq_length _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _A = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _A , _A , _A , _A = reshaped_hidden_states[0].shape _A = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : str ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = SwinvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _A = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Dict ): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _UpperCAmelCase ) _A = self.default_image_processor _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) # verify the logits _A = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
271
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( _snake_case : int = 8 ) -> str: '''simple docstring''' _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Any , _snake_case : str ) -> Dict: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : str , _snake_case : int = 8 ) -> bool: '''simple docstring''' if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = int(input('Please indicate the max length of your password: ' ).strip() ) _A = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(_snake_case , _snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
271
1
from __future__ import annotations from collections import namedtuple def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
49
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Any = logging.get_logger(__name__) if is_vision_available(): import PIL class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = True , __magic_name__ = None , __magic_name__ = True , __magic_name__ = 1 / 2_55 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ) -> None: super().__init__(**__magic_name__ ) _a = size if size is not None else {'shortest_edge': 2_24} _a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) _a = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name='crop_size' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: _a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__magic_name__ , size=size['shortest_edge'] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: _a = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__magic_name__ , size=(size['height'], size['width']) , data_format=__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> List[Any]: return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__magic_name__ , param_name='size' , default_to_square=__magic_name__ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__magic_name__ , param_name='crop_size' , default_to_square=__magic_name__ ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: _a = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: _a = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: _a = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: _a = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] _a = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] _a = {'pixel_values': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
104
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ : Tuple = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ["""input_features"""] def __init__( self , __magic_name__=80 , __magic_name__=1_60_00 , __magic_name__=1_60 , __magic_name__=30 , __magic_name__=4_00 , __magic_name__=0.0 , __magic_name__=False , **__magic_name__ , ) -> Optional[int]: super().__init__( feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) _a = n_fft _a = hop_length _a = chunk_length _a = chunk_length * sampling_rate _a = self.n_samples // hop_length _a = sampling_rate _a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__magic_name__ , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=__magic_name__ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self , __magic_name__ ) -> np.ndarray: _a = spectrogram( __magic_name__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _a = log_spec[:, :-1] _a = np.maximum(__magic_name__ , log_spec.max() - 8.0 ) _a = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: _a = np.array(__magic_name__ , np.intaa ) _a = [] for vector, length in zip(__magic_name__ , attention_mask.sum(-1 ) ): _a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _a = padding_value normed_input_values.append(__magic_name__ ) else: _a = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "max_length" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _a = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): _a = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a = [np.asarray([raw_speech] ).T] _a = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _a = self.pad( __magic_name__ , padding=__magic_name__ , max_length=max_length if max_length else self.n_samples , truncation=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _a = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _a = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _a = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _a = [self._np_extract_fbank_features(__magic_name__ ) for waveform in input_features[0]] if isinstance(input_features[0] , __magic_name__ ): _a = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_features] else: _a = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _a = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs def __UpperCAmelCase ( self ) -> Dict[str, Any]: _a = copy.deepcopy(self.__dict__ ) _a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
104
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = XGLMConfig SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = ffn_dim UpperCAmelCase_ : int = activation_function UpperCAmelCase_ : List[str] = activation_dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Tuple = 1 def UpperCamelCase__ ( self ): """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase_ : Optional[int] = None if self.use_input_mask: UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = self.get_config() UpperCAmelCase_ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase__ ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = config_and_inputs UpperCAmelCase_ : List[str] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Tuple = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : List[str] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = TFXGLMModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self , lowercase_=True ): """simple docstring""" UpperCAmelCase_ : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Union[str, Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase_ : Tuple = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on UpperCAmelCase_ : List[str] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer("Today is a nice day and" , return_tensors="tf" ) UpperCAmelCase_ : Optional[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): UpperCAmelCase_ : List[Any] = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) UpperCAmelCase_ : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : Dict = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Any = "left" # use different length sentences to test batching UpperCAmelCase_ : List[str] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] UpperCAmelCase_ : List[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ ) UpperCAmelCase_ : Optional[int] = inputs["input_ids"] UpperCAmelCase_ : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) UpperCAmelCase_ : Optional[int] = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCAmelCase_ : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase_ : List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCAmelCase_ : List[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
61
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase_ : Any = re.compile(r'\s+') def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 ): """simple docstring""" A_ : Optional[int] = ['auto-generated', 'autogenerated', 'automatically generated'] A_ : List[str] = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=0.05 ): """simple docstring""" A_ : Any = ['unit tests', 'test file', 'configuration file'] A_ : Dict = example['content'].splitlines() A_ : List[Any] = 0 A_ : str = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : Tuple = example['content'].count('\n' ) A_ : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = ['def ', 'class ', 'for ', 'while '] A_ : Tuple = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=4 ): """simple docstring""" A_ : Union[str, Any] = example['content'].splitlines() A_ : Any = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] A_ : Dict = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings lowerCamelCase_ : Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : int = multiprocessing.cpu_count() lowerCamelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase_ : Tuple = time.time() lowerCamelCase_ : Tuple = load_dataset(args.dataset_name, split='train') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase_ : int = set(ds.unique('hash')) lowerCamelCase_ : Union[str, Any] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase_ : Optional[int] = time.time() lowerCamelCase_ : Tuple = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase_ : Union[str, Any] = time.time() lowerCamelCase_ , lowerCamelCase_ : str = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase_ : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowerCamelCase_ : Optional[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowerCamelCase_ : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase_ : Optional[int] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase_ : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
286
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class __snake_case : def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase ,_lowerCAmelCase ,f"Difference between torch and flax is {diff} (>= {tol})." ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : List[str] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowercase : Optional[Any] = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape ,(pixel_values.shape[0], config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase , lowercase : List[Any] = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowercase : int = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase , lowercase : Any = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : List[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowercase : Any = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) lowercase : Union[str, Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowercase : List[str] = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) lowercase : Optional[int] = after_output[0] lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1e-3 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase , lowercase : List[str] = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowercase : Optional[int] = model( input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,output_attentions=_lowerCAmelCase ) lowercase : Tuple = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : str = to_atuple(vision_model.config.image_size ) lowercase : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowercase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' pt_model.to(_lowerCAmelCase ) pt_model.eval() # prepare inputs lowercase : str = inputs_dict lowercase : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase : int = pt_model(**_lowerCAmelCase ).to_tuple() lowercase : Optional[int] = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output.numpy() ,4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) lowercase : str = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ,from_pt=_lowerCAmelCase ) lowercase : Union[str, Any] = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output.numpy() ,4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ,from_flax=_lowerCAmelCase ) pt_model_loaded.to(_lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): lowercase : str = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output_loaded.numpy() ,4e-2 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : List[Any] = VisionTextDualEncoderModel(_lowerCAmelCase ) lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowercase : Optional[int] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,_lowerCAmelCase ) lowercase : int = fx_state self.check_pt_flax_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowercase : Tuple = VisionTextDualEncoderModel(_lowerCAmelCase ) lowercase : List[str] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowercase : Optional[Any] = load_flax_weights_in_pytorch_model(_lowerCAmelCase ,fx_model.params ) self.check_pt_flax_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.prepare_config_and_inputs() lowercase : Dict = config_inputs_dict.pop("""vision_config""" ) lowercase : int = config_inputs_dict.pop("""text_config""" ) lowercase : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) self.check_equivalence_flax_to_pt(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : int = self.get_pretrained_model_and_inputs() lowercase : Tuple = model_a(**_lowerCAmelCase ) lowercase : List[str] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowercase : List[str] = model_a(**_lowerCAmelCase ) lowercase : List[Any] = after_outputs[0] lowercase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1e-5 ) @require_flax class __snake_case ( lowerCAmelCase , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" ,"""hf-internal-testing/tiny-bert""" ,vision_from_pt=_lowerCAmelCase ,text_from_pt=_lowerCAmelCase ,) lowercase : Dict = 13 lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase : int = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowercase : Dict = random_attention_mask([batch_size, 4] ) lowercase : List[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = FlaxViTModel(_lowerCAmelCase ) lowercase : List[str] = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = FlaxViTModelTester(self ) lowercase : int = FlaxBertModelTester(self ) lowercase : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowercase , lowercase : Any = vision_config_and_inputs lowercase , lowercase , lowercase , lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __snake_case ( lowerCAmelCase , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" ,"""hf-internal-testing/tiny-bert""" ,vision_from_pt=_lowerCAmelCase ,text_from_pt=_lowerCAmelCase ,) lowercase : List[str] = 13 lowercase : List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase : List[Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowercase : str = random_attention_mask([batch_size, 4] ) lowercase : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = FlaxCLIPVisionModel(_lowerCAmelCase ) lowercase : int = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = FlaxCLIPVisionModelTester(self ) lowercase : Optional[Any] = FlaxBertModelTester(self ) lowercase : int = clip_model_tester.prepare_config_and_inputs() lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowercase , lowercase : Dict = vision_config_and_inputs lowercase , lowercase , lowercase , lowercase : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" ,logit_scale_init_value=1.0 ) lowercase : Dict = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase : int = processor( text=["""una foto di un gatto""", """una foto di un cane"""] ,images=_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors="""np""" ) lowercase : Optional[Any] = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowercase : List[str] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,_lowerCAmelCase ,atol=1e-3 ) )
354
from bisect import bisect from itertools import accumulate def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Dict = sorted(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , key=lambda SCREAMING_SNAKE_CASE__ : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[Any] = [i[0] for i in r], [i[1] for i in r] lowercase : Any = list(accumulate(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = bisect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
285
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = [1] for i in range(2 , lowerCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = list(range(lowerCamelCase_ ) ) # Find permutation while factorials: _lowerCamelCase : str = factorials.pop() _lowerCamelCase, _lowerCamelCase : Tuple = divmod(lowerCamelCase_ , lowerCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
96
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=18 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase_ : List[str]=False , ): SCREAMING_SNAKE_CASE__ = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_reduce_labels def A_ ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _lowercase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE__ = Image.open(dataset[0]['file'] ) SCREAMING_SNAKE_CASE__ = Image.open(dataset[1]['file'] ) return image, map def _lowercase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE__ = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE__ = Image.open(ds[1]['file'] ) SCREAMING_SNAKE_CASE__ = Image.open(ds[2]['file'] ) SCREAMING_SNAKE_CASE__ = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Optional[Any] =BeitImageProcessor if is_vision_available() else None def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = BeitImageProcessingTester(self ) @property def A_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ ) def A_ ( self : Tuple ): pass def A_ ( self : Union[str, Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : Any ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def A_ ( self : List[str] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
169
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case = logging.getLogger(__name__) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE__ = [] # custom device map if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ = get_keys_to_not_convert(UpperCamelCase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase_ ) # compatibility with peft SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = get_parameter_device(UpperCamelCase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers(UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase_ ): param.to(UpperCamelCase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = get_quantized_model_device_map( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_memory=UpperCamelCase_ , no_split_module_classes=UpperCamelCase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase_ , offload_state_dict=UpperCamelCase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase_ , device_map=UpperCamelCase_ , offload_dir=UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = special_dtypes SCREAMING_SNAKE_CASE__ = no_split_module_classes SCREAMING_SNAKE_CASE__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ = get_balanced_memory( UpperCamelCase_ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase_ , **UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = max_memory SCREAMING_SNAKE_CASE__ = infer_auto_device_map(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ = [] current_key_name.append(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ = '.'.join(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE__ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ = find_tied_parameters(UpperCamelCase_ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase_ , [] ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ = False if hasattr(UpperCamelCase_ , 'base_model_prefix' ): SCREAMING_SNAKE_CASE__ = not hasattr(UpperCamelCase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ = list(model.named_children() ) SCREAMING_SNAKE_CASE__ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ = set(UpperCamelCase_ ) - set(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) + list(UpperCamelCase_ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ = name.replace(UpperCamelCase_ , '' ) filtered_module_names.append(UpperCamelCase_ ) return filtered_module_names def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' for m in model.modules(): if isinstance(UpperCamelCase_ , bnb.nn.Linearabit ): return True return False def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return next(parameter.parameters() ).device def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 0 , dtype=UpperCamelCase_ , value=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = param_name SCREAMING_SNAKE_CASE__ = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) SCREAMING_SNAKE_CASE__ = new_module SCREAMING_SNAKE_CASE__ = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ , ) else: offload_weight(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) offload_weight(UpperCamelCase_ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ ) set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 'meta' , dtype=UpperCamelCase_ , value=torch.empty(*param.size() ) )
169
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( a__): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , 'width_multiplier' ) ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE="swish" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.25 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = conv_kernel_size SCREAMING_SNAKE_CASE_ : Dict = output_stride SCREAMING_SNAKE_CASE_ : List[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = scope SCREAMING_SNAKE_CASE_ : List[Any] = width_multiplier SCREAMING_SNAKE_CASE_ : Optional[int] = ffn_dropout SCREAMING_SNAKE_CASE_ : int = attn_dropout def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.num_labels SCREAMING_SNAKE_CASE_ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( a__ , a__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Any = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = MobileViTVaModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def UpperCAmelCase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : str = model_class(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE_ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def UpperCAmelCase ( self ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _A ( unittest.TestCase): @cached_property def UpperCAmelCase ( self ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : int = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**__lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE_ : int = model.to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE_ : List[str] = model.to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE_ : int = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
253
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowercase ( _SCREAMING_SNAKE_CASE): """simple docstring""" a__ : List[Any] = "table-transformer" a__ : Optional[int] = ["past_key_values"] a__ : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Tuple , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : int=100 , __UpperCAmelCase : str=6 , __UpperCAmelCase : List[str]=2_048 , __UpperCAmelCase : Optional[Any]=8 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[int]="relu" , __UpperCAmelCase : Tuple=256 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : List[Any]=1.0 , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]="sine" , __UpperCAmelCase : int="resnet50" , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : str=False , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Tuple=5 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : int=0.1 , **__UpperCAmelCase : List[str] , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase_= CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= backbone_config.get("""model_type""" ) UpperCAmelCase_= CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_= config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None UpperCAmelCase_= None, None, None UpperCAmelCase_= use_timm_backbone UpperCAmelCase_= backbone_config UpperCAmelCase_= num_channels UpperCAmelCase_= num_queries UpperCAmelCase_= d_model UpperCAmelCase_= encoder_ffn_dim UpperCAmelCase_= encoder_layers UpperCAmelCase_= encoder_attention_heads UpperCAmelCase_= decoder_ffn_dim UpperCAmelCase_= decoder_layers UpperCAmelCase_= decoder_attention_heads UpperCAmelCase_= dropout UpperCAmelCase_= attention_dropout UpperCAmelCase_= activation_dropout UpperCAmelCase_= activation_function UpperCAmelCase_= init_std UpperCAmelCase_= init_xavier_std UpperCAmelCase_= encoder_layerdrop UpperCAmelCase_= decoder_layerdrop UpperCAmelCase_= encoder_layers UpperCAmelCase_= auxiliary_loss UpperCAmelCase_= position_embedding_type UpperCAmelCase_= backbone UpperCAmelCase_= use_pretrained_backbone UpperCAmelCase_= dilation # Hungarian matcher UpperCAmelCase_= class_cost UpperCAmelCase_= bbox_cost UpperCAmelCase_= giou_cost # Loss coefficients UpperCAmelCase_= mask_loss_coefficient UpperCAmelCase_= dice_loss_coefficient UpperCAmelCase_= bbox_loss_coefficient UpperCAmelCase_= giou_loss_coefficient UpperCAmelCase_= eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.d_model class lowercase ( _SCREAMING_SNAKE_CASE): """simple docstring""" a__ : Dict = version.parse("1.11") @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return 12
351
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( snake_case__): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_= DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __UpperCAmelCase ): UpperCAmelCase_= ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_= (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_= self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
277
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = BertJapaneseTokenizer lowerCAmelCase : Dict = False lowerCAmelCase : str = True def UpperCAmelCase ( self : str ) -> str: """simple docstring""" super().setUp() lowercase__ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase__ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : str = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase__ : Any = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.get_input_output_texts(_snake_case ) lowercase__ : int = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) lowercase__ : Optional[Any] = tokenizer.decode(_snake_case ,clean_up_tokenization_spaces=_snake_case ) return text, ids def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.tokenizer_class(self.vocab_file ) lowercase__ : Any = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_snake_case ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_snake_case ) lowercase__ : Optional[Any] = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ : Optional[int] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ : Dict = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_snake_case ,'''wb''' ) as handle: pickle.dump(_snake_case ,_snake_case ) with open(_snake_case ,'''rb''' ) as handle: lowercase__ : int = pickle.load(_snake_case ) lowercase__ : Optional[Any] = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" try: lowercase__ : Optional[Any] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" try: lowercase__ : Dict = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : int = MecabTokenizer(do_lower_case=_snake_case ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: lowercase__ : Tuple = MecabTokenizer( do_lower_case=_snake_case ,normalize_text=_snake_case ,mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : str = MecabTokenizer(normalize_text=_snake_case ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] ,) @require_sudachi def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_snake_case ) lowercase__ : Tuple = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ : Optional[int] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ : Optional[Any] = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_snake_case ,'''wb''' ) as handle: pickle.dump(_snake_case ,_snake_case ) with open(_snake_case ,'''rb''' ) as handle: lowercase__ : Optional[int] = pickle.load(_snake_case ) lowercase__ : Dict = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) @require_sudachi def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : int = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人''', '''参政権'''] ) @require_sudachi def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : Optional[int] = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人参政権'''] ) @require_sudachi def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = SudachiTokenizer(do_lower_case=_snake_case ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = SudachiTokenizer(normalize_text=_snake_case ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SudachiTokenizer(trim_whitespace=_snake_case ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) @require_jumanpp def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : str = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_snake_case ) lowercase__ : Dict = '''こんにちは、世界。\nこんばんは、世界。''' lowercase__ : List[Any] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ : int = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_snake_case ,'''wb''' ) as handle: pickle.dump(_snake_case ,_snake_case ) with open(_snake_case ,'''rb''' ) as handle: lowercase__ : Optional[int] = pickle.load(_snake_case ) lowercase__ : Tuple = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) @require_jumanpp def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : List[str] = JumanppTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Any = JumanppTokenizer(normalize_text=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = JumanppTokenizer(trim_whitespace=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] ,) @require_jumanpp def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) ,['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] ,) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase__ : Dict = {} for i, token in enumerate(_snake_case ): lowercase__ : Any = i lowercase__ : Any = WordpieceTokenizer(vocab=_snake_case ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) ,['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) ,['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Dict = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowercase__ : Union[str, Any] = tokenizer.subword_tokenizer lowercase__ : Tuple = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_snake_case ,['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowercase__ : List[Any] = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_snake_case ,['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Any = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowercase__ : List[Any] = tokenizer.encode('''ありがとう。''' ,add_special_tokens=_snake_case ) lowercase__ : Optional[Any] = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=_snake_case ) lowercase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_snake_case ) lowercase__ : str = tokenizer.build_inputs_with_special_tokens(_snake_case ,_snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = BertJapaneseTokenizer lowerCAmelCase : Tuple = False def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" super().setUp() lowercase__ : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type='''character''' ,**_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase__ : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : int = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type='''character''' ) lowercase__ : Union[str, Any] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _snake_case ,['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase__ : Optional[Any] = {} for i, token in enumerate(_snake_case ): lowercase__ : List[str] = i lowercase__ : Optional[Any] = CharacterTokenizer(vocab=_snake_case ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowercase__ : Dict = tokenizer.encode('''ありがとう。''' ,add_special_tokens=_snake_case ) lowercase__ : Union[str, Any] = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=_snake_case ) lowercase__ : str = tokenizer.build_inputs_with_special_tokens(_snake_case ) lowercase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_snake_case ,_snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : Dict = '''cl-tohoku/bert-base-japanese''' lowercase__ : List[str] = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : List[str] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowercase__ : List[str] = '''bert-base-cased''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
16
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a_ : str = logging.get_logger(__name__) a_ : Tuple = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """layoutlmv3""" def __init__( self , __magic_name__=5_02_65 , __magic_name__=7_68 , __magic_name__=12 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=1e-5 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__=10_24 , __magic_name__=1_28 , __magic_name__=1_28 , __magic_name__=True , __magic_name__=32 , __magic_name__=1_28 , __magic_name__=64 , __magic_name__=2_56 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=2_24 , __magic_name__=3 , __magic_name__=16 , __magic_name__=None , **__magic_name__ , ) -> Dict: super().__init__( vocab_size=__magic_name__ , hidden_size=__magic_name__ , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , intermediate_size=__magic_name__ , hidden_act=__magic_name__ , hidden_dropout_prob=__magic_name__ , attention_probs_dropout_prob=__magic_name__ , max_position_embeddings=__magic_name__ , type_vocab_size=__magic_name__ , initializer_range=__magic_name__ , layer_norm_eps=__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ , ) _a = max_ad_position_embeddings _a = coordinate_size _a = shape_size _a = has_relative_attention_bias _a = rel_pos_bins _a = max_rel_pos _a = has_spatial_attention_bias _a = rel_ad_pos_bins _a = max_rel_ad_pos _a = text_embed _a = visual_embed _a = input_size _a = num_channels _a = patch_size _a = classifier_dropout class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = version.parse("""1.12""" ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1e-5 @property def __UpperCAmelCase ( self ) -> int: return 12 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 3 , __magic_name__ = 40 , __magic_name__ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , __magic_name__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = processor.tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _a = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _a = self._generate_dummy_images(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = dict( processor( __magic_name__ , text=__magic_name__ , boxes=__magic_name__ , return_tensors=__magic_name__ , ) ) return inputs
168
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
'''simple docstring''' from bisect import bisect from itertools import accumulate def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = sorted(zip(UpperCamelCase__ , UpperCamelCase__ ) , key=lambda UpperCamelCase__ : x[0] / x[1] , reverse=UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = [i[0] for i in r], [i[1] for i in r] __lowerCamelCase = list(accumulate(UpperCamelCase__ ) ) __lowerCamelCase = bisect(UpperCamelCase__ , UpperCamelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase ( )-> int: lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
262
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _UpperCAmelCase : Optional[Any] =NewType("""DataClass""", Any) _UpperCAmelCase : Dict =NewType("""DataClassType""", Any) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase ( lowerCAmelCase_ )-> Callable[[str], Any]: lowerCAmelCase_ : str = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( *, lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = None , **lowerCAmelCase_ , )-> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase_ : Dict = {} if aliases is not None: lowerCAmelCase_ : str = aliases if help is not None: lowerCAmelCase_ : Tuple = help return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Iterable[DataClassType] def __init__( self , __lowercase , **__lowercase ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase_ : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): lowerCAmelCase_ : Union[str, Any] = [dataclass_types] lowerCAmelCase_ : List[Any] = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def lowercase_ ( __lowercase , __lowercase ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = f"""--{field.name}""" lowerCAmelCase_ : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase_ : List[str] = kwargs.pop('''aliases''' , [] ) if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[Any] = [aliases] lowerCAmelCase_ : Any = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowercase , '''UnionType''' ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase_ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase_ : Dict = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase_ : str = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase_ : List[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase_ : Dict = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: lowerCAmelCase_ : Optional[Any] = field.type.__args__ else: lowerCAmelCase_ : int = [x.value for x in field.type] lowerCAmelCase_ : str = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase_ : str = field.default else: lowerCAmelCase_ : Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase_ : Tuple = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase_ : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase_ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase_ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase_ : int = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase_ : List[Any] = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): lowerCAmelCase_ : Union[str, Any] = field.type.__args__[0] lowerCAmelCase_ : Dict = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : Any = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase_ : Optional[int] = True else: lowerCAmelCase_ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase_ : Dict = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : List[Any] = field.default_factory() else: lowerCAmelCase_ : int = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase_ : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowercase ) def lowercase_ ( self , __lowercase ) -> List[Any]: if hasattr(__lowercase , '''_argument_group_name''' ): lowerCAmelCase_ : str = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase_ : Dict = self try: lowerCAmelCase_ : Dict[str, type] = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ): lowerCAmelCase_ : Any = '''.'''.join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue lowerCAmelCase_ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def lowercase_ ( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase_ : str = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase_ : str = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = args_file_parser.parse_known_args(args=__lowercase ) lowerCAmelCase_ : int = vars(__lowercase ).get(args_file_flag.lstrip('''-''' ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) lowerCAmelCase_ : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase_ : Any = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.parse_known_args(args=__lowercase ) lowerCAmelCase_ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase_ : str = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : str = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : int = set(args.keys() ) lowerCAmelCase_ : str = [] for dtype in self.dataclass_types: lowerCAmelCase_ : int = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase_ : List[str] = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}""" ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: with open(Path(__lowercase ) , encoding='''utf-8''' ) as open_json_file: lowerCAmelCase_ : Dict = json.loads(open_json_file.read() ) lowerCAmelCase_ : str = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : Optional[Any] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
262
1
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self._create_example_records() A__ = Dataset.from_list(_SCREAMING_SNAKE_CASE) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2''']) for i, r in enumerate(_SCREAMING_SNAKE_CASE): self.assertDictEqual(_SCREAMING_SNAKE_CASE , example_records[i]) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = self._create_example_records() A__ = Dataset.from_list(_SCREAMING_SNAKE_CASE) A__ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: # checks what happens with missing columns '''simple docstring''' A__ = [{"""col_1""": 1}, {"""col_2""": """x"""}] A__ = Dataset.from_list(_SCREAMING_SNAKE_CASE) self.assertDictEqual(dset[0] , {'''col_1''': 1}) self.assertDictEqual(dset[1] , {'''col_1''': None}) # NB: first record is used for columns def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: # checks if the type can be inferred from the second record '''simple docstring''' A__ = [{"""col_1""": []}, {"""col_1""": [1, 2]}] A__ = Dataset.from_list(_SCREAMING_SNAKE_CASE) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64'''))) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = Dataset.from_list([]) self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 0) self.assertListEqual(dset.column_names , [])
14
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __a : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) UpperCamelCase__ : Union[str, Any] = img UpperCamelCase__ : Dict = img.shape[1] UpperCamelCase__ : int = img.shape[0] UpperCamelCase__ : Union[str, Any] = dst_width UpperCamelCase__ : Any = dst_height UpperCamelCase__ : str = self.src_w / self.dst_w UpperCamelCase__ : Optional[int] = self.src_h / self.dst_h UpperCamelCase__ : int = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def __lowercase ( self : Any ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCamelCase__ : Any = self.img[self.get_y(SCREAMING_SNAKE_CASE )][self.get_x(SCREAMING_SNAKE_CASE )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return int(self.ratio_x * x ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase , lowerCamelCase : str =800, 600 lowerCamelCase : Optional[int] =imread('''image_data/lena.jpg''', 1) lowerCamelCase : str =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
196
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __a ( A__ , A__ ): _lowerCAmelCase : Union[str, Any] = '''bit''' _lowerCAmelCase : List[str] = ['''preactivation''', '''bottleneck'''] _lowerCAmelCase : Any = ['''SAME''', '''VALID'''] def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : str=64 , SCREAMING_SNAKE_CASE : List[Any]=[2_56, 5_12, 10_24, 20_48] , SCREAMING_SNAKE_CASE : Union[str, Any]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE : str="preactivation" , SCREAMING_SNAKE_CASE : Any="relu" , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=32 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCamelCase__ : Any = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Dict = embedding_size UpperCamelCase__ : Tuple = hidden_sizes UpperCamelCase__ : Any = depths UpperCamelCase__ : Optional[int] = layer_type UpperCamelCase__ : int = hidden_act UpperCamelCase__ : str = global_padding UpperCamelCase__ : Any = num_groups UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Optional[Any] = embedding_dynamic_padding UpperCamelCase__ : Tuple = output_stride UpperCamelCase__ : List[str] = width_factor UpperCamelCase__ : Any = ["stem"] + [F'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE ) + 1 )] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE , out_indices=SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
196
1
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCamelCase__ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
201
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Tuple = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase__ : str = input_file.read() UpperCamelCase__ : List[Any] = regexp.search(__magic_name__ ) return match def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Dict = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) UpperCamelCase__ : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Tuple = regexp.finditer(__magic_name__ ) UpperCamelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = Path('''./datasets''' ) UpperCamelCase__ : Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = Path('''./datasets''' ) UpperCamelCase__ : Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
201
1
def SCREAMING_SNAKE_CASE( __lowercase ) -> str: A: Optional[int] = 0 A: Dict = len(__lowercase ) for i in range(n - 1 ): for j in range(i + 1 , __lowercase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if len(__lowercase ) <= 1: return arr, 0 A: List[Any] = len(__lowercase ) // 2 A: Optional[Any] = arr[0:mid] A: Optional[Any] = arr[mid:] A: Union[str, Any] = count_inversions_recursive(__lowercase ) A: Any = count_inversions_recursive(__lowercase ) A: int = _count_cross_inversions(__lowercase , __lowercase ) A: Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[int]: A: List[str] = [] A: Dict = 0 while i < len(__lowercase ) and j < len(__lowercase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowercase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowercase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE( ) -> Tuple: A: Optional[int] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A: List[Any] = count_inversions_bf(__lowercase ) A: Union[str, Any] = count_inversions_recursive(__lowercase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __lowercase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A: Optional[int] = count_inversions_bf(__lowercase ) A: Dict = count_inversions_recursive(__lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowercase ) # an empty list should also have zero inversions A: List[Any] = [] A: List[str] = count_inversions_bf(__lowercase ) A: List[Any] = count_inversions_recursive(__lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowercase ) if __name__ == "__main__": main()
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "roc_bert" def __init__( self : int , lowercase : Optional[Any]=30_522 , lowercase : Tuple=768 , lowercase : Optional[int]=12 , lowercase : Union[str, Any]=12 , lowercase : List[str]=3_072 , lowercase : Dict="gelu" , lowercase : List[Any]=0.1 , lowercase : List[str]=0.1 , lowercase : Dict=512 , lowercase : List[str]=2 , lowercase : Optional[int]=0.02 , lowercase : int=1E-12 , lowercase : List[str]=True , lowercase : int=0 , lowercase : str="absolute" , lowercase : Tuple=None , lowercase : str=True , lowercase : Union[str, Any]=True , lowercase : Dict=768 , lowercase : Optional[Any]=910 , lowercase : List[str]=512 , lowercase : int=24_858 , lowercase : List[str]=True , **lowercase : Dict , ): '''simple docstring''' _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps _snake_case = use_cache _snake_case = enable_pronunciation _snake_case = enable_shape _snake_case = pronunciation_embed_dim _snake_case = pronunciation_vocab_size _snake_case = shape_embed_dim _snake_case = shape_vocab_size _snake_case = concat_input _snake_case = position_embedding_type _snake_case = classifier_dropout super().__init__(pad_token_id=lowercase , **lowercase )
282
def a_ ( __lowercase : str ) -> int: _snake_case = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case = hex_num[0] == '-' if is_negative: _snake_case = hex_num[1:] try: _snake_case = int(__lowercase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case = '' while int_num > 0: _snake_case = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
282
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__ =logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Dict = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _SCREAMING_SNAKE_CASE : int = torch.zeros(__lowerCamelCase , __lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Tuple = None _SCREAMING_SNAKE_CASE : List[str] = torch.nn.Parameter(__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( vqvae=__lowerCamelCase , transformer=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else 1 # get prompt text embeddings _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _SCREAMING_SNAKE_CASE : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] _SCREAMING_SNAKE_CASE : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _SCREAMING_SNAKE_CASE : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__lowerCamelCase ) # duplicate text embeddings for each generation per prompt _SCREAMING_SNAKE_CASE : Optional[int] = prompt_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _SCREAMING_SNAKE_CASE : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCamelCase , 1 , 1 ) else: _SCREAMING_SNAKE_CASE : Optional[int] = [''] * batch_size _SCREAMING_SNAKE_CASE : Optional[int] = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" , ) _SCREAMING_SNAKE_CASE : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE : List[str] = negative_prompt_embeds.shape[1] _SCREAMING_SNAKE_CASE : int = negative_prompt_embeds.repeat(1 , __lowerCamelCase , 1 ) _SCREAMING_SNAKE_CASE : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __lowerCamelCase , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 5.0 , __lowerCamelCase = 1.0 , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 , ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = 1 elif isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = len(__lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}""" ) _SCREAMING_SNAKE_CASE : str = batch_size * num_images_per_prompt _SCREAMING_SNAKE_CASE : List[Any] = guidance_scale > 1.0 _SCREAMING_SNAKE_CASE : List[str] = self._encode_prompt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase , __lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__lowerCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it _SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: _SCREAMING_SNAKE_CASE : Tuple = self.transformer.num_vector_embeds - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.full(__lowerCamelCase , __lowerCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _SCREAMING_SNAKE_CASE : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) _SCREAMING_SNAKE_CASE : int = self.scheduler.timesteps.to(self.device ) _SCREAMING_SNAKE_CASE : Tuple = latents for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the sample if we are doing classifier free guidance _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _SCREAMING_SNAKE_CASE : str = self.transformer(__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , timestep=__lowerCamelCase ).sample if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE : str = model_output.chunk(2 ) _SCREAMING_SNAKE_CASE : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCamelCase , dim=1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.truncate(__lowerCamelCase , __lowerCamelCase ) # remove `log(0)`'s (`-inf`s) _SCREAMING_SNAKE_CASE : Optional[int] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE : Any = self.scheduler.step(__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.vqvae.config.vq_embed_dim _SCREAMING_SNAKE_CASE : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _SCREAMING_SNAKE_CASE : Optional[int] = self.vqvae.quantize.get_codebook_entry(__lowerCamelCase , shape=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.vqvae.decode(__lowerCamelCase , force_not_quantize=__lowerCamelCase ).sample _SCREAMING_SNAKE_CASE : Any = (image / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Union[str, Any] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.sort(__lowerCamelCase , 1 , descending=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = torch.exp(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _SCREAMING_SNAKE_CASE : List[str] = torch.full_like(keep_mask[:, 0:1, :] , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = torch.cat((all_true, keep_mask) , dim=1 ) _SCREAMING_SNAKE_CASE : List[Any] = keep_mask[:, :-1, :] _SCREAMING_SNAKE_CASE : str = keep_mask.gather(1 , indices.argsort(1 ) ) _SCREAMING_SNAKE_CASE : List[str] = log_p_x_0.clone() _SCREAMING_SNAKE_CASE : List[str] = -torch.inf # -inf = log(0) return rv
362
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a_ ( lowerCamelCase : int = 8 ): lowerCAmelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) ) def a_ ( lowerCamelCase : str , lowerCamelCase : int ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowerCamelCase ) lowerCAmelCase = i // 3 lowerCAmelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase = ( chars_incl + random(lowerCamelCase , quotient + remainder ) + random(lowerCamelCase , lowerCamelCase ) + random(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase = list(lowerCamelCase ) shuffle(lowerCamelCase ) return "".join(lowerCamelCase ) # random is a generalised function for letters, characters and numbers def a_ ( lowerCamelCase : str , lowerCamelCase : int ): return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) ) def a_ ( lowerCamelCase : str , lowerCamelCase : Tuple ): pass # Put your code here... def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): pass # Put your code here... def a_ ( lowerCamelCase : int , lowerCamelCase : Dict ): pass # Put your code here... def a_ ( lowerCamelCase : str , lowerCamelCase : int = 8 ): if len(lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase = any(char in ascii_uppercase for char in password ) lowerCAmelCase = any(char in ascii_lowercase for char in password ) lowerCAmelCase = any(char in digits for char in password ) lowerCAmelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a_ ( ): lowerCAmelCase = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCAmelCase = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(lowerCamelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(lowerCamelCase , lowerCamelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
4
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Tuple = SpeechTaTokenizer __lowercase: int = False __lowercase: List[str] = True def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = SpeechTaTokenizer(UpperCAmelCase_ ) snake_case_ = AddedToken("""<mask>""" , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) snake_case_ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = """this is a test""" snake_case_ = """this is a test""" return input_text, output_text def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : Dict=5 ) ->List[Any]: """simple docstring""" snake_case_ , snake_case_ = self.get_input_output_texts(UpperCAmelCase_ ) snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 81 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ = tokenizer.add_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ = tokenizer.add_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size_a + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCAmelCase_ , )
347
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[Any]=24 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Union[str, Any]=2 , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = max_length UpperCAmelCase__ = num_mel_bins UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = frequency_stride UpperCAmelCase__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ = frequency_out_dimension * time_out_dimension UpperCAmelCase__ = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = ASTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_values""": input_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Dict = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : int = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : str = False def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = ASTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""input_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = ASTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ = torchaudio.load(SCREAMING_SNAKE_CASE__ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_UpperCAmelCase ) UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ = prepare_audio() UpperCAmelCase__ = audio.squeeze().numpy() UpperCAmelCase__ = feature_extractor(_UpperCAmelCase , sampling_rate=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
355
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCamelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
61
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) a_ = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = SavedModel() __lowercase : str = [] with open(os.path.join(__UpperCamelCase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __lowercase : int = json.load(__UpperCamelCase )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCamelCase )] ) with open(__UpperCamelCase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __lowercase : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowercase : List[Any] = sorted(__UpperCamelCase ) __lowercase : Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCamelCase ) if strict and len(__UpperCamelCase ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__UpperCamelCase ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*__UpperCamelCase , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) a_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
249
"""simple docstring""" import math def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
249
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Tuple=3 , __lowerCamelCase: str=16 , __lowerCamelCase: Union[str, Any]=[32, 64, 1_28] , __lowerCamelCase: List[Any]=[1, 2, 1] , __lowerCamelCase: Dict=[2, 2, 4] , __lowerCamelCase: Dict=2 , __lowerCamelCase: Any=2.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=0.0 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Any=False , __lowerCamelCase: str=True , __lowerCamelCase: int=0.02 , __lowerCamelCase: Optional[Any]=1e-5 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[Any]=10 , __lowerCamelCase: Optional[int]=8 , __lowerCamelCase: Optional[int]=["stage1", "stage2"] , __lowerCamelCase: List[str]=[1, 2] , ) -> List[str]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : Tuple = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Tuple = num_heads __UpperCAmelCase : List[Any] = window_size __UpperCAmelCase : Tuple = mlp_ratio __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = drop_path_rate __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Dict = use_absolute_embeddings __UpperCAmelCase : Tuple = patch_norm __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : int = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : str = encoder_stride __UpperCAmelCase : Any = out_features __UpperCAmelCase : Any = out_indices def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple ) -> Any: __UpperCAmelCase : Optional[int] = FocalNetModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) __UpperCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> str: __UpperCAmelCase : str = FocalNetBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __UpperCAmelCase : Any = None __UpperCAmelCase : Optional[Any] = FocalNetBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> Tuple: __UpperCAmelCase : int = FocalNetForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Optional[int] = FocalNetForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : List[str] = FocalNetForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase__: List[str] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: List[str] = False lowerCamelCase__: Any = False lowerCamelCase__: Dict = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: List[str] = False def _lowerCamelCase ( self: Tuple ) -> Dict: __UpperCAmelCase : List[str] = FocalNetModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=37 , has_text_modality=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> Any: return def _lowerCamelCase ( self: Optional[Any] ) -> str: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _lowerCamelCase ( self: Dict ) -> Tuple: pass def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) __UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple ) -> Any: __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.hidden_states __UpperCAmelCase : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # FocalNet has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = reshaped_hidden_states[0].shape __UpperCAmelCase : int = ( reshaped_hidden_states[0].view(__lowerCamelCase , __lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Dict = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : int = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) ) @slow def _lowerCamelCase ( self: Optional[int] ) -> int: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = FocalNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: Optional[int] ) -> str: __UpperCAmelCase : List[Any] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase__: Dict = FocalNetConfig lowerCamelCase__: List[str] = False def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = FocalNetModelTester(self )
342
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
1
"""simple docstring""" from math import factorial, pi def __A ( a_ :float , a_ :int = 30) -> float: if not isinstance(a_ , (int, float)): raise ValueError('''maclaurin_sin() requires either an int or float for theta''') if not isinstance(a_ , a_) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''') __a : int = float(a_) __a : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(a_)) def __A ( a_ :float , a_ :int = 30) -> float: if not isinstance(a_ , (int, float)): raise ValueError('''maclaurin_cos() requires either an int or float for theta''') if not isinstance(a_ , a_) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''') __a : Dict = float(a_) __a : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(a_)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
160
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('''DataClass''', Any) A = NewType('''DataClassType''', Any) def __A ( a_ :List[str]) -> Tuple: if isinstance(a_ , a_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""") def __A ( a_ :list) -> Callable[[str], Any]: __a : Any = {str(a_): choice for choice in choices} return lambda a_: str_to_choice.get(a_ , a_) def __A ( *, a_ :Union[str, List[str]] = None , a_ :str = None , a_ :Any = dataclasses.MISSING , a_ :Callable[[], Any] = dataclasses.MISSING , a_ :dict = None , **a_ :str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a : List[Any] = {} if aliases is not None: __a : Optional[Any] = aliases if help is not None: __a : int = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 42 def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: __a : str = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): __a : int = [dataclass_types] __a : Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = f"""--{field.name}""" __a : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __a : Dict = kwargs.pop('''aliases''' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [aliases] __a : Tuple = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , '''UnionType''' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union __a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a : List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __a : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: __a : int = field.type.__args__ else: __a : List[str] = [x.value for x in field.type] __a : Any = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __a : Tuple = field.default else: __a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a : Any = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __a : List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name __a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __a : List[Any] = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): __a : Dict = field.type.__args__[0] __a : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: __a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: __a : List[Any] = True else: __a : int = field.type if field.default is not dataclasses.MISSING: __a : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __a : Optional[int] = field.default_factory() else: __a : Union[str, Any] = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , '''_argument_group_name''' ): __a : Any = self.add_argument_group(dtype._argument_group_name ) else: __a : Optional[Any] = self try: __a : Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): __a : Union[str, Any] = '''.'''.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue __a : str = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __a : int = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __a , __a : List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) __a : Union[str, Any] = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) __a : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a : str = self.parse_known_args(args=_UpperCAmelCase ) __a : Optional[int] = [] for dtype in self.dataclass_types: __a : Optional[int] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : List[str] = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) __a : int = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = set(args.keys() ) __a : List[str] = [] for dtype in self.dataclass_types: __a : Dict = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __a : Tuple = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): with open(Path(_UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: __a : int = json.loads(open_json_file.read() ) __a : str = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
160
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mvp""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A_=50267 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , A_=False , A_=100 , A_=800 , **A_ , )-> Tuple: '''simple docstring''' UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = classifier_dropout UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = use_prompt UpperCamelCase = prompt_length UpperCamelCase = prompt_mid_dim super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): UpperCamelCase = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
251
'''simple docstring''' from itertools import product def A_( A : int , A : int): UpperCamelCase = sides_number UpperCamelCase = max_face_number * dice_number UpperCamelCase = [0] * (max_total + 1) UpperCamelCase = 1 UpperCamelCase = range(A , max_face_number + 1) for dice_numbers in product(A , repeat=A): UpperCamelCase = sum(A) totals_frequencies[total] += 1 return totals_frequencies def A_( ): UpperCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9) UpperCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6) UpperCamelCase = 0 UpperCamelCase = 9 UpperCamelCase = 4 * 9 UpperCamelCase = 6 for peter_total in range(A , max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) UpperCamelCase = (4**9) * (6**6) UpperCamelCase = peter_wins_count / total_games_number UpperCamelCase = round(A , ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
251
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _UpperCamelCase ( __A ) -> List[str]: '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(__A , "_dynamo" ): return False return isinstance(__A , torch._dynamo.eval_frame.OptimizedModule ) def _UpperCamelCase ( __A , __A = True ) -> Tuple: '''simple docstring''' UpperCamelCase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ = is_compiled_module(__A ) if is_compiled: UpperCamelCase__ = model UpperCamelCase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__A , __A ): UpperCamelCase__ = model.module if not keep_fpaa_wrapper: UpperCamelCase__ = getattr(__A , "forward" ) UpperCamelCase__ = model.__dict__.pop("_original_forward" , __A ) if original_forward is not None: while hasattr(__A , "__wrapped__" ): UpperCamelCase__ = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ = forward if getattr(__A , "_converted_to_transformer_engine" , __A ): convert_model(__A , to_transformer_engine=__A ) if is_compiled: UpperCamelCase__ = model UpperCamelCase__ = compiled_model return model def _UpperCamelCase ( ) -> List[str]: '''simple docstring''' PartialState().wait_for_everyone() def _UpperCamelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(__A , __A ) elif PartialState().local_process_index == 0: torch.save(__A , __A ) @contextmanager def _UpperCamelCase ( **__A ) -> int: '''simple docstring''' for key, value in kwargs.items(): UpperCamelCase__ = str(__A ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' if not hasattr(__A , "__qualname__" ) and not hasattr(__A , "__name__" ): UpperCamelCase__ = getattr(__A , "__class__" , __A ) if hasattr(__A , "__qualname__" ): return obj.__qualname__ if hasattr(__A , "__name__" ): return obj.__name__ return str(__A ) def _UpperCamelCase ( __A , __A ) -> Any: '''simple docstring''' for key, value in source.items(): if isinstance(__A , __A ): UpperCamelCase__ = destination.setdefault(__A , {} ) merge_dicts(__A , __A ) else: UpperCamelCase__ = value return destination def _UpperCamelCase ( __A = None ) -> bool: '''simple docstring''' if port is None: UpperCamelCase__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
80
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _UpperCamelCase ( __A , __A , __A=1024 , __A=1024 , __A=False , **__A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="train" , **__A ) UpperCamelCase__ = tok.pad_token_id def get_lens(__A ): UpperCamelCase__ = tqdm( DataLoader(__A , batch_size=512 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase__ = [] for batch in dl: UpperCamelCase__ = batch["input_ids"].ne(__A ).sum(1 ).tolist() UpperCamelCase__ = batch["labels"].ne(__A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__A , __A ): max_lens.append(max(__A , __A ) ) else: max_lens.extend(__A ) return max_lens UpperCamelCase__ = get_lens(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="val" , **__A ) UpperCamelCase__ = get_lens(__A ) pickle_save(__A , train_ds.len_file ) pickle_save(__A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
80
1
from __future__ import annotations import math class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = size # approximate the overall size of segment tree with given value _UpperCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] # create array to store lazy update _UpperCAmelCase : Optional[Any] = [0 for i in range(0 , 4 * size )] _UpperCAmelCase : str = [0 for i in range(0 , 4 * size )] # flag for lazy update def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return idx * 2 def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if left_element == right_element: _UpperCAmelCase : Optional[Any] = a[left_element - 1] else: _UpperCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.build(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Optional[int] = max( self.segment_tree[self.left(__lowerCamelCase )] , self.segment_tree[self.right(__lowerCamelCase )] ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.flag[idx] is True: _UpperCAmelCase : List[Any] = self.lazy[idx] _UpperCAmelCase : List[Any] = False if left_element != right_element: _UpperCAmelCase : Optional[int] = self.lazy[idx] _UpperCAmelCase : Dict = self.lazy[idx] _UpperCAmelCase : Any = True _UpperCAmelCase : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _UpperCAmelCase : Dict = val if left_element != right_element: _UpperCAmelCase : List[Any] = val _UpperCAmelCase : Dict = val _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Optional[int] = True return True _UpperCAmelCase : Optional[int] = (left_element + right_element) // 2 self.update(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.update(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = max( self.segment_tree[self.left(__lowerCamelCase )] , self.segment_tree[self.right(__lowerCamelCase )] ) return True def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.flag[idx] is True: _UpperCAmelCase : Dict = self.lazy[idx] _UpperCAmelCase : Any = False if left_element != right_element: _UpperCAmelCase : Optional[int] = self.lazy[idx] _UpperCAmelCase : List[Any] = self.lazy[idx] _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _UpperCAmelCase : Any = (left_element + right_element) // 2 _UpperCAmelCase : Dict = self.query(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Any = self.query(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return max(__lowerCamelCase , __lowerCamelCase ) def __str__( self ): '''simple docstring''' return str([self.query(1 , 1 , self.size , __lowerCamelCase , __lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
368
from typing import Any class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = data _UpperCAmelCase : Any = None class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : str = temp.next print() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = Node(A_ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Tuple = new_node def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Tuple = node_a.next _UpperCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
189
0
def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = len(_lowercase ) for _ in range(_lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCamelCase : Tuple = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
182
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def A ( _lowercase , _lowercase , _lowercase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = is_small_dataset(_lowercase ) assert result == expected
182
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A : snake_case__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class _A : snake_case__ : Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A__ ( self ): """simple docstring""" if self.train_file is not None: lowercase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowercase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _A : snake_case__ : PreTrainedTokenizerBase snake_case__ : Union[bool, str, PaddingStrategy] = True snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = """label""" if """label""" in features[0].keys() else """labels""" lowercase = [feature.pop(__lowerCAmelCase ) for feature in features] lowercase = len(__lowerCAmelCase ) lowercase = len(features[0]["""input_ids"""] ) lowercase = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features ] lowercase = list(chain(*__lowerCAmelCase ) ) lowercase = self.tokenizer.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowercase = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels lowercase = torch.tensor(__lowerCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowercase = {} if data_args.train_file is not None: lowercase = data_args.train_file if data_args.validation_file is not None: lowercase = data_args.validation_file lowercase = data_args.train_file.split(""".""" )[-1] lowercase = load_dataset( lowerCAmelCase__ , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowercase = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowercase = [f'ending{i}' for i in range(4 )] lowercase = """sent1""" lowercase = """sent2""" if data_args.max_seq_length is None: lowercase = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowercase = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowercase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase__ :Optional[Any] ): lowercase = [[context] * 4 for context in examples[context_name]] lowercase = examples[question_header_name] lowercase = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCAmelCase__ ) ] # Flatten out lowercase = list(chain(*lowerCAmelCase__ ) ) lowercase = list(chain(*lowerCAmelCase__ ) ) # Tokenize lowercase = tokenizer( lowerCAmelCase__ , lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) lowercase = train_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowercase = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase = min(len(lowerCAmelCase__ ) , data_args.max_eval_samples ) lowercase = eval_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowercase = eval_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowercase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase__ :Optional[Any] ): lowercase , lowercase = eval_predictions lowercase = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase = train_result.metrics lowercase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowercase = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""train""" , lowerCAmelCase__ ) trainer.save_metrics("""train""" , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate() lowercase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowercase = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
32
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ : int = imread(r'''digital_image_processing/image_data/lena_small.jpg''') lowerCamelCase__ : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase ( ) -> List[str]: _UpperCAmelCase : int = cn.convert_to_negative(_lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(_lowerCAmelCase, 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase ( ) -> Optional[int]: _UpperCAmelCase : Tuple = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase ( ) -> Dict: _UpperCAmelCase : Union[str, Any] = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCAmelCase : List[Any] = canny.canny(_lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase ( ) -> Tuple: assert gg.gaussian_filter(_lowerCAmelCase, 5, sigma=0.9 ).all() def UpperCamelCase ( ) -> str: # laplace diagonals _UpperCAmelCase : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _UpperCAmelCase : int = conv.img_convolve(_lowerCAmelCase, _lowerCAmelCase ).astype(_lowerCAmelCase ) assert res.any() def UpperCamelCase ( ) -> Optional[int]: assert med.median_filter(_lowerCAmelCase, 3 ).any() def UpperCamelCase ( ) -> Dict: _UpperCAmelCase , _UpperCAmelCase : Any = sob.sobel_filter(_lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase ( ) -> Dict: _UpperCAmelCase : int = sp.make_sepia(_lowerCAmelCase, 20 ) assert sepia.all() def UpperCamelCase ( _lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = bs.Burkes(imread(_lowerCAmelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase ( _lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[Any]: _UpperCAmelCase : List[str] = rs.NearestNeighbour(imread(_lowerCAmelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def UpperCamelCase ( ) -> List[str]: _UpperCAmelCase : List[Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _UpperCAmelCase : Any = imread(_lowerCAmelCase, 0 ) # Test for get_neighbors_pixel function() return not None _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : int = image[x_coordinate][y_coordinate] _UpperCAmelCase : Tuple = lbp.get_neighbors_pixel( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCAmelCase : Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): _UpperCAmelCase : List[Any] = lbp.local_binary_value(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) assert lbp_image.any()
246
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Tuple = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _UpperCAmelCase : List[str] = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : List[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _UpperCAmelCase : Dict = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) # load decoder from hub _UpperCAmelCase : List[Any] = """hf-internal-testing/ngram-beam-search-decoder""" def __snake_case ( self , **_A ) -> Dict: '''simple docstring''' _UpperCAmelCase : str = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Tuple: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Union[str, Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_A , """include""" ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = feature_extractor(_A , return_tensors="""np""" ) _UpperCAmelCase : int = processor(_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[Any] = """This is a test string""" _UpperCAmelCase : Optional[Any] = processor(text=_A ) _UpperCAmelCase : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self , _A=(2, 10, 16) , _A=77 ) -> Union[str, Any]: '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : str = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _UpperCAmelCase : Optional[int] = processor.decode(_A ) _UpperCAmelCase : str = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : int = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: _UpperCAmelCase : Dict = processor.batch_decode(_A , _A ) _UpperCAmelCase : Tuple = list(_A ) with get_context("""fork""" ).Pool() as p: _UpperCAmelCase : Tuple = decoder.decode_beams_batch(_A , _A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : List[str] = 15 _UpperCAmelCase : Dict = -20.0 _UpperCAmelCase : List[str] = -4.0 _UpperCAmelCase : Any = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Any = decoded_processor_out.text _UpperCAmelCase : Any = list(_A ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : str = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : List[str] = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _A , atol=1e-3 ) ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : Any = 2.0 _UpperCAmelCase : Union[str, Any] = 5.0 _UpperCAmelCase : List[Any] = -20.0 _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) _UpperCAmelCase : Tuple = decoded_processor_out.text _UpperCAmelCase : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) _UpperCAmelCase : Optional[int] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _A ) _UpperCAmelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(_A ) _UpperCAmelCase : Any = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Union[str, Any] = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = processor_wavaveca(_A , return_tensors="""np""" ) _UpperCAmelCase : Any = processor_auto(_A , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() _UpperCAmelCase : Dict = processor_wavaveca.batch_decode(_A ) _UpperCAmelCase : Optional[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def __snake_case ( _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = [d[key] for d in offsets] return retrieved_list def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = self._get_dummy_logits()[0] _UpperCAmelCase : Tuple = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_A , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self ) -> str: '''simple docstring''' import torch _UpperCAmelCase : List[str] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_A ) _UpperCAmelCase : List[Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _UpperCAmelCase : List[Any] = iter(_A ) _UpperCAmelCase : Optional[Any] = next(_A ) _UpperCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _UpperCAmelCase : Dict = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(_A ).logits.cpu().numpy() _UpperCAmelCase : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=_A ) _UpperCAmelCase : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Optional[int] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _UpperCAmelCase : List[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , _A ) self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , output.text ) # output times _UpperCAmelCase : List[str] = torch.tensor(self.get_from_offsets(_A , """start_time""" ) ) _UpperCAmelCase : Any = torch.tensor(self.get_from_offsets(_A , """end_time""" ) ) # fmt: off _UpperCAmelCase : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase : List[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
246
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase: str = logging.get_logger(__name__) @dataclass class a__( lowerCamelCase__ ): lowercase__ = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : int , **__snake_case : Dict ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: a : int = deprecated_arg[3:] a : Union[str, Any] = not kwargs.pop(__snake_case ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) a : Optional[Any] = kwargs.pop('tpu_name' , self.tpu_name ) a : Tuple = kwargs.pop('device_idx' , self.device_idx ) a : Tuple = kwargs.pop('eager_mode' , self.eager_mode ) a : str = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**__snake_case ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Name of TPU"""} , ) lowercase__ = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """Benchmark models in eager model."""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def lowercase_ ( self : Dict ): requires_backends(self , ['tf'] ) a : Optional[Any] = None if self.tpu: try: if self.tpu_name: a : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: a : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: a : Any = None return tpu @cached_property def lowercase_ ( self : Optional[int] ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) a : int = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) a : List[str] = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU a : str = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def lowercase_ ( self : Dict ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def lowercase_ ( self : Tuple ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def lowercase_ ( self : Union[str, Any] ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def lowercase_ ( self : int ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowercase_ ( self : Any ): return self.n_gpu > 0
359
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase: Any = logging.get_logger(__name__) class a__( lowerCamelCase__ ): lowercase__ = ["""pixel_values"""] def __init__( self : List[str] , __snake_case : bool = True , __snake_case : int = 32 , __snake_case : Union[str, Any]=PILImageResampling.BILINEAR , __snake_case : bool = True , **__snake_case : List[Any] , ): a : Optional[Any] = do_resize a : Union[str, Any] = do_rescale a : Union[str, Any] = size_divisor a : List[Any] = resample super().__init__(**__snake_case ) def lowercase_ ( self : Optional[Any] , __snake_case : np.ndarray , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[ChannelDimension] = None , **__snake_case : Tuple ): a , a : Optional[int] = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a : int = height // size_divisor * size_divisor a : int = width // size_divisor * size_divisor a : Any = resize(__snake_case , (new_h, new_w) , resample=__snake_case , data_format=__snake_case , **__snake_case ) return image def lowercase_ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : float , __snake_case : Optional[ChannelDimension] = None , **__snake_case : Optional[Any] ): return rescale(image=__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase_ ( self : List[str] , __snake_case : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __snake_case : Optional[bool] = None , __snake_case : Optional[int] = None , __snake_case : Dict=None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[TensorType, str]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : Any , ): a : List[str] = do_resize if do_resize is not None else self.do_resize a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : Optional[Any] = size_divisor if size_divisor is not None else self.size_divisor a : Union[str, Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a : Tuple = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a : str = [to_numpy_array(__snake_case ) for img in images] if do_resize: a : int = [self.resize(__snake_case , size_divisor=__snake_case , resample=__snake_case ) for image in images] if do_rescale: a : List[str] = [self.rescale(__snake_case , scale=1 / 2_55 ) for image in images] a : Any = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] a : Any = {'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
96
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Tuple: """simple docstring""" a__ : List[str] = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : Tuple = None a__ : str = 2_0 a__ : Tuple = self._get_uniform_logits(batch_size=2 , length=__SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore a__ : List[str] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch a__ : Any = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax a__ : str = jax.nn.softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) a__ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) a__ : List[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) a__ : Tuple = jax.nn.softmax(temp_dist_warper_sharper(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE ) , axis=-1 ) a__ : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = None a__ : Dict = 1_0 a__ : List[Any] = 2 # create ramp distribution a__ : Any = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() a__ : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size a__ : int = FlaxTopKLogitsWarper(3 ) a__ : Any = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case a__ : int = 5 a__ : Union[str, Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) a__ : List[Any] = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() a__ : List[str] = top_k_warp_safety_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[int] = None a__ : Any = 1_0 a__ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) a__ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) a__ : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) a__ : Optional[Any] = np.exp(top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 a__ : Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # check edge cases with negative and extreme logits a__ : str = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme a__ : Optional[int] = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept a__ : List[str] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) a__ : Union[str, Any] = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : int = 2_0 a__ : List[Any] = 4 a__ : List[Any] = 0 a__ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 a__ : Any = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) a__ : List[Any] = 5 a__ : Any = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : List[str] = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 a__ : Optional[int] = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : Any = 1_5 a__ : Any = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = 2_0 a__ : List[Any] = 4 a__ : Optional[Any] = 0 a__ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score a__ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=2_0 ) a__ : List[Any] = 1 a__ : Optional[int] = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : Dict = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 a__ : List[str] = 3 a__ : Dict = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : int = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[int] = 2_0 a__ : Union[str, Any] = 4 a__ : str = 0 a__ : Tuple = 5 a__ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached a__ : List[str] = ids_tensor((batch_size, 4) , vocab_size=2_0 ) a__ : Optional[Any] = 4 a__ : List[Any] = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : Any = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached a__ : List[str] = 3 a__ : str = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : int = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Optional[Any] = 4 a__ : int = 1_0 a__ : Dict = 1_5 a__ : List[Any] = 2 a__ : int = 1 a__ : Optional[int] = 1_5 # dummy input_ids and scores a__ : Optional[int] = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE ) a__ : Tuple = input_ids.copy() a__ : Union[str, Any] = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : Any = scores.copy() # instantiate all dist processors a__ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) a__ : List[str] = FlaxTopKLogitsWarper(3 ) a__ : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors a__ : Tuple = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__SCREAMING_SNAKE_CASE ) a__ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) a__ : int = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) a__ : List[str] = 1_0 # no processor list a__ : Dict = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Optional[int] = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : List[Any] = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Optional[Any] = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Tuple = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Tuple = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # with processor list a__ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) a__ : Tuple = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Optional[Any] = 4 a__ : Union[str, Any] = 1_0 a__ : Union[str, Any] = 1_5 a__ : Any = 2 a__ : Optional[Any] = 1 a__ : Tuple = 1_5 # dummy input_ids and scores a__ : int = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] = input_ids.copy() a__ : Optional[int] = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : List[str] = scores.copy() # instantiate all dist processors a__ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) a__ : Optional[int] = FlaxTopKLogitsWarper(3 ) a__ : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors a__ : int = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=__SCREAMING_SNAKE_CASE ) a__ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) a__ : Optional[Any] = 1_0 # no processor list def run_no_processor_list(__lowercase , __lowercase , __lowercase ): a__ : List[Any] = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Dict = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Optional[Any] = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : Dict = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : List[str] = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) a__ : List[str] = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(__lowercase , __lowercase , __lowercase ): a__ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) a__ : Union[str, Any] = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) return scores a__ : Dict = jax.jit(__SCREAMING_SNAKE_CASE ) a__ : Dict = jax.jit(__SCREAMING_SNAKE_CASE ) a__ : List[Any] = jitted_run_no_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] = jitted_run_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
170
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __snake_case :List[Any] = logging.getLogger(__name__) class _A : def __init__( self : List[str]): '''simple docstring''' __a = False def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' if not self.initialized: __a = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __a = True def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.retriever.index.init_index() def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a , __a = self.retriever._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return doc_ids, retrieved_doc_embeds class _A ( __UpperCAmelCase ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): '''simple docstring''' if index is not None and index.is_initialized() and len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''') super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __a = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for worker in self.retrieval_workers ]) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' logger.info('''initializing retrieval''') if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if len(self.retrieval_workers) > 0: # Select a random retrieval actor. __a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] __a , __a = ray.get(random_worker.retrieve.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) else: __a , __a = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return super(__SCREAMING_SNAKE_CASE , cls).get_tokenizers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE) or RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE) __a = rag_tokenizer.question_encoder __a = rag_tokenizer.generator if indexed_dataset is not None: __a = '''custom''' __a = CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE) else: __a = cls._build_index(__SCREAMING_SNAKE_CASE) return cls( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , retrieval_workers=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , )
49
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=[30, 30] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=10 , )->List[Any]: '''simple docstring''' A_ : List[str] = parent A_ : Union[str, Any] = batch_size A_ : Optional[int] = image_size A_ : List[str] = patch_size A_ : str = num_channels A_ : Optional[int] = is_training A_ : str = use_labels A_ : Union[str, Any] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Any = num_attention_heads A_ : int = intermediate_size A_ : str = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : str = type_sequence_label_size A_ : Any = initializer_range A_ : List[str] = num_labels A_ : List[str] = scope A_ : int = n_targets A_ : List[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A_ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) A_ : Union[str, Any] = num_patches + 1 + self.num_detection_tokens def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A_ : Dict = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A_ : int = [] for i in range(self.batch_size ): A_ : List[Any] = {} A_ : str = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_SCREAMING_SNAKE_CASE ) A_ : Dict = torch.rand(self.n_targets , 4 , device=_SCREAMING_SNAKE_CASE ) labels.append(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self )->Dict: '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Dict = YolosModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = YolosForObjectDetection(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(pixel_values=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A_ : Tuple = model(pixel_values=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _snake_case ( self )->Any: '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ : Optional[Any] = config_and_inputs A_ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (YolosModel, YolosForObjectDetection) if is_torch_available() else () snake_case = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Any: '''simple docstring''' A_ : str = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A_ : List[Any] = [] for i in range(self.model_tester.batch_size ): A_ : Union[str, Any] = {} A_ : str = torch.ones( size=(self.model_tester.n_targets,) , device=_SCREAMING_SNAKE_CASE , dtype=torch.long ) A_ : List[str] = torch.ones( self.model_tester.n_targets , 4 , device=_SCREAMING_SNAKE_CASE , dtype=torch.float ) labels.append(_SCREAMING_SNAKE_CASE ) A_ : Tuple = labels return inputs_dict def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[int] = YolosModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Tuple: '''simple docstring''' pass def _snake_case ( self )->Dict: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = True # in YOLOS, the seq_len is different A_ : str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A_ : Any = True A_ : List[Any] = False A_ : Any = True A_ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Dict = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : Any = True A_ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A_ : Tuple = True A_ : int = True A_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : List[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) A_ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _snake_case ( self )->List[str]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : str = outputs.hidden_states A_ : Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # YOLOS has a different seq_length A_ : Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Union[str, Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->str: '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = YolosModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.default_image_processor A_ : Tuple = prepare_img() A_ : str = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(inputs.pixel_values ) # verify outputs A_ : int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_SCREAMING_SNAKE_CASE , ) A_ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify postprocessing A_ : List[str] = image_processor.post_process_object_detection( _SCREAMING_SNAKE_CASE , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A_ : List[Any] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = [75, 75, 17, 63, 17] A_ : int = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , _SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _SCREAMING_SNAKE_CASE ) )
366
from collections import deque from .hash_table import HashTable class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : List[str] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.values[key] def _snake_case ( self )->List[Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->Any: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
65
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowerCamelCase ( __snake_case : str ) -> List[str]: """simple docstring""" if not is_accelerate_available(): return method A__ : Optional[int] =version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse("""0.17.0""" ): return method def wrapper(self : Optional[Any], *__snake_case : List[str], **__snake_case : str ): if hasattr(self, """_hf_hook""" ) and hasattr(self._hf_hook, """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self, *__snake_case, **__snake_case ) return wrapper
134
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) A__ : Dict =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : int =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : Optional[int] =CLIPTextModel(lowerCAmelCase_ ) A__ : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : str ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=0 ) -> List[str]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ : List[str] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) A__ : int =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : str =torch.manual_seed(lowerCAmelCase_ ) else: A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Tuple =self.get_dummy_components() A__ : str =StableDiffusionInpaintPipeline(**lowerCAmelCase_ ) A__ : Any =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =sd_pipe(**lowerCAmelCase_ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[Any] =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) A__ : Optional[Any] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : int =StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : str =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : Tuple =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) A__ : int ="""stabilityai/stable-diffusion-2-inpainting""" A__ : List[Any] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : str =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[str] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =PNDMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="""scheduler""" ) A__ : Optional[int] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Any =torch.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ) A__ : Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
134
1
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->float: """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(UpperCAmelCase ) / len(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : torch.FloatTensor class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int = 3_2 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2_0 ,SCREAMING_SNAKE_CASE__ : int = 7_6_8 ,SCREAMING_SNAKE_CASE__ : Any=7_7 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : str = "silu" ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "linear" ,SCREAMING_SNAKE_CASE__ : Optional[str] = "prd" ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,): super().__init__() __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = attention_head_dim __lowerCamelCase : Tuple = num_attention_heads * attention_head_dim __lowerCamelCase : List[Any] = additional_embeddings __lowerCamelCase : List[str] = time_embed_dim or inner_dim __lowerCamelCase : Union[str, Any] = embedding_proj_dim or embedding_dim __lowerCamelCase : Optional[int] = clip_embed_dim or embedding_dim __lowerCamelCase : Tuple = Timesteps(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0) __lowerCamelCase : int = TimestepEmbedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,out_dim=SCREAMING_SNAKE_CASE__ ,act_fn=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if embedding_proj_norm_type is None: __lowerCamelCase : List[Any] = None elif embedding_proj_norm_type == "layer": __lowerCamelCase : Any = nn.LayerNorm(SCREAMING_SNAKE_CASE__) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}") __lowerCamelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if encoder_hid_proj_type is None: __lowerCamelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __lowerCamelCase : Any = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}") __lowerCamelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,SCREAMING_SNAKE_CASE__)) if added_emb_type == "prd": __lowerCamelCase : int = nn.Parameter(torch.zeros(1 ,1 ,SCREAMING_SNAKE_CASE__)) elif added_emb_type is None: __lowerCamelCase : Dict = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.") __lowerCamelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dropout=SCREAMING_SNAKE_CASE__ ,activation_fn='gelu' ,attention_bias=SCREAMING_SNAKE_CASE__ ,) for d in range(SCREAMING_SNAKE_CASE__) ]) if norm_in_type == "layer": __lowerCamelCase : List[str] = nn.LayerNorm(SCREAMING_SNAKE_CASE__) elif norm_in_type is None: __lowerCamelCase : Tuple = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}.") __lowerCamelCase : Any = nn.LayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-10000.0) causal_attention_mask.triu_(1) __lowerCamelCase : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,SCREAMING_SNAKE_CASE__ ,persistent=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = nn.Parameter(torch.zeros(1 ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = nn.Parameter(torch.zeros(1 ,SCREAMING_SNAKE_CASE__)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Tuple = {} def fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : torch.nn.Module ,SCREAMING_SNAKE_CASE__ : Dict[str, AttentionProcessor]): if hasattr(SCREAMING_SNAKE_CASE__ ,'set_processor'): __lowerCamelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return processors for name, module in self.named_children(): fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return processors def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]): __lowerCamelCase : List[Any] = len(self.attn_processors.keys()) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) and len(SCREAMING_SNAKE_CASE__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : torch.nn.Module ,SCREAMING_SNAKE_CASE__ : Tuple): if hasattr(SCREAMING_SNAKE_CASE__ ,'set_processor'): if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): module.set_processor(SCREAMING_SNAKE_CASE__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for name, module in self.named_children(): fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): self.set_attn_processor(AttnProcessor()) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, float, int] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.BoolTensor] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = hidden_states.shape[0] __lowerCamelCase : int = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE__): __lowerCamelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device) elif torch.is_tensor(SCREAMING_SNAKE_CASE__) and len(timesteps.shape) == 0: __lowerCamelCase : int = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : str = timesteps * torch.ones(SCREAMING_SNAKE_CASE__ ,dtype=timesteps.dtype ,device=timesteps.device) __lowerCamelCase : Optional[int] = self.time_proj(SCREAMING_SNAKE_CASE__) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase : str = timesteps_projected.to(dtype=self.dtype) __lowerCamelCase : Dict = self.time_embedding(SCREAMING_SNAKE_CASE__) if self.embedding_proj_norm is not None: __lowerCamelCase : Optional[Any] = self.embedding_proj_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.embedding_proj(SCREAMING_SNAKE_CASE__) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase : Optional[Any] = self.encoder_hidden_states_proj(SCREAMING_SNAKE_CASE__) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set') __lowerCamelCase : Optional[Any] = self.proj_in(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.positional_embedding.to(hidden_states.dtype) __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(SCREAMING_SNAKE_CASE__) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: __lowerCamelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: __lowerCamelCase : int = hidden_states[:, None, :] __lowerCamelCase : List[str] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase : Any = self.prd_embedding.to(hidden_states.dtype).expand(SCREAMING_SNAKE_CASE__ ,-1 ,-1) additional_embeds.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = torch.cat( SCREAMING_SNAKE_CASE__ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase : Any = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase : Tuple = F.pad( SCREAMING_SNAKE_CASE__ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) __lowerCamelCase : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase : Dict = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 __lowerCamelCase : int = F.pad(SCREAMING_SNAKE_CASE__ ,(0, self.additional_embeddings) ,value=0.0) __lowerCamelCase : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) __lowerCamelCase : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0) if self.norm_in is not None: __lowerCamelCase : Union[str, Any] = self.norm_in(SCREAMING_SNAKE_CASE__) for block in self.transformer_blocks: __lowerCamelCase : List[Any] = block(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.norm_out(SCREAMING_SNAKE_CASE__) if self.prd_embedding is not None: __lowerCamelCase : Dict = hidden_states[:, -1] else: __lowerCamelCase : Union[str, Any] = hidden_states[:, additional_embeddings_len:] __lowerCamelCase : int = self.proj_to_clip_embeddings(SCREAMING_SNAKE_CASE__) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
73
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
0
'''simple docstring''' __UpperCAmelCase :List[str] = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCAmelCase :Any = {value: key for key, value in MORSE_CODE_DICT.items()} def _a ( _lowercase : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _a ( _lowercase : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _a ( ): '''simple docstring''' __UpperCAmelCase : List[Any] = '''Morse code here!''' print(_lowercase ) __UpperCAmelCase : Union[str, Any] = encrypt(_lowercase ) print(_lowercase ) __UpperCAmelCase : Optional[Any] = decrypt(_lowercase ) print(_lowercase ) if __name__ == "__main__": main()
240
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCAmelCase :Tuple = "Create a default config file for Accelerate with only a few flags set." def _a ( _lowercase : List[Any]="no" , _lowercase : str = default_json_config_file , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase : int = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase : Optional[Any] = torch.cuda.device_count() __UpperCAmelCase : List[str] = num_gpus __UpperCAmelCase : int = False if num_gpus > 1: __UpperCAmelCase : Any = '''MULTI_GPU''' else: __UpperCAmelCase : int = '''NO''' elif is_xpu_available() and use_xpu: __UpperCAmelCase : List[Any] = torch.xpu.device_count() __UpperCAmelCase : List[Any] = num_xpus __UpperCAmelCase : Optional[int] = False if num_xpus > 1: __UpperCAmelCase : Any = '''MULTI_XPU''' else: __UpperCAmelCase : Optional[Any] = '''NO''' elif is_npu_available(): __UpperCAmelCase : Dict = torch.npu.device_count() __UpperCAmelCase : Any = num_npus __UpperCAmelCase : Any = False if num_npus > 1: __UpperCAmelCase : Dict = '''MULTI_NPU''' else: __UpperCAmelCase : Optional[int] = '''NO''' else: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Tuple = '''NO''' __UpperCAmelCase : List[Any] = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _a ( _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parser.add_parser('''default''' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '''--config_file''' , default=_lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowercase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowercase ) return parser def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
240
1
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE (A , A ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , A , (alpha * (np.exp(A ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
2
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: UpperCamelCase__ : Optional[Any] = json.load(__lowerCAmelCase ) UpperCamelCase__ : str = {} UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] for key, info in class_info.items(): UpperCamelCase__ : List[str] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) UpperCamelCase__ : Dict = thing_ids UpperCamelCase__ : Optional[int] = class_names return metadata class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=4_00 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=2_55 , SCREAMING_SNAKE_CASE : str="shi-labs/oneformer_demo" , SCREAMING_SNAKE_CASE : List[Any]="ade20k_panoptic.json" , SCREAMING_SNAKE_CASE : Tuple=10 , ): '''simple docstring''' UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : Optional[int] = image_mean UpperCamelCase__ : Union[str, Any] = image_std UpperCamelCase__ : Union[str, Any] = class_info_file UpperCamelCase__ : Tuple = prepare_metadata(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_text UpperCamelCase__ : int = repo_path # for the post_process_functions UpperCamelCase__ : int = 2 UpperCamelCase__ : str = 10 UpperCamelCase__ : Any = 10 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : Tuple = do_reduce_labels UpperCamelCase__ : List[str] = ignore_index def __lowercase ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if not batched: UpperCamelCase__ : str = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = image.size else: UpperCamelCase__ , UpperCamelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ : Any = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCamelCase__ : int = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCamelCase__ : str = self.size["shortest_edge"] else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def __lowercase ( self : Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase : List[str] = image_processing_class def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "ignore_index" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "class_info_file" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_text" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "repo_path" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "metadata" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_reduce_labels" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Dict = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any="np" ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ : Any = self.image_processing_tester.num_labels UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) if with_segmentation_maps: UpperCamelCase__ : Tuple = num_labels if is_instance_map: UpperCamelCase__ : List[str] = list(range(SCREAMING_SNAKE_CASE ) ) * 2 UpperCamelCase__ : Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ : List[str] = [Image.fromarray(SCREAMING_SNAKE_CASE ) for annotation in annotations] UpperCamelCase__ : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , return_tensors="pt" , instance_id_to_semantic_id=SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE , ) return inputs def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' def common(SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : str=None ): UpperCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=SCREAMING_SNAKE_CASE , is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inputs["mask_labels"] UpperCamelCase__ : Optional[Any] = inputs["class_labels"] UpperCamelCase__ : List[str] = inputs["pixel_values"] UpperCamelCase__ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=SCREAMING_SNAKE_CASE ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = np.zeros((20, 50) ) UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = binary_mask_to_rle(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE , target_sizes=SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Optional[int] = image_processor.post_process_instance_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
189
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a : Any = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') a : Optional[Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('utf-8').split() a : List[Any] = '|'.join(sys.argv[1:]) a : int = re.compile(rF'''^({joined_dirs}).*?\.py$''') a : int = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
82
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=64, ) -> Union[str, Any]: UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = batch_size UpperCAmelCase_: int = is_training UpperCAmelCase_: Any = use_auxiliary_loss UpperCAmelCase_: str = num_queries UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = min_size UpperCAmelCase_: Optional[Any] = max_size UpperCAmelCase_: Tuple = num_labels UpperCAmelCase_: Union[str, Any] = hidden_dim UpperCAmelCase_: int = hidden_dim def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCAmelCase_: Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCAmelCase_: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case (self ) -> Any: UpperCAmelCase_: Any = MaskaFormerConfig( hidden_size=self.hidden_dim, ) UpperCAmelCase_: Any = self.num_queries UpperCAmelCase_: Dict = self.num_labels UpperCAmelCase_: Dict = [1, 1, 1, 1] UpperCAmelCase_: int = self.num_channels UpperCAmelCase_: Union[str, Any] = 64 UpperCAmelCase_: List[Any] = 128 UpperCAmelCase_: Optional[Any] = self.hidden_dim UpperCAmelCase_: str = self.hidden_dim UpperCAmelCase_: List[str] = self.hidden_dim return config def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.prepare_config_and_inputs() UpperCAmelCase_: Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = output.encoder_hidden_states UpperCAmelCase_: int = output.pixel_decoder_hidden_states UpperCAmelCase_: Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), config.decoder_layers ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_: Dict = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_: Dict = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model( pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} A = False A = False A = False A = False def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MaskaFormerModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __snake_case (self ) -> Dict: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __snake_case (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Tuple = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_: Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = (self.model_tester.min_size,) * 2 UpperCAmelCase_: str = { """pixel_values""": torch.randn((2, 3, *size), device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size), device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2, 10, device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCAmelCase_: Dict = self.model_tester.get_config() UpperCAmelCase_: Optional[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(**SCREAMING_SNAKE_CASE_, output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def __snake_case (self ) -> Optional[int]: if not self.model_tester.is_training: return UpperCAmelCase_: Union[str, Any] = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = True UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_: Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case (self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Tuple = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: int = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCAmelCase_: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_: Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase_: int = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCAmelCase_: Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_: Any = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="""pt""", ) UpperCAmelCase_: int = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCAmelCase_: int = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
82
1
import math import sys def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if number != int(__UpperCAmelCase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 UpperCamelCase__ : Any = [-1] * (number + 1) UpperCamelCase__ : Any = 0 for i in range(1 , number + 1 ): UpperCamelCase__ : Tuple = sys.maxsize UpperCamelCase__ : Optional[int] = int(math.sqrt(__UpperCAmelCase ) ) for j in range(1 , root + 1 ): UpperCamelCase__ : Tuple = 1 + answers[i - (j**2)] UpperCamelCase__ : List[Any] = min(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : str = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
201
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
1
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = set() SCREAMING_SNAKE_CASE__ : Dict = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : Optional[int] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : List[str] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Optional[int] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
191
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "AutoTokenizer" UpperCAmelCase_ = ["tokenizer"] UpperCAmelCase_ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Union[str, Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = speaker_embeddings @classmethod def A_ ( cls : Any, _UpperCAmelCase : List[str], _UpperCAmelCase : Dict="speaker_embeddings_path.json", **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE__ : Any = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, subfolder=kwargs.pop("subfolder", _UpperCAmelCase ), cache_dir=kwargs.pop("cache_dir", _UpperCAmelCase ), force_download=kwargs.pop("force_download", _UpperCAmelCase ), proxies=kwargs.pop("proxies", _UpperCAmelCase ), resume_download=kwargs.pop("resume_download", _UpperCAmelCase ), local_files_only=kwargs.pop("local_files_only", _UpperCAmelCase ), use_auth_token=kwargs.pop("use_auth_token", _UpperCAmelCase ), revision=kwargs.pop("revision", _UpperCAmelCase ), ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_UpperCAmelCase, _UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) SCREAMING_SNAKE_CASE__ : Dict = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase, speaker_embeddings=_UpperCAmelCase ) def A_ ( self : str, _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[str]="speaker_embeddings_path.json", _UpperCAmelCase : Optional[Any]="speaker_embeddings", _UpperCAmelCase : bool = False, **_UpperCAmelCase : List[str], ) -> Union[str, Any]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase, _UpperCAmelCase, "v2" ), exist_ok=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : Any = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE__ : List[Any] = self._load_voice_preset(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"], _UpperCAmelCase, F'''{prompt_key}_{key}''' ), voice_preset[key], allow_pickle=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_UpperCAmelCase, F'''{prompt_key}_{key}.npy''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_dict with open(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), "w" ) as fp: json.dump(_UpperCAmelCase, _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : List[Any], _UpperCAmelCase : str = None, **_UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE__ : Optional[int] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) SCREAMING_SNAKE_CASE__ : List[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path", "/" ), voice_preset_paths[key], subfolder=kwargs.pop("subfolder", _UpperCAmelCase ), cache_dir=kwargs.pop("cache_dir", _UpperCAmelCase ), force_download=kwargs.pop("force_download", _UpperCAmelCase ), proxies=kwargs.pop("proxies", _UpperCAmelCase ), resume_download=kwargs.pop("resume_download", _UpperCAmelCase ), local_files_only=kwargs.pop("local_files_only", _UpperCAmelCase ), use_auth_token=kwargs.pop("use_auth_token", _UpperCAmelCase ), revision=kwargs.pop("revision", _UpperCAmelCase ), ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/" ), voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) SCREAMING_SNAKE_CASE__ : int = np.load(_UpperCAmelCase ) return voice_preset_dict def A_ ( self : int, _UpperCAmelCase : Optional[dict] = None ) -> Optional[int]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key], np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any], _UpperCAmelCase : Optional[Any]=None, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Optional[int]="pt", _UpperCAmelCase : List[str]=2_5_6, _UpperCAmelCase : int=False, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Any=False, **_UpperCAmelCase : List[str], ) -> List[Any]: """simple docstring""" if voice_preset is not None and not isinstance(_UpperCAmelCase, _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase, _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE__ : List[str] = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase, _UpperCAmelCase ) and not voice_preset.endswith(".npz" ): SCREAMING_SNAKE_CASE__ : Optional[int] = voice_preset + ".npz" SCREAMING_SNAKE_CASE__ : List[str] = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer( _UpperCAmelCase, return_tensors=_UpperCAmelCase, padding="max_length", max_length=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, return_token_type_ids=_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, ) if voice_preset is not None: SCREAMING_SNAKE_CASE__ : str = voice_preset return encoded_text
191
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE__ : Dict = 'base_with_context' def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase : List[str] = weights[f'''layers_{lyr_num}'''] lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowerCamelCase : Dict = ly_weight["attention"] lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase : Optional[Any] = weights[f'''layers_{lyr_num}'''] lowerCamelCase : Union[str, Any] = ly_weight["attention"] lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase : int = weights[f'''layers_{lyr_num}'''] lowerCamelCase : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) lowerCamelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) lowerCamelCase : Optional[Any] = ly_weight["self_attention"] lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : str = ly_weight["MultiHeadDotProductAttention_0"] lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : str = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase : Union[str, Any] = jnp.tree_util.tree_map(onp.array ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] lowerCamelCase : Tuple = os.path.join(args.checkpoint_path ,".." ,"config.gin" ) lowerCamelCase : Optional[Any] = inference.parse_training_gin_file(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = inference.InferenceModel(args.checkpoint_path ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ,variance_type="fixed_large" ) lowerCamelCase : Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowerCamelCase : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["targets_context"] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowerCamelCase : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["targets_context"] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) lowerCamelCase : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = load_decoder(ta_checkpoint["target"]["decoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) lowerCamelCase : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=_SCREAMING_SNAKE_CASE ,continuous_encoder=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ,scheduler=_SCREAMING_SNAKE_CASE ,melgan=_SCREAMING_SNAKE_CASE ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() main(args)
48
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _UpperCamelCase = random.Random() def _lowercase ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: __lowerCAmelCase : Any = global_rng __lowerCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : str = min_seq_length __lowerCAmelCase : int = max_seq_length __lowerCAmelCase : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Any = padding_value __lowerCAmelCase : str = sampling_rate __lowerCAmelCase : Optional[Any] = return_attention_mask __lowerCAmelCase : Optional[Any] = do_normalize __lowerCAmelCase : Optional[Any] = feature_size __lowerCAmelCase : Optional[int] = chunk_length __lowerCAmelCase : Optional[Any] = hop_length def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , A_=False , A_=False ) ->Optional[Any]: '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __lowerCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCAmelCase : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase : Optional[Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = WhisperFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : List[str] = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __lowerCAmelCase : int = self.feature_extraction_class.from_pretrained(A_ ) __lowerCAmelCase : Dict = feat_extract_first.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_first.mel_filters __lowerCAmelCase : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Union[str, Any] = os.path.join(A_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A_ ) __lowerCAmelCase : List[str] = self.feature_extraction_class.from_json_file(A_ ) __lowerCAmelCase : List[str] = feat_extract_first.to_dict() __lowerCAmelCase : Tuple = feat_extract_second.to_dict() __lowerCAmelCase : Any = feat_extract_first.mel_filters __lowerCAmelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase : Tuple = feature_extractor(A_ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowerCAmelCase : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched __lowerCAmelCase : Union[str, Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowerCAmelCase : Optional[int] = np.asarray(A_ ) __lowerCAmelCase : Dict = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required __lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] __lowerCAmelCase : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowerCAmelCase : Optional[int] = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' import torch __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) __lowerCAmelCase : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Tuple = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowerCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Any = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCAmelCase : Union[str, Any] = ds.sort('''id''' ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on __lowerCAmelCase : int = self._load_datasamples(1 ) __lowerCAmelCase : Any = WhisperFeatureExtractor() __lowerCAmelCase : Optional[Any] = feature_extractor(A_ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : str = self._load_datasamples(1 )[0] __lowerCAmelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue __lowerCAmelCase : Union[str, Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
275
0
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = 0 snake_case_ = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None snake_case_ = sorted_collection[point] if current_item == item: return point else: if point < left: snake_case_ = left snake_case_ = point elif point > right: snake_case_ = right snake_case_ = point else: if item < current_item: snake_case_ = point - 1 else: snake_case_ = point + 1 return None def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point + 1 , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" if collection != sorted(SCREAMING_SNAKE_CASE ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys UpperCAmelCase = 0 if debug == 1: UpperCAmelCase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") UpperCAmelCase = 67 UpperCAmelCase = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("""Not found""")
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> list[int]: """simple docstring""" snake_case_ = int(SCREAMING_SNAKE_CASE ) # Initialize Result snake_case_ = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE ): # Find denominations while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ): total_value -= int(SCREAMING_SNAKE_CASE ) answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase = [] UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'''Following is minimal change for {value}: ''') UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
267
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict =["image_processor", "tokenizer"] UpperCAmelCase_ : Optional[Any] ="ChineseCLIPImageProcessor" UpperCAmelCase_ : Tuple =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : Dict = kwargs.pop("feature_extractor" ) __snake_case : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : List[str] = self.image_processor def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Tuple = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: __snake_case : Tuple = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: __snake_case : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = self.tokenizer.model_input_names __snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> str: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =ShapEPipeline a : Tuple =["""prompt"""] a : Optional[Any] =["""prompt"""] a : List[Any] =[ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a : List[str] =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 8 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=self.text_embedder_hidden_size,projection_dim=self.text_embedder_hidden_size,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,) return CLIPTextModelWithProjection(__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCAmelCase = PriorTransformer(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase = ShapERenderer(**__SCREAMING_SNAKE_CASE ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_prior __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_renderer __lowerCAmelCase = HeunDiscreteScheduler( beta_schedule="""exp""",num_train_timesteps=10_24,prediction_type="""sample""",use_karras_sigmas=__SCREAMING_SNAKE_CASE,clip_sample=__SCREAMING_SNAKE_CASE,clip_sample_range=1.0,) __lowerCAmelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = torch_device == """cpu""" __lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2,test_max_difference=__SCREAMING_SNAKE_CASE,relax_max_difference=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase = batch_size * [inputs[key]] __lowerCAmelCase = pipe(**__SCREAMING_SNAKE_CASE,num_images_per_prompt=__SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __lowerCAmelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCAmelCase = pipe( """a shark""",generator=__SCREAMING_SNAKE_CASE,guidance_scale=15.0,num_inference_steps=64,frame_size=64,output_type="""np""",).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
'''simple docstring''' import numpy as np from transformers import Pipeline def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = np.max(lowercase , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} if "second_text" in kwargs: __lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' return self.tokenizer(__SCREAMING_SNAKE_CASE,text_pair=__SCREAMING_SNAKE_CASE,return_tensors=self.framework ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_outputs.logits[0].numpy() __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.model.config.idalabel[best_class] __lowerCAmelCase = probabilities[best_class].item() __lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class snake_case : '''simple docstring''' snake_case_ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) snake_case_ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) snake_case_ : int = field( default=1_28 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) snake_case_ : bool = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" _snake_case : Union[str, Any] = self.task_name.lower() class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = """train""" snake_case_ : List[Any] = """dev""" snake_case_ : Union[str, Any] = """test""" class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : GlueDataTrainingArguments snake_case_ : str snake_case_ : List[InputFeatures] def __init__( self : str , lowerCAmelCase : GlueDataTrainingArguments , lowerCAmelCase : PreTrainedTokenizerBase , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Union[str, Split] = Split.train , lowerCAmelCase : Optional[str] = None , ) -> int: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCAmelCase , ) _snake_case : List[Any] = args _snake_case : int = glue_processors[args.task_name]() _snake_case : List[Any] = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase , lowerCAmelCase): try: _snake_case : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""") # Load data features from cache or dataset file _snake_case : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _snake_case : Union[str, Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _snake_case , _snake_case : List[Any] = label_list[2], label_list[1] _snake_case : Union[str, Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case : Optional[Any] = cached_features_file + """.lock""" with FileLock(lowerCAmelCase): if os.path.exists(lowerCAmelCase) and not args.overwrite_cache: _snake_case : Optional[Any] = time.time() _snake_case : List[str] = torch.load(lowerCAmelCase) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''') if mode == Split.dev: _snake_case : Optional[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _snake_case : int = self.processor.get_test_examples(args.data_dir) else: _snake_case : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _snake_case : Optional[int] = examples[:limit_length] _snake_case : Any = glue_convert_examples_to_features( lowerCAmelCase , lowerCAmelCase , max_length=args.max_seq_length , label_list=lowerCAmelCase , output_mode=self.output_mode , ) _snake_case : Dict = time.time() torch.save(self.features , lowerCAmelCase) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''') def __len__( self : Tuple) -> str: """simple docstring""" return len(self.features) def __getitem__( self : Tuple , lowerCAmelCase : Tuple) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.label_list
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowercase : Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''facebook/nllb-200-distilled-600M''' lowerCAmelCase_ = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowerCAmelCase_ = '''translator''' lowerCAmelCase_ = AutoTokenizer lowerCAmelCase_ = AutoModelForSeqaSeqLM lowerCAmelCase_ = LANGUAGE_CODES lowerCAmelCase_ = ['''text''', '''text''', '''text'''] lowerCAmelCase_ = ['''text'''] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) lowercase_ : List[str] = self.lang_to_code[src_lang] lowercase_ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.model.generate(**__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__SCREAMING_SNAKE_CASE )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
264
0
"""simple docstring""" def _snake_case ( _snake_case : int ) -> bool: '''simple docstring''' if num < 0: return False _A = num _A = 0 while num > 0: _A = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
315
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( a__ ): lowercase__ : Tuple = """new-model""" if is_tf_available(): class lowercase ( a__ ): lowercase__ : Optional[int] = NewModelConfig @require_tf class lowercase ( unittest.TestCase ): @slow def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : str ) -> Dict: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : int ) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __snake_case( self : Dict ) -> str: '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_probability def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( _UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCamelCase ) , 14_410 ) def __snake_case( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCamelCase ) , 14_410 ) def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] SCREAMING_SNAKE_CASE = TFAutoModel.from_config(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("new-model" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_UpperCamelCase ): auto_class.register(_UpperCamelCase , _UpperCamelCase ) auto_class.register(_UpperCamelCase , _UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): auto_class.register(_UpperCamelCase , _UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE = auto_class.from_config(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = auto_class.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __snake_case( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def __snake_case( self : Dict ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_UpperCamelCase , revision="aaaaaa" ) def __snake_case( self : Dict ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __snake_case( self : Optional[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex(_UpperCamelCase , "Use `from_pt=True` to load this model" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
370
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCamelCase : str = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] ): SCREAMING_SNAKE_CASE = to_pil_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pil_image.size SCREAMING_SNAKE_CASE = pytesseract.image_to_data(UpperCAmelCase__ , lang=UpperCAmelCase__ , output_type="dict" , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(UpperCAmelCase__ ) if not word.strip()] SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( a ): lowercase__ : Optional[int] = ["""pixel_values"""] def __init__( self : int , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : float = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = "" , **_UpperCamelCase : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_value SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE = apply_ocr SCREAMING_SNAKE_CASE = ocr_lang SCREAMING_SNAKE_CASE = tesseract_config def __snake_case( self : Dict , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Tuple , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCamelCase ) if apply_ocr: SCREAMING_SNAKE_CASE = words_batch SCREAMING_SNAKE_CASE = boxes_batch return data
206
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _UpperCAmelCase = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : Union[str, Any] = EfficientNetConfig() A_ : Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A_ : Dict = CONFIG_MAP[model_name]['''width_coef'''] A_ : int = CONFIG_MAP[model_name]['''depth_coef'''] A_ : Any = CONFIG_MAP[model_name]['''image_size'''] A_ : Any = CONFIG_MAP[model_name]['''dropout_rate'''] A_ : List[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A_ : str = '''huggingface/label-files''' A_ : Any = '''imagenet-1k-id2label.json''' A_ : Dict = 10_00 A_ : List[Any] = json.load(open(hf_hub_download(__lowercase ,__lowercase ,repo_type='dataset' ) ,'r' ) ) A_ : Dict = {int(__lowercase ): v for k, v in idalabel.items()} A_ : List[Any] = idalabel A_ : str = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ): '''simple docstring''' A_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : Union[str, Any] = Image.open(requests.get(__lowercase ,stream=__lowercase ).raw ) return im def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Union[str, Any] = CONFIG_MAP[model_name]['''image_size'''] A_ : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} ,image_mean=[0.4_85, 0.4_56, 0.4_06] ,image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] ,do_center_crop=__lowercase ,) return preprocessor def UpperCamelCase ( __lowercase : Optional[Any] ): '''simple docstring''' A_ : str = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] A_ : Tuple = sorted(set(__lowercase ) ) A_ : Optional[Any] = len(__lowercase ) A_ : Union[str, Any] = {b: str(__lowercase ) for b, i in zip(__lowercase ,range(__lowercase ) )} A_ : int = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: A_ : List[Any] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) A_ : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A_ : str = '''efficientnet.''' + item[1] A_ : Optional[Any] = '''classifier.weight''' A_ : Tuple = '''classifier.bias''' return key_mapping def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Any ,__lowercase : int ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue A_ : List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: A_ : Dict = torch.from_numpy(__lowercase ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: A_ : str = torch.from_numpy(__lowercase ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: A_ : Tuple = torch.from_numpy(np.transpose(__lowercase ) ) else: A_ : List[str] = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Dict ,__lowercase : Optional[int] ,__lowercase : Any ): '''simple docstring''' A_ : List[Any] = model_classes[model_name]( include_top=__lowercase ,weights='imagenet' ,input_tensor=__lowercase ,input_shape=__lowercase ,pooling=__lowercase ,classes=10_00 ,classifier_activation='softmax' ,) A_ : Dict = original_model.trainable_variables A_ : Union[str, Any] = original_model.non_trainable_variables A_ : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A_ : Optional[Any] = param.numpy() A_ : Tuple = list(tf_params.keys() ) # Load HuggingFace model A_ : Tuple = get_efficientnet_config(__lowercase ) A_ : List[Any] = EfficientNetForImageClassification(__lowercase ).eval() A_ : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) A_ : Dict = rename_keys(__lowercase ) replace_params(__lowercase ,__lowercase ,__lowercase ) # Initialize preprocessor and preprocess input image A_ : Tuple = convert_image_processor(__lowercase ) A_ : Optional[int] = preprocessor(images=prepare_img() ,return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): A_ : Optional[Any] = hf_model(**__lowercase ) A_ : Optional[Any] = outputs.logits.detach().numpy() # Original model inference A_ : int = False A_ : str = CONFIG_MAP[model_name]['''image_size'''] A_ : Tuple = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) A_ : Optional[int] = image.img_to_array(__lowercase ) A_ : List[str] = np.expand_dims(__lowercase ,axis=0 ) A_ : List[Any] = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase ,__lowercase ,atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) A_ : Dict = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") _UpperCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
140
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __magic_name__ ( __lowerCAmelCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : int , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = path_or_paths UpperCamelCase__ : List[Any] = split if split or isinstance(lowerCamelCase__ , lowerCamelCase__ ) else '''train''' UpperCamelCase__ : Optional[Any] = features UpperCamelCase__ : List[Any] = cache_dir UpperCamelCase__ : Optional[int] = keep_in_memory UpperCamelCase__ : int = streaming UpperCamelCase__ : Union[str, Any] = num_proc UpperCamelCase__ : List[Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __magic_name__ ( __lowerCAmelCase): def __init__( self : int , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = features UpperCamelCase__ : Optional[int] = cache_dir UpperCamelCase__ : Union[str, Any] = keep_in_memory UpperCamelCase__ : Tuple = streaming UpperCamelCase__ : Optional[Any] = num_proc UpperCamelCase__ : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Tuple ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
146
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowercase = logging.getLogger(__name__) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Optional[int] ): """simple docstring""" return (preds == labels).mean() @dataclass class _lowercase : """simple docstring""" lowercase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__ = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__ = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _lowercase : """simple docstring""" lowercase__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) lowercase__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) lowercase__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__ = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase =processors[data_args.task_name]() __UpperCamelCase =processor.get_labels() __UpperCamelCase =len(__UpperCamelCase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase : EvalPrediction ) -> Dict: __UpperCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )} # Data collator __UpperCamelCase =DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase =Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase =trainer.evaluate() __UpperCamelCase =os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __UpperCamelCase , __UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__UpperCamelCase ) return results def lowerCAmelCase (__UpperCamelCase : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
85
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = 20 _UpperCAmelCase = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore _UpperCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _UpperCAmelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _UpperCAmelCase = jax.nn.softmax(UpperCAmelCase , axis=-1 ) _UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) _UpperCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) _UpperCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = 10 _UpperCAmelCase = 2 # create ramp distribution _UpperCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() _UpperCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size _UpperCAmelCase = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _UpperCAmelCase = 5 _UpperCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _UpperCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() _UpperCAmelCase = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = 10 _UpperCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _UpperCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) _UpperCAmelCase = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _UpperCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits _UpperCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _UpperCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _UpperCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _UpperCAmelCase = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 20 _UpperCAmelCase = 4 _UpperCAmelCase = 0 _UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 _UpperCAmelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) _UpperCAmelCase = 5 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = 15 _UpperCAmelCase = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 20 _UpperCAmelCase = 4 _UpperCAmelCase = 0 _UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score _UpperCAmelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) _UpperCAmelCase = 1 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _UpperCAmelCase = 3 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 20 _UpperCAmelCase = 4 _UpperCAmelCase = 0 _UpperCAmelCase = 5 _UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached _UpperCAmelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) _UpperCAmelCase = 4 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _UpperCAmelCase = 3 _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 10 _UpperCAmelCase = 15 _UpperCAmelCase = 2 _UpperCAmelCase = 1 _UpperCAmelCase = 15 # dummy input_ids and scores _UpperCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) _UpperCAmelCase = input_ids.copy() _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = scores.copy() # instantiate all dist processors _UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) _UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) _UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _UpperCAmelCase = 10 # no processor list _UpperCAmelCase = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list _UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCAmelCase = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 10 _UpperCAmelCase = 15 _UpperCAmelCase = 2 _UpperCAmelCase = 1 _UpperCAmelCase = 15 # dummy input_ids and scores _UpperCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) _UpperCAmelCase = input_ids.copy() _UpperCAmelCase = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = scores.copy() # instantiate all dist processors _UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) _UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) _UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _UpperCAmelCase = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) _UpperCAmelCase = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCAmelCase = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores _UpperCAmelCase = jax.jit(UpperCAmelCase ) _UpperCAmelCase = jax.jit(UpperCAmelCase ) _UpperCAmelCase = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
39
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = 0 A__ = len(__lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , __lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if len(__lowerCAmelCase ) <= 1: return arr, 0 A__ = len(__lowerCAmelCase ) // 2 A__ = arr[0:mid] A__ = arr[mid:] A__ , A__ = count_inversions_recursive(__lowerCAmelCase ) A__ , A__ = count_inversions_recursive(__lowerCAmelCase ) A__ , A__ = _count_cross_inversions(__lowerCAmelCase , __lowerCAmelCase ) A__ = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = [] A__ = A__ = A__ = 0 while i < len(__lowerCAmelCase ) and j < len(__lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ = count_inversions_bf(__lowerCAmelCase ) A__ , A__ = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ = count_inversions_bf(__lowerCAmelCase ) A__ , A__ = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowerCAmelCase ) # an empty list should also have zero inversions A__ = [] A__ = count_inversions_bf(__lowerCAmelCase ) A__ , A__ = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowerCAmelCase ) if __name__ == "__main__": main()
353
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : float) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]: """simple docstring""" A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.abs(np.fft.fft(lowercase_ ) ) A__ = 20 * np.logaa(lowercase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds A__ = get_bounds(lowercase_ , lowercase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.angle(np.fft.fft(lowercase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowercase_ , -2 * pi ) ) plt.show()
231
0
def __lowercase ( a__ , a__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __SCREAMING_SNAKE_CASE = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(a__ ) ) return round(a__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
257
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _a : List[Any]= logging.get_logger(__name__) _a : Any= {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : int= { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } _a : Optional[Any]= { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } _a : str= { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Dict = RoFormerTokenizer def __init__(self : List[Any] , _A : Any=None , _A : int=None , _A : Dict=True , _A : List[Any]="[UNK]" , _A : Tuple="[SEP]" , _A : List[Any]="[PAD]" , _A : str="[CLS]" , _A : int="[MASK]" , _A : Optional[int]=True , _A : List[str]=None , **_A : int , ) -> Dict: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , _A) != do_lower_case or pre_tok_state.get('strip_accents' , _A) != strip_accents ): __snake_case : Union[str, Any] = getattr(_A , pre_tok_state.pop('type')) __snake_case : Union[str, Any] = do_lower_case __snake_case : str = strip_accents __snake_case : Optional[int] = pre_tok_class(**_A) __snake_case : int = do_lower_case def __getstate__(self : Optional[Any]) -> Dict: __snake_case : Optional[int] = self.__dict__.copy() __snake_case : int = BertPreTokenizer() return state def __setstate__(self : Optional[Any] , _A : Optional[Any]) -> Dict: __snake_case : List[str] = d __snake_case : str = self.__dict__['_tokenizer'].get_vocab() __snake_case : int = PreTokenizer.custom(JiebaPreTokenizer(_A)) def _lowercase (self : int , _A : Tuple , _A : Any=None) -> str: __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : List[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : List[Any] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase (self : int , _A : Optional[int] , _A : Tuple=None , _A : Tuple=None , _A : Dict=False , **_A : Optional[int] , ) -> Optional[Any]: __snake_case : Optional[Any] = BertPreTokenizer() return super().save_pretrained(_A , _A , _A , _A , **_A)
95
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __snake_case : Any = precision __snake_case : Optional[int] = ceil(precision / 14 ) __snake_case : List[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() __snake_case : Optional[Any] = 1 __snake_case : Union[str, Any] = 13_59_14_09 __snake_case : int = Decimal(UpperCAmelCase_ ) for k in range(1 , UpperCAmelCase_ ): __snake_case : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase_ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _a : List[Any]= 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
95
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A: '''simple docstring''' def __init__( self : str , A_ : Optional[Any] , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 2 lowerCamelCase_ = 99 lowerCamelCase_ = 0 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 'last' lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : int , A_ : Tuple , A_ : Optional[int] , A_ : Optional[int] , A_ : str , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Tuple , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : Any , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFFlaubertWithLMHeadModel(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , A_ : Tuple , A_ : Any , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : List[Any] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForQuestionAnsweringSimple(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , A_ : List[Any] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : str , A_ : Optional[int] , A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForSequenceClassification(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : List[str] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFFlaubertForTokenClassification(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : str , A_ : Tuple , A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFFlaubertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFFlaubertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) lowerCamelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
204
def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : list[float] ): '''simple docstring''' if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowerCamelCase_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowercase ) ) return round(lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
204
1
import csv import tweepy # Twitter API credentials a__ = '''''' a__ = '''''' a__ = '''''' a__ = '''''' def __UpperCAmelCase ( __a : str ) -> None: """simple docstring""" _a : int = tweepy.OAuthHandler(__a ,__a ) auth.set_access_token(__a ,__a ) _a : Union[str, Any] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets _a : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _a : List[str] = api.user_timeline(screen_name=__a ,count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one _a : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _a : str = api.user_timeline( screen_name=__a ,count=200 ,max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one _a : Optional[int] = alltweets[-1].id - 1 print(F"""...{len(__a )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _a : List[str] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" ,'''w''' ) as f: _a : List[str] = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : str = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: a_ , a_ , a_ , a_ : Union[str, Any] = hidden_states.shape a_ : List[str] = jax.image.resize( SCREAMING_SNAKE_CASE__ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) a_ : Any = self.conv(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: a_ : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) a_ : str = self.conv(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : int = None snake_case__ : float = 0.0 snake_case__ : bool = None snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = self.in_channels if self.out_channels is None else self.out_channels a_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) a_ : Any = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : Optional[int] = nn.Dense(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) a_ : Union[str, Any] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) a_ : int = nn.Dropout(self.dropout_prob ) a_ : Optional[Any] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a_ : List[Any] = None if use_nin_shortcut: a_ : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> int: a_ : List[Any] = hidden_states a_ : Any = self.norma(SCREAMING_SNAKE_CASE__ ) a_ : Any = nn.swish(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE__ ) a_ : int = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE__ ) ) a_ : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , 1 ) a_ : Optional[int] = hidden_states + temb a_ : List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.swish(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dropout(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.conva(SCREAMING_SNAKE_CASE__ ) if self.conv_shortcut is not None: a_ : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE__ ) return hidden_states + residual
32
0
"""simple docstring""" from collections.abc import Generator def lowercase__ ( ): __UpperCAmelCase , __UpperCAmelCase = 0, 1 while True: __UpperCAmelCase , __UpperCAmelCase = b, a + b yield b def lowercase__ ( snake_case_ :int = 1_000 ): __UpperCAmelCase = 1 __UpperCAmelCase = fibonacci_generator() while len(str(next(snake_case_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
"""simple docstring""" def lowercase__ ( snake_case_ :int , snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [0] * len(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): # use last results for better performance - dynamic programming lowerCamelCase_ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCamelCase_ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCamelCase_ = j return prefix_result def lowerCamelCase_ ( lowerCamelCase__ ): return max(prefix_function(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
19
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
1
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 _snake_case = 1 _snake_case = 1 while repunit: _snake_case = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 100_0000 ): _snake_case = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_SCREAMING_SNAKE_CASE ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
355
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCAmelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int: _snake_case = d_model _snake_case = parent _snake_case = batch_size _snake_case = prediction_length _snake_case = context_length _snake_case = cardinality _snake_case = num_time_features _snake_case = lags_sequence _snake_case = embedding_dimension _snake_case = is_training _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = context_length _snake_case = prediction_length + label_length _snake_case = label_length _snake_case = moving_average _snake_case = autocorrelation_factor def lowercase (self ) -> str: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = config.context_length + max(config.lags_sequence ) _snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, config.prediction_length] ) _snake_case = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase (self ) -> int: _snake_case = self.get_config() _snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.encoder_last_hidden_state _snake_case = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase ) _snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _snake_case = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _snake_case = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _snake_case = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _snake_case = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _snake_case = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _snake_case = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> List[Any]: _snake_case = AutoformerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) _snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> Any: _snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) ) # The main input is the name of the argument after `self` _snake_case = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase ) _snake_case = d_model // num_attention_heads for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _snake_case = len(UpperCAmelCase ) _snake_case = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions _snake_case = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _snake_case = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase (self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ): _snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Union[str, Any]: _snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch() with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _snake_case = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> str: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _snake_case = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Optional[int]: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) _snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase ) _snake_case = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
270
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = IFPipeline UpperCAmelCase_ : int = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} UpperCAmelCase_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) ->List[str]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self ) ->str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: # if lowerCAmelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) lowerCAmelCase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) lowerCAmelCase , lowerCAmelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase = None lowerCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase = IFImgaImgPipeline(**pipe_a.components ) lowerCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase = IFInpaintingPipeline(**pipe_a.components ) lowerCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]: # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , original_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe_a( prompt_embeds=__SCREAMING_SNAKE_CASE , negative_prompt_embeds=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , original_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
338
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]: lowerCAmelCase = len(snake_case__ ) for i in range(length - 1 ): lowerCAmelCase = i for k in range(i + 1 , snake_case__ ): if collection[k] < collection[least]: lowerCAmelCase = k if least != i: lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : str = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
338
1
from pathlib import Path import fire from tqdm import tqdm def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any]="ro" , SCREAMING_SNAKE_CASE_ : Any="en" , SCREAMING_SNAKE_CASE_ : List[Any]="wmt16" , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) __lowerCAmelCase = datasets.load_dataset(__lowerCamelCase , __lowerCamelCase ) if save_dir is None: __lowerCAmelCase = F"""{dataset}-{pair}""" __lowerCAmelCase = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __lowerCAmelCase = "val" if split == "validation" else split __lowerCAmelCase = save_dir.joinpath(F"""{fn}.source""" ) __lowerCAmelCase = save_dir.joinpath(F"""{fn}.target""" ) __lowerCAmelCase = src_path.open("w+" ) __lowerCAmelCase = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowerCAmelCase = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
351
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : _a : str = field( default=snake_case__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(snake_case__ )} ) _a : str = field( default=snake_case__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : int = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _a : int = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _a : int = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _a : bool = field( default=snake_case__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _a : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _a : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a__ ( snake_case__ ): _a : Any = """train""" _a : Union[str, Any] = """dev""" class a__ ( snake_case__ ): _a : SquadDataTrainingArguments _a : List[SquadFeatures] _a : Split _a : bool def __init__( self , _A , _A , _A = None , _A = Split.train , _A = False , _A = None , _A = "pt" , ): """simple docstring""" __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = "v2" if args.version_2_with_negative else "v1" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["features"] __lowerCAmelCase = self.old_features.get("dataset" , _A ) __lowerCAmelCase = self.old_features.get("examples" , _A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __lowerCAmelCase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
102
0
snake_case : List[str] = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on snake_case : List[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowerCamelCase ( ): """simple docstring""" a :List[str] = '''Morse code here!''' print(UpperCAmelCase_ ) a :Optional[int] = encrypt(UpperCAmelCase_ ) print(UpperCAmelCase_ ) a :Union[str, Any] = decrypt(UpperCAmelCase_ ) print(UpperCAmelCase_ ) if __name__ == "__main__": main()
94
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[int] = 3_84 __lowercase : str = 7 if "tiny" in model_name: __lowercase : List[str] = 96 __lowercase : Any = (2, 2, 6, 2) __lowercase : Dict = (3, 6, 12, 24) elif "small" in model_name: __lowercase : str = 96 __lowercase : Optional[int] = (2, 2, 18, 2) __lowercase : Tuple = (3, 6, 12, 24) elif "base" in model_name: __lowercase : Tuple = 1_28 __lowercase : Tuple = (2, 2, 18, 2) __lowercase : int = (4, 8, 16, 32) __lowercase : str = 12 __lowercase : Any = 5_12 elif "large" in model_name: __lowercase : List[str] = 1_92 __lowercase : List[Any] = (2, 2, 18, 2) __lowercase : Optional[Any] = (6, 12, 24, 48) __lowercase : Optional[int] = 12 __lowercase : Optional[Any] = 7_68 # set label information __lowercase : Any = 1_50 __lowercase : Tuple = '''huggingface/label-files''' __lowercase : int = '''ade20k-id2label.json''' __lowercase : Union[str, Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Union[str, Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} __lowercase : Any = SwinConfig( embed_dim=__UpperCamelCase , depths=__UpperCamelCase , num_heads=__UpperCamelCase , window_size=__UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __lowercase : List[Any] = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = dct.pop(__UpperCamelCase ) __lowercase : Any = val def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase : Dict = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) __lowercase : int = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase : List[Any] = in_proj_weight[:dim, :] __lowercase : Tuple = in_proj_bias[: dim] __lowercase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __lowercase : int = in_proj_bias[ dim : dim * 2 ] __lowercase : str = in_proj_weight[ -dim :, : ] __lowercase : List[Any] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : str = x.shape __lowercase : List[str] = x.reshape(__UpperCamelCase , 4 , in_channel // 4 ) __lowercase : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : Optional[int] = x.shape __lowercase : Union[str, Any] = x.reshape(__UpperCamelCase , in_channel // 4 , 4 ) __lowercase : int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = x.shape[0] __lowercase : List[str] = x.reshape(4 , in_channel // 4 ) __lowercase : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = x.shape[0] __lowercase : List[str] = x.reshape(in_channel // 4 , 4 ) __lowercase : Union[str, Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __lowercase : Any = model_name_to_url[model_name] __lowercase : Any = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' , file_name=__UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(__UpperCamelCase , param.shape ) __lowercase : Tuple = get_upernet_config(__UpperCamelCase ) __lowercase : List[Any] = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase : Optional[Any] = state_dict.pop(__UpperCamelCase ) if "bn" in key: __lowercase : List[Any] = key.replace('''bn''' , '''batch_norm''' ) __lowercase : Optional[Any] = val # rename keys __lowercase : Tuple = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowercase : Optional[Any] = reverse_correct_unfold_reduction_order(__UpperCamelCase ) if "norm" in key: __lowercase : Optional[Any] = reverse_correct_unfold_norm_order(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image __lowercase : Any = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowercase : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) __lowercase : Union[str, Any] = SegformerImageProcessor() __lowercase : int = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowercase : List[Any] = model(__UpperCamelCase ) __lowercase : Union[str, Any] = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowercase : Tuple = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": __lowercase : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": __lowercase : Optional[int] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": __lowercase : Any = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
249
0
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : int = 2_000_000 ) -> int: """simple docstring""" lowerCAmelCase = [0 for i in range(n + 1 )] lowerCAmelCase = 1 lowerCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = 1 lowerCAmelCase = 0 for i in range(_SCREAMING_SNAKE_CASE ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
187
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
1
def _UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog", ) -> bool: __UpperCAmelCase : str = set() # Replace all the whitespace in our sentence __UpperCAmelCase : Optional[Any] = input_str.replace(" ", "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(snake_case__ ) == 26 def _UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog", ) -> bool: __UpperCAmelCase : Union[str, Any] = [False] * 26 for char in input_str: if char.islower(): __UpperCAmelCase : Any = True elif char.isupper(): __UpperCAmelCase : List[str] = True return all(snake_case__ ) def _UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog", ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _UpperCamelCase ( ) -> None: from timeit import timeit __UpperCAmelCase : Any = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()", setup=snake_case__ ) ) print(timeit("is_pangram_faster()", setup=snake_case__ ) ) print(timeit("is_pangram_fastest()", setup=snake_case__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
157
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Tuple=None , **__lowerCamelCase: Union[str, Any] ) -> Dict: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __UpperCAmelCase : Union[str, Any] = model __UpperCAmelCase : Optional[Any] = kwargs.get("model_save_dir" , __lowerCamelCase ) __UpperCAmelCase : str = kwargs.get("latest_model_name" , __lowerCamelCase ) def __call__( self: int , **__lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = {k: np.array(__lowerCamelCase ) for k, v in kwargs.items()} return self.model.run(__lowerCamelCase , __lowerCamelCase ) @staticmethod def _lowerCamelCase ( __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Tuple=None ) -> List[str]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __UpperCAmelCase : Any = "CPUExecutionProvider" return ort.InferenceSession(__lowerCamelCase , providers=[provider] , sess_options=__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME __UpperCAmelCase : str = self.model_save_dir.joinpath(self.latest_model_name ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __UpperCAmelCase : str = self.model_save_dir.joinpath(__lowerCamelCase ) if src_path.exists(): __UpperCAmelCase : List[str] = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: Any , ) -> List[Any]: if os.path.isfile(__lowerCamelCase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) # saving model weights/files self._save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[Any] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[Union[bool, str, None]] = None , __lowerCamelCase: Optional[Union[str, None]] = None , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional["ort.SessionOptions"] = None , **__lowerCamelCase: Union[str, Any] , ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowerCamelCase ): __UpperCAmelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(__lowerCamelCase , __lowerCamelCase ) , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) # load model from hub else: # download model __UpperCAmelCase : Optional[Any] = hf_hub_download( repo_id=__lowerCamelCase , filename=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).parent __UpperCAmelCase : List[Any] = Path(__lowerCamelCase ).name __UpperCAmelCase : Dict = OnnxRuntimeModel.load_model(__lowerCamelCase , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) return cls(model=__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Tuple , ) -> Optional[Any]: __UpperCAmelCase : int = None if len(str(__lowerCamelCase ).split("@" ) ) == 2: __UpperCAmelCase , __UpperCAmelCase : Any = model_id.split("@" ) return cls._from_pretrained( model_id=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , use_auth_token=__lowerCamelCase , **__lowerCamelCase , )
157
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
369
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
261
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _A = HfArgumentParser(InitializationArguments) _A = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _A = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _A = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _A = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _A = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE :str = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
60
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self , _lowercase , _lowercase=2 , _lowercase=32 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=4 , _lowercase=[0, 1, 2, 3] , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=3 , _lowercase=[1, 384, 24, 24] , _lowercase=True , _lowercase=None , )-> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = backbone_out_indices UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = backbone_featmap_shape UpperCamelCase_ = scope UpperCamelCase_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = num_patches + 1 def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Any: UpperCamelCase_ = DPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> str: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ :Any = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ :List[Any] = False UpperCamelCase_ :Dict = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = DPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True if model_class in get_values(_lowercase ): continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = False UpperCamelCase_ = True if model_class in get_values(_lowercase ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: UpperCamelCase_ = model_class(config=_lowercase ) # Skip the check for the backbone UpperCamelCase_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase_ = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self )-> int: pass @slow def UpperCAmelCase_ ( self )-> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase_ = DPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase_ ( self )-> List[str]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = "add" with self.assertRaises(_lowercase ): UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) def lowerCAmelCase( )-> Any: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCamelCase_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(_lowercase ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_lowercase ) UpperCamelCase_ = outputs.predicted_depth # verify the predicted depth UpperCamelCase_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _lowercase ) UpperCamelCase_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _lowercase , atol=1e-4 ) )
60
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A_ ( _a ): '''simple docstring''' a__ = 42 a__ = jnp.floataa a__ = True def lowerCAmelCase_ (self ) -> Optional[int]: super().setup() __UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__(self , *lowercase__ , **lowercase__ ) -> Tuple: __UpperCAmelCase = super().__call__(*lowercase__ , **lowercase__ ) __UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A_ ( _a ): '''simple docstring''' a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' def cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): __UpperCAmelCase = logits.shape[-1] __UpperCAmelCase = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE )[None]).astype('''f4''' ) __UpperCAmelCase = jax.nn.log_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) __UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __UpperCAmelCase = reduction(SCREAMING_SNAKE_CASE ) return loss __UpperCAmelCase = partial(SCREAMING_SNAKE_CASE , reduction=jnp.mean ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A_ : '''simple docstring''' a__ = "google/bigbird-roberta-base" a__ = 30_00 a__ = 1_05_00 a__ = 1_28 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_00_00 a__ = 0.00_95 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCAmelCase_ (self ) -> Optional[int]: os.makedirs(self.base_dir , exist_ok=lowercase__ ) __UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) __UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 40_96 # no dynamic padding on TPUs def __call__(self , lowercase__ ) -> int: __UpperCAmelCase = self.collate_fn(lowercase__ ) __UpperCAmelCase = jax.tree_util.tree_map(lowercase__ , lowercase__ ) return batch def lowerCAmelCase_ (self , lowercase__ ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.fetch_inputs(features['''input_ids'''] ) __UpperCAmelCase = { '''input_ids''': jnp.array(lowercase__ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowercase__ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowerCAmelCase_ (self , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' if seed is not None: __UpperCAmelCase = dataset.shuffle(seed=SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) // batch_size ): __UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name='''batch''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' def loss_fn(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = model_inputs.pop('''start_labels''' ) __UpperCAmelCase = model_inputs.pop('''end_labels''' ) __UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) __UpperCAmelCase = state.apply_fn(**SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE , dropout_rng=SCREAMING_SNAKE_CASE , train=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs return state.loss_fn( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) __UpperCAmelCase , __UpperCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = jax.value_and_grad(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = grad_fn(state.params ) __UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __UpperCAmelCase = jax.lax.pmean(SCREAMING_SNAKE_CASE , '''batch''' ) __UpperCAmelCase = state.apply_gradients(grads=SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __a ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = model_inputs.pop('''start_labels''' ) __UpperCAmelCase = model_inputs.pop('''end_labels''' ) __UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) __UpperCAmelCase = state.apply_fn(**SCREAMING_SNAKE_CASE , params=state.params , train=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs __UpperCAmelCase = state.loss_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A_ ( train_state.TrainState ): '''simple docstring''' a__ = struct.field(pytree_node=_a ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ) -> int: __UpperCAmelCase = model.params __UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , loss_fn=lowercase__ , ) if ckpt_dir is not None: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = restore_checkpoint(lowercase__ , lowercase__ ) __UpperCAmelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __UpperCAmelCase , __UpperCAmelCase = build_tx(**lowercase__ ) __UpperCAmelCase = train_state.TrainState( step=lowercase__ , apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , opt_state=lowercase__ , ) __UpperCAmelCase = args __UpperCAmelCase = data_collator __UpperCAmelCase = lr __UpperCAmelCase = params __UpperCAmelCase = jax_utils.replicate(lowercase__ ) return state def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = self.args __UpperCAmelCase = len(lowercase__ ) // args.batch_size __UpperCAmelCase = jax.random.PRNGKey(0 ) __UpperCAmelCase = jax.random.split(lowercase__ , jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = get_batched_dataset(lowercase__ , args.batch_size , seed=lowercase__ ) __UpperCAmelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc=F'''Running EPOCH-{epoch}''' ): __UpperCAmelCase = self.data_collator(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.train_step_fn(lowercase__ , lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __UpperCAmelCase = jax_utils.unreplicate(state.step ) __UpperCAmelCase = running_loss.item() / i __UpperCAmelCase = self.scheduler_fn(state_step - 1 ) __UpperCAmelCase = self.evaluate(lowercase__ , lowercase__ ) __UpperCAmelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ , commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Tuple: __UpperCAmelCase = get_batched_dataset(lowercase__ , self.args.batch_size ) __UpperCAmelCase = len(lowercase__ ) // self.args.batch_size __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc='''Evaluating ... ''' ): __UpperCAmelCase = self.data_collator(lowercase__ ) __UpperCAmelCase = self.val_step_fn(lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Any: __UpperCAmelCase = jax_utils.unreplicate(lowercase__ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(lowercase__ , params=state.params ) with open(os.path.join(lowercase__ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowercase__ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowercase__ , '''data_collator.joblib''' ) ) with open(os.path.join(lowercase__ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowercase__ ) print('''DONE''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''flax_model.msgpack''' ) , '''rb''' ) as f: __UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''opt_state.msgpack''' ) , '''rb''' ) as f: __UpperCAmelCase = from_bytes(state.opt_state , f.read() ) __UpperCAmelCase = joblib.load(os.path.join(SCREAMING_SNAKE_CASE , '''args.joblib''' ) ) __UpperCAmelCase = joblib.load(os.path.join(SCREAMING_SNAKE_CASE , '''data_collator.joblib''' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''training_state.json''' ) , '''r''' ) as f: __UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = num_train_steps - warmup_steps __UpperCAmelCase = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE , end_value=SCREAMING_SNAKE_CASE , transition_steps=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' def weight_decay_mask(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = scheduler_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE , weight_decay=SCREAMING_SNAKE_CASE , mask=SCREAMING_SNAKE_CASE ) return tx, lr
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Any = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Any = 'instructblip_vision_model' def __init__( self : Optional[int] , A : str=1_4_0_8 , A : Dict=6_1_4_4 , A : Tuple=3_9 , A : Optional[int]=1_6 , A : int=2_2_4 , A : Optional[Any]=1_4 , A : Union[str, Any]="gelu" , A : Optional[int]=1e-6 , A : Union[str, Any]=0.0 , A : Tuple=1e-10 , A : Union[str, Any]=True , **A : int , ): super().__init__(**A ) _UpperCAmelCase : int = hidden_size _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Union[str, Any] = qkv_bias @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : List[Any] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Dict = 'instructblip_qformer' def __init__( self : Any , A : Union[str, Any]=3_0_5_2_2 , A : List[str]=7_6_8 , A : Dict=1_2 , A : List[str]=1_2 , A : List[str]=3_0_7_2 , A : Dict="gelu" , A : str=0.1 , A : Union[str, Any]=0.1 , A : Dict=5_1_2 , A : Union[str, Any]=0.02 , A : str=1e-12 , A : str=0 , A : Optional[int]="absolute" , A : List[str]=2 , A : List[Any]=1_4_0_8 , **A : Union[str, Any] , ): super().__init__(pad_token_id=A , **A ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : List[Any] = position_embedding_type _UpperCAmelCase : Union[str, Any] = cross_attention_frequency _UpperCAmelCase : Optional[int] = encoder_hidden_size @classmethod def snake_case_ ( cls : List[Any] , A : Union[str, os.PathLike] , **A : Optional[int] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Tuple = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Any = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'instructblip' __SCREAMING_SNAKE_CASE : Tuple = True def __init__( self : Optional[int] , A : List[str]=None , A : Any=None , A : Tuple=None , A : int=3_2 , **A : Optional[int] ): super().__init__(**A ) if vision_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : Any = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : Dict = InstructBlipVisionConfig(**A ) _UpperCAmelCase : List[Any] = InstructBlipQFormerConfig(**A ) _UpperCAmelCase : int = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Tuple = CONFIG_MAPPING[text_model_type](**A ) _UpperCAmelCase : int = self.text_config.tie_word_embeddings _UpperCAmelCase : List[str] = self.text_config.is_encoder_decoder _UpperCAmelCase : Optional[int] = num_query_tokens _UpperCAmelCase : int = self.vision_config.hidden_size _UpperCAmelCase : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : Tuple = 1.0 _UpperCAmelCase : Any = 0.02 @classmethod def snake_case_ ( cls : int , A : InstructBlipVisionConfig , A : InstructBlipQFormerConfig , A : PretrainedConfig , **A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def snake_case_ ( self : str ): _UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Tuple = self.vision_config.to_dict() _UpperCAmelCase : str = self.qformer_config.to_dict() _UpperCAmelCase : Any = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.__class__.model_type return output
202
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( SCREAMING_SNAKE_CASE__ : list[Any] ) -> None: '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def __snake_case ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
202
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] )
5
'''simple docstring''' def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(A__ ): if len(A__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A__ ) ) return data_lists def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(A__ , A__ ): lowerCAmelCase_ : Tuple = min(A__ ) lowerCAmelCase_ : str = max(A__ ) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ : List[Any] = f'Invalid weight of {weight:f} provided' raise ValueError(A__ ) score_lists.append(A__ ) return score_lists def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A__ ): lowerCAmelCase_ : List[Any] = final_scores[j] + ele return final_scores def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_data(A__ ) lowerCAmelCase_ : Tuple = calculate_each_score(A__ , A__ ) lowerCAmelCase_ : Optional[int] = generate_final_scores(A__ ) # append scores to source data for i, ele in enumerate(A__ ): source_data[i].append(A__ ) return source_data
120
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' UpperCAmelCase = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' UpperCAmelCase = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def lowerCamelCase (a_ :Tuple , a_ :Optional[int]) -> Tuple: return float((preds == labels).mean()) def lowerCamelCase (a_ :Dict , a_ :str) -> Optional[int]: lowercase :Union[str, Any] = simple_accuracy(a_ , a_) lowercase :List[str] = float(fa_score(y_true=a_ , y_pred=a_)) return { "accuracy": acc, "f1": fa, } def lowerCamelCase (a_ :int , a_ :List[Any]) -> List[Any]: lowercase :Optional[int] = np.array(a_) lowercase :List[str] = np.array(a_) lowercase :Optional[int] = en_sentvecs.shape[0] # mean centering lowercase :List[Any] = en_sentvecs - np.mean(a_ , axis=0) lowercase :List[str] = in_sentvecs - np.mean(a_ , axis=0) lowercase :int = cdist(a_ , a_ , '''cosine''') lowercase :Tuple = np.array(range(a_)) lowercase :Any = sim.argsort(axis=1)[:, :10] lowercase :Any = np.any(preds == actual[:, None] , axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : Optional[int] ): '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __snake_case ( self : str , snake_case__ : List[str] , snake_case__ : Optional[int] ): '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(snake_case__ , snake_case__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(snake_case__ , snake_case__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
172
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str , a_ :Optional[int]) -> Union[str, Any]: lowercase :List[str] = set() lowercase :Dict = [] def parse_line(a_ :Dict): for line in fp: if isinstance(a_ , a_): lowercase :Any = line.decode('''UTF-8''') if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' '''): # process a single warning and move it to `selected_warnings`. if len(a_) > 0: lowercase :int = '''\n'''.join(a_) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets): selected_warnings.add(a_) buffer.clear() continue else: lowercase :Any = line.strip() buffer.append(a_) if from_gh: for filename in os.listdir(a_): lowercase :Optional[int] = os.path.join(a_ , a_) if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with open(a_) as fp: parse_line(a_) else: try: with zipfile.ZipFile(a_) as z: for filename in z.namelist(): if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with z.open(a_) as fp: parse_line(a_) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""") return selected_warnings def lowerCamelCase (a_ :Any , a_ :Optional[int]) -> Any: lowercase :Tuple = set() lowercase :Dict = [os.path.join(a_ , a_) for p in os.listdir(a_) if (p.endswith('''.zip''') or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a_ , a_)) return selected_warnings if __name__ == "__main__": def lowerCamelCase (a_ :List[Any]) -> Optional[Any]: return values.split(''',''') UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase = extract_warnings(args.output_dir, args.targets) UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
172
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowercase = logging.getLogger(__name__) def lowercase ( A_ , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = False , )-> Optional[int]: '''simple docstring''' a : Tuple = bnb_quantization_config.load_in_abit a : Any = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) a : str = [] # custom device map if isinstance(A_ , A_ ) and len(device_map.keys() ) > 1: a : str = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a : Tuple = get_keys_to_not_convert(A_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A_ ) a : List[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a : Union[str, Any] = [] a : Any = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A_ ) # compatibility with peft a : List[Any] = load_in_abit a : Tuple = load_in_abit a : Optional[int] = get_parameter_device(A_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) a : Union[str, Any] = replace_with_bnb_layers(A_ , A_ , modules_to_not_convert=A_ ) # convert param to the right dtype a : List[str] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a : Dict = name.replace(".weight" , "" ).replace(".bias" , "" ) a : Optional[int] = getattr(A_ , A_ , A_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A_ ): param.to(A_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): a : Optional[Any] = replace_with_bnb_layers( A_ , A_ , modules_to_not_convert=A_ ) a : Dict = get_quantized_model_device_map( A_ , A_ , A_ , max_memory=A_ , no_split_module_classes=A_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a : Dict = True a : List[Any] = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( A_ , A_ , A_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=A_ , offload_state_dict=A_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(A_ , device_map=A_ , offload_dir=A_ ) def lowercase ( A_ , A_ , A_=None , A_=None , A_=None )-> Any: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): a : Dict = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(A_ , A_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) a : List[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a : Any = {} a : Union[str, Any] = special_dtypes a : Optional[Any] = no_split_module_classes a : List[str] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a : List[str] = get_balanced_memory( A_ , low_zero=(device_map == "balanced_low_0") , max_memory=A_ , **A_ , ) a : List[str] = max_memory a : Dict = infer_auto_device_map(A_ , **A_ ) if isinstance(A_ , A_ ): # check if don't have any quantized module on the cpu a : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a : List[str] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowercase ( A_ , A_ , A_=None , A_=None )-> Any: '''simple docstring''' if modules_to_not_convert is None: a : int = [] a , a : Tuple = _replace_with_bnb_layers( A_ , A_ , A_ , A_ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase ( A_ , A_ , A_=None , A_=None , )-> List[Any]: '''simple docstring''' a : Optional[int] = False for name, module in model.named_children(): if current_key_name is None: a : List[Any] = [] current_key_name.append(A_ ) if isinstance(A_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a : List[str] = ".".join(A_ ) a : Any = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a : Optional[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=A_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a : Union[str, Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) a : Optional[Any] = module.weight.data if module.bias is not None: a : Union[str, Any] = module.bias.data bnb_module.requires_grad_(A_ ) setattr(A_ , A_ , A_ ) a : Dict = True if len(list(module.children() ) ) > 0: a , a : Optional[Any] = _replace_with_bnb_layers( A_ , A_ , A_ , A_ ) a : List[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' with init_empty_weights(): a : Dict = deepcopy(A_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a : Any = find_tied_parameters(A_ ) # For compatibility with Accelerate < 0.18 if isinstance(A_ , A_ ): a : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a : Union[str, Any] = sum(A_ , [] ) a : List[Any] = len(A_ ) > 0 # Check if it is a base model a : Optional[int] = False if hasattr(A_ , "base_model_prefix" ): a : int = not hasattr(A_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a : Optional[Any] = list(model.named_children() ) a : str = [list_modules[-1][0]] # add last module together with tied weights a : Tuple = set(A_ ) - set(A_ ) a : Optional[int] = list(set(A_ ) ) + list(A_ ) # remove ".weight" from the keys a : Tuple = [".weight", ".bias"] a : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a : str = name.replace(A_ , "" ) filtered_module_names.append(A_ ) return filtered_module_names def lowercase ( A_ )-> List[Any]: '''simple docstring''' for m in model.modules(): if isinstance(A_ , bnb.nn.Linearabit ): return True return False def lowercase ( A_ )-> Any: '''simple docstring''' return next(parameter.parameters() ).device def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> str: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(A_ , A_ , 0 , dtype=A_ , value=A_ ) a : Optional[int] = param_name a : Union[str, Any] = model if "." in tensor_name: a : Optional[Any] = tensor_name.split("." ) for split in splits[:-1]: a : str = getattr(A_ , A_ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) a : int = new_module a : Tuple = splits[-1] # offload weights a : List[Any] = False offload_weight(module._parameters[tensor_name] , A_ , A_ , index=A_ ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , A_ , index=A_ , ) else: offload_weight(A_ , A_ , A_ , index=A_ ) offload_weight(A_ , param_name.replace("weight" , "SCB" ) , A_ , index=A_ ) set_module_tensor_to_device(A_ , A_ , "meta" , dtype=A_ , value=torch.empty(*param.size() ) )
40
"""simple docstring""" def lowercase ( A_ )-> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a : Tuple = sorted(string.lower() ) return len(A_ ) == len(set(A_ ) ) if __name__ == "__main__": __lowercase = input("""Enter a string """).strip() __lowercase = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
40
1
from collections.abc import Iterable from typing import Any class _a : '''simple docstring''' def __init__( self , A__ = None ): A__ : List[Any] = value A__ : Node | None = None # Added in order to delete a node easier A__ : Node | None = None A__ : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class _a : '''simple docstring''' def __init__( self , A__ = None ): A__ : Dict = root def __str__( self ): return str(self.root ) def __A ( self , A__ , A__ ): if new_children is not None: # reset its kids A__ : int = node.parent if node.parent is not None: # reset its parent if self.is_right(A__ ): # If it is the right children A__ : Optional[Any] = new_children else: A__ : Tuple = new_children else: A__ : Tuple = new_children def __A ( self , A__ ): if node.parent and node.parent.right: return node == node.parent.right return False def __A ( self ): return self.root is None def __A ( self , A__ ): A__ : List[Any] = Node(A__ ) # create a new Node if self.empty(): # if Tree is empty A__ : Optional[Any] = new_node # set its root else: # Tree is not empty A__ : Tuple = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: A__ : Tuple = new_node # We insert the new node in a leaf break else: A__ : Any = parent_node.left else: if parent_node.right is None: A__ : int = new_node break else: A__ : Dict = parent_node.right A__ : Tuple = parent_node def __A ( self , *A__ ): for value in values: self.__insert(A__ ) def __A ( self , A__ ): if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: A__ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: A__ : Union[str, Any] = node.left if value < node.value else node.right return node def __A ( self , A__ = None ): if node is None: if self.root is None: return None A__ : Optional[Any] = self.root if not self.empty(): while node.right is not None: A__ : Optional[Any] = node.right return node def __A ( self , A__ = None ): if node is None: A__ : Tuple = self.root if self.root is None: return None if not self.empty(): A__ : Union[str, Any] = self.root while node.left is not None: A__ : List[str] = node.left return node def __A ( self , A__ ): A__ : Any = self.search(A__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(A__ , A__ ) elif node.left is None: # Has only right children self.__reassign_nodes(A__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(A__ , node.left ) else: A__ : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore A__ : str = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __A ( self , A__ ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __A ( self , A__=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __A ( self , A__ , A__ ): if node: self.inorder(A__ , node.left ) arr.append(node.value ) self.inorder(A__ , node.right ) def __A ( self , A__ , A__ ): A__ : list[int] = [] self.inorder(A__ , A__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase (lowercase_: Node | None ) -> list[Node]: A__ : Optional[int] = [] if curr_node is not None: A__ : Optional[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def UpperCamelCase () -> None: A__ : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) A__ : str = BinarySearchTree() for i in testlist: t.insert(lowercase_ ) # Prints all the elements of the list in order traversal print(lowercase_ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowercase_ ) print(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
141
import argparse from collections import defaultdict def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Any ) -> int: A__ : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , """r""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : str = f"""class {class_name}(""" A__ : Optional[Any] = f"""{4 * ' '}def {test_name}(""" A__ : Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" A__ : Optional[int] = f"""{16 * ' '}{correct_line.split()[0]}""" A__ : int = False A__ : str = False A__ : Tuple = False A__ : Optional[int] = False A__ : Optional[Any] = 0 A__ : Dict = 0 A__ : List[str] = [] for line in lines: if line.startswith(lowercase_ ): A__ : Dict = True elif in_class and line.startswith(lowercase_ ): A__ : Optional[Any] = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): A__ : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) A__ : List[str] = False else: new_lines.append(lowercase_ ) with open(lowercase_ , """w""" ) as f: for line in new_lines: f.write(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> Any: if fail is not None: with open(lowercase_ , """r""" ) as f: A__ : Dict = {l.strip() for l in f.readlines()} else: A__ : List[str] = None with open(lowercase_ , """r""" ) as f: A__ : int = f.readlines() A__ : Union[str, Any] = defaultdict(lowercase_ ) for line in correct_lines: A__ , A__ , A__ , A__ : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
141
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = '▁' __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Dict = BertGenerationTokenizer UpperCAmelCase_ :str = False UpperCAmelCase_ :Union[str, Any] = True def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() lowerCAmelCase_ :Dict = BertGenerationTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = """<s>""" lowerCAmelCase_ :Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__A ) , 1002 ) def __lowerCAmelCase ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = BertGenerationTokenizer(__A , keep_accents=__A ) lowerCAmelCase_ :str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ :Tuple = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ :Dict = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __lowerCAmelCase ( self ) -> Dict: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Dict = """Hello World!""" lowerCAmelCase_ :Optional[Any] = [1_8536, 2260, 101] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @slow def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase_ :Tuple = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase_ :Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ :str = """ """.join(__A ) lowerCAmelCase_ :Tuple = self.big_tokenizer.encode_plus(__A , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase_ :Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase_ :int = BertGenerationConfig() lowerCAmelCase_ :Tuple = BertGenerationEncoder(__A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__A ) model(**__A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off lowerCAmelCase_ :Tuple = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
84
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[int] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } _lowercase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off _lowercase : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : str = 1 lowercase_ : str = len(self.sp_model ) lowercase_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' lowercase_ : str = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Dict = None lowercase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Dict = {} lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [1] * len(self.prefix_tokens ) lowercase_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Optional[Any] = src_lang lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Any = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Tuple = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.lang_code_to_id[src_lang] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.lang_code_to_id[lang] lowercase_ : Dict = [] lowercase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
93
0
"""simple docstring""" def lowercase ( a__ : int ) -> int: _UpperCamelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowercase ( a__ : int = 100 ) -> int: _UpperCamelCase = 1 _UpperCamelCase = 2 for i in range(2 , max_n + 1 ): _UpperCamelCase = pre_numerator _UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1 _UpperCamelCase = cur_numerator _UpperCamelCase = e_cont * pre_numerator + temp return sum_digits(a__ ) if __name__ == "__main__": print(F'''{solution() = }''')
54
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
54
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _A ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return EnvironmentCommand() def _A ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __lowerCAmelCase ( UpperCamelCase__): @staticmethod def _lowercase ( lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Tuple =parser.add_parser("env" ) download_parser.set_defaults(func=lowerCAmelCase__ ) download_parser.add_argument( "--accelerate-config_file" , default=lowerCAmelCase__ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , *lowerCAmelCase__ ) -> None: '''simple docstring''' a__ : Optional[Any] =accelerate_config_file def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[str] ="not installed" if is_safetensors_available(): import safetensors a__ : Tuple =safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors a__ : Tuple =F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' a__ : Union[str, Any] ="not installed" a__ : Union[str, Any] ="not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file a__ : List[str] =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase__ ): a__ : int =load_config_from_file(self._accelerate_config_file ).to_dict() a__ : Union[str, Any] =( "\n".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else F'''\t{accelerate_config}''' ) a__ : Tuple ="not installed" a__ : List[str] ="NA" if is_torch_available(): import torch a__ : List[Any] =torch.__version__ a__ : Tuple =torch.cuda.is_available() a__ : Optional[Any] ="not installed" a__ : Optional[int] ="NA" if is_tf_available(): import tensorflow as tf a__ : List[str] =tf.__version__ try: # deprecated in v2.1 a__ : List[str] =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool a__ : Optional[Any] =bool(tf.config.list_physical_devices("GPU" ) ) a__ : Optional[Any] ="not installed" a__ : Union[str, Any] ="not installed" a__ : Optional[int] ="not installed" a__ : Optional[int] ="NA" if is_flax_available(): import flax import jax import jaxlib a__ : int =flax.__version__ a__ : Dict =jax.__version__ a__ : str =jaxlib.__version__ a__ : List[str] =jax.lib.xla_bridge.get_backend().platform a__ : Any ={ "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F'''{safetensors_version}''', "Accelerate version": F'''{accelerate_version}''', "Accelerate config": F'''{accelerate_config_str}''', "PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": F'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": F'''{flax_version} ({jax_backend})''', "Jax version": F'''{jax_version}''', "JaxLib version": F'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCAmelCase__ ) ) return info @staticmethod def _lowercase ( lowerCAmelCase__ ) -> str: '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
95
import numpy # List of input, output pairs UpperCAmelCase : str = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase : str = [2, 4, 1, 5] UpperCAmelCase : List[str] = len(train_data) UpperCAmelCase : Dict = 0.0_0_9 def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple="train" ): """simple docstring""" return calculate_hypothesis_value(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - output( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : Tuple =0 for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=m ): """simple docstring""" a__ : Any =0 for i in range(SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE ) else: summation_value += _error(SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =summation_of_cost_derivative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def _A ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output a__ : Dict =0.0_0_0_0_0_2 a__ : Union[str, Any] =0 a__ : Any =0 while True: j += 1 a__ : Any =[0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): a__ : Tuple =get_cost_derivative(i - 1 ) a__ : List[Any] =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE , rtol=SCREAMING_SNAKE_CASE , ): break a__ : Optional[Any] =temp_parameter_vector print(("Number of iterations:", j) ) def _A ( ): """simple docstring""" for i in range(len(SCREAMING_SNAKE_CASE ) ): print(("Actual output value:", output(SCREAMING_SNAKE_CASE , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(SCREAMING_SNAKE_CASE , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
95
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def A__ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_SCREAMING_SNAKE_CASE , use_timestep_embedding=_SCREAMING_SNAKE_CASE , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase = IPNDMScheduler() UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, } return components def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> List[str]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = DanceDiffusionPipeline(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase = pipe(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A__ ( self ) -> int: """simple docstring""" return super().test_save_load_local() @skip_mps def A__ ( self ) -> Tuple: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def A__ ( self ) -> str: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def A__ ( self ) -> str: """simple docstring""" return super().test_attention_slicing_forward_pass() def A__ ( self ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def A__ ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
367
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a_ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Any: """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def A__ ( self ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase ,UpperCamelCase = image.size else: UpperCamelCase ,UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase = self.size["""shortest_edge"""] elif w > h: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = self.size["""shortest_edge"""] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase ,UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ConditionalDetrImageProcessingTester(self ) @property def A__ ( self ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""image_id""": 39769, """annotations""": target} # encode them UpperCamelCase = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) ) @slow def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify masks UpperCamelCase = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) )
183
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( __lowercase ): a__ : Any = ["""image_processor""", """tokenizer"""] a__ : str = """ViTImageProcessor""" a__ : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : str , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: __lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None: __lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: __lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None and images is not None: __lowerCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __lowerCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __A ( self : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __A ( self : Optional[Any] ) -> List[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def __A ( self : List[Any] ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
270
from __future__ import annotations from fractions import Fraction def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __magic_name__ ( __lowerCAmelCase : int ) -> list[str]: __lowerCamelCase = [] __lowerCamelCase = 11 __lowerCamelCase = int('''1''' + '''0''' * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 __lowerCamelCase = 10 return solutions def __magic_name__ ( __lowerCAmelCase : int = 2 ) -> int: __lowerCamelCase = 1.0 for fraction in fraction_list(__lowerCAmelCase ): __lowerCamelCase = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
270
1
'''simple docstring''' import os def a_ ( ) -> int: with open(os.path.dirname(_UpperCAmelCase ) + '/p022_names.txt' ) as file: __snake_case : Optional[Any] = str(file.readlines()[0] ) __snake_case : int = names.replace('"' ,'' ).split(',' ) names.sort() __snake_case : Optional[int] = 0 __snake_case : int = 0 for i, name in enumerate(_UpperCAmelCase ): for letter in name: name_score += ord(_UpperCAmelCase ) - 64 total_score += (i + 1) * name_score __snake_case : Dict = 0 return total_score if __name__ == "__main__": print(solution())
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ShapEPipeline A__ = ['''prompt'''] A__ = ['''prompt'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Optional[Any] ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return 32 @property def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Tuple ) -> Dict: '''simple docstring''' return 8 @property def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Optional[Any] = PriorTransformer(**__a ) return model @property def A_ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Optional[int] = ShapERenderer(**__a ) return model def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : Union[str, Any] = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_renderer __snake_case : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __snake_case : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def A_ ( self : Union[str, Any] , __a : Dict , __a : int=0 ) -> Optional[Any]: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : Optional[int] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = 'cpu' __snake_case : Dict = self.get_dummy_components() __snake_case : int = self.pipeline_class(**__a ) __snake_case : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : Dict = output.images[0] __snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : str = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self : Any ) -> List[str]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self : int ) -> Tuple: '''simple docstring''' __snake_case : int = torch_device == 'cpu' __snake_case : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : str = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Dict = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : int = 1 __snake_case : Tuple = 2 __snake_case : Tuple = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : str = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : str ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Union[str, Any] = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe( 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
0
1
def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" lowerCamelCase_ =abs(_A ) lowerCamelCase_ =0 while n > 0: res += n % 10 n //= 10 return res def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" lowerCamelCase_ =abs(_A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return sum(int(_A ) for c in str(abs(_A ) ) ) def __UpperCamelCase ( ) ->None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_A : Callable , _A : int ) -> None: lowerCamelCase_ =f'{func.__name__}({value})' lowerCamelCase_ =timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(_A )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_A , _A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
154
from __future__ import annotations import math def __UpperCamelCase ( _A : int , _A : int , _A : bool , _A : list[int] , _A : float ) ->int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_A ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) return min( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase_ =math.log(len(_A ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , _A , _A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
154
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = dataset snake_case : Optional[int] = process snake_case : List[str] = params def __len__(self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Optional[int] , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.dataset[i] snake_case : List[str] = self.process(snake_case__ , **self.params ) return processed class UpperCAmelCase ( A_ ): def __init__(self : str , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any]=None ) -> int: '''simple docstring''' snake_case : Tuple = loader snake_case : Union[str, Any] = infer snake_case : Union[str, Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case : Tuple = None snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping snake_case : List[str] = None snake_case : Any = None def __len__(self : int ) -> Optional[Any]: '''simple docstring''' return len(self.loader ) def __iter__(self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case__ , snake_case__ ): # Convert ModelOutput to tuple first snake_case : Optional[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case__ , snake_case__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case : Optional[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : int = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case : str = self._loader_batch_data.__class__(snake_case__ ) self._loader_batch_index += 1 return result def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case : Union[str, Any] = next(self.iterator ) snake_case : Tuple = self.infer(snake_case__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case__ , torch.Tensor ): snake_case : Optional[Any] = processed else: snake_case : Union[str, Any] = list(processed.keys() )[0] snake_case : Dict = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = len(snake_case__ ) else: snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : List[str] = observed_batch_size # Setting internal index to unwrap the batch snake_case : Tuple = processed snake_case : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( A_ ): def __init__(self : Tuple , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any=None ) -> str: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) def __iter__(self : str ) -> List[str]: '''simple docstring''' snake_case : str = iter(self.loader ) snake_case : Any = None return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.subiterator is None: snake_case : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case : str = self.infer(next(self.iterator ) , **self.params ) snake_case : List[str] = next(self.subiterator ) return processed class UpperCAmelCase ( A_ ): def __iter__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = False snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case : str = self.loader_batch_item() snake_case : Tuple = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator while not is_last: snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case__ , torch.Tensor ): snake_case : Dict = processed else: snake_case : Tuple = list(processed.keys() )[0] snake_case : List[Any] = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : int = len(snake_case__ ) else: snake_case : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : Any = observed_batch_size snake_case : List[Any] = processed snake_case : Dict = 0 while self._loader_batch_index < self.loader_batch_size: snake_case : Union[str, Any] = self.loader_batch_item() snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator else: snake_case : List[str] = processed snake_case : Union[str, Any] = item.pop("is_last" ) accumulator.append(snake_case__ ) return accumulator class UpperCAmelCase ( A_ ): def __init__(self : int , snake_case__ : Dataset , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : int = dataset snake_case : Optional[Any] = key def __len__(self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : List[str] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.dataset[i][self.key] class UpperCAmelCase ( A_ ): def __init__(self : Union[str, Any] , snake_case__ : Dataset , snake_case__ : str , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = dataset snake_case : Tuple = keya snake_case : Union[str, Any] = keya def __len__(self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Union[str, Any] , snake_case__ : Optional[int] ) -> str: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _A : Optional[int] = logging.get_logger(__name__) _A : str = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Tuple = "bloom" _UpperCAmelCase : str = ["past_key_values"] _UpperCAmelCase : str = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Optional[Any] , A : Optional[Any]=2_5_0_8_8_0 , A : List[Any]=6_4 , A : Any=2 , A : str=8 , A : Any=1e-5 , A : Tuple=0.02 , A : str=True , A : Dict=1 , A : Any=2 , A : List[Any]=False , A : Optional[Any]=0.0 , A : List[Any]=0.0 , A : str=1 , A : Any=False , **A : List[str] , ) ->str: lowerCamelCase__ : Tuple = vocab_size # Backward compatibility with n_embed kwarg lowerCamelCase__ : List[str] = kwargs.pop('''n_embed''' , A ) lowerCamelCase__ : List[str] = hidden_size if n_embed is None else n_embed lowerCamelCase__ : Optional[Any] = n_layer lowerCamelCase__ : str = n_head lowerCamelCase__ : Dict = layer_norm_epsilon lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Dict = use_cache lowerCamelCase__ : Optional[Any] = pretraining_tp lowerCamelCase__ : Dict = apply_residual_connection_post_layernorm lowerCamelCase__ : Optional[int] = hidden_dropout lowerCamelCase__ : int = attention_dropout lowerCamelCase__ : List[str] = bos_token_id lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : List[Any] = slow_but_exact super().__init__(bos_token_id=A , eos_token_id=A , **A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = version.parse("1.12" ) def __init__( self : List[str] , A : PretrainedConfig , A : str = "default" , A : List[PatchingSpec] = None , A : bool = False , ) ->int: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? lowerCamelCase__ : Any = 0 @property def __lowerCamelCase ( self : int ) ->Mapping[str, Mapping[int, str]]: lowerCamelCase__ : Optional[int] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A , direction='''inputs''' , inverted_values_shape=A ) lowerCamelCase__ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCamelCase__ : int = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCamelCase ( self : str ) ->int: return self._config.n_layer @property def __lowerCamelCase ( self : Union[str, Any] ) ->int: return self._config.n_head @property def __lowerCamelCase ( self : List[Any] ) ->float: return 1e-3 def __lowerCamelCase ( self : List[Any] , A : "PreTrainedTokenizer" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , ) ->Mapping[str, Any]: lowerCamelCase__ : int = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ : str = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase__ : Optional[int] = seqlen + 2 lowerCamelCase__ : Any = self._config.hidden_size // self.num_attention_heads lowerCamelCase__ : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCamelCase__ : Optional[int] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCamelCase__ : Tuple = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] lowerCamelCase__ : Optional[int] = common_inputs['''attention_mask'''] if self.use_past: lowerCamelCase__ : Any = ordered_inputs['''attention_mask'''].dtype lowerCamelCase__ : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self : Dict ) ->int: return 1_3
142
def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase__ : List[str] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(UpperCAmelCase ) )[2:] lowerCamelCase__ : Dict = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
142
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase__ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Any =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = pipeline( "document-question-answering" , model=snake_case__ , tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : str = INVOICE_URL lowerCAmelCase : Tuple = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , "" ) ) ) lowerCAmelCase : Optional[Any] = "What is the placebo?" lowerCAmelCase : List[Any] = [ { "image": load_image(snake_case__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = dqa_pipeline(snake_case__ , top_k=2 ) self.assertEqual( snake_case__ , [ [ {"score": ANY(snake_case__ ), "answer": ANY(snake_case__ ), "start": ANY(snake_case__ ), "end": ANY(snake_case__ )}, {"score": ANY(snake_case__ ), "answer": ANY(snake_case__ ), "start": ANY(snake_case__ ), "end": ANY(snake_case__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCAmelCase : Optional[Any] = INVOICE_URL lowerCAmelCase : str = "How many cats are there?" lowerCAmelCase : int = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCAmelCase : List[str] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) lowerCAmelCase : Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase : List[str] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase : Union[str, Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase : List[str] = [] lowerCAmelCase : List[str] = [] lowerCAmelCase : str = dqa_pipeline(image=snake_case__ , question=snake_case__ , words=snake_case__ , boxes=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCAmelCase : str = INVOICE_URL lowerCAmelCase : Optional[int] = "What is the invoice number?" lowerCAmelCase : List[Any] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase : Tuple = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase : Optional[int] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCAmelCase : Optional[int] = INVOICE_URL lowerCAmelCase : Union[str, Any] = "What is the invoice number?" lowerCAmelCase : Tuple = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase : List[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case__ ) lowerCAmelCase : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case__ , revision="3dc6de3" , ) lowerCAmelCase : str = INVOICE_URL lowerCAmelCase : Dict = "What is the invoice number?" lowerCAmelCase : Optional[Any] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCAmelCase : Optional[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCAmelCase : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCAmelCase : List[Any] = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , "" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case__ ) lowerCAmelCase : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case__ , revision="3dc6de3" , max_seq_len=50 , ) lowerCAmelCase : Any = INVOICE_URL lowerCAmelCase : Dict = "What is the invoice number?" lowerCAmelCase : Union[str, Any] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCAmelCase : Tuple = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , "" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase : int = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCAmelCase : Optional[Any] = INVOICE_URL lowerCAmelCase : Union[str, Any] = "What is the invoice number?" lowerCAmelCase : Union[str, Any] = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="tapas" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Dict = type_vocab_sizes lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Dict = positive_label_weight lowerCAmelCase : Union[str, Any] = num_aggregation_labels lowerCAmelCase : Optional[Any] = aggregation_loss_weight lowerCAmelCase : List[Any] = use_answer_as_supervision lowerCAmelCase : Dict = answer_loss_importance lowerCAmelCase : List[Any] = use_normalized_answer_loss lowerCAmelCase : List[str] = huber_loss_delta lowerCAmelCase : Optional[int] = temperature lowerCAmelCase : Optional[int] = aggregation_temperature lowerCAmelCase : Any = use_gumbel_for_cells lowerCAmelCase : Union[str, Any] = use_gumbel_for_aggregation lowerCAmelCase : Union[str, Any] = average_approximation_function lowerCAmelCase : int = cell_selection_preference lowerCAmelCase : Dict = answer_loss_cutoff lowerCAmelCase : Optional[int] = max_num_rows lowerCAmelCase : Union[str, Any] = max_num_columns lowerCAmelCase : Any = average_logits_per_cell lowerCAmelCase : List[Any] = select_one_column lowerCAmelCase : Tuple = allow_empty_column_selection lowerCAmelCase : str = init_cell_selection_weights_to_zero lowerCAmelCase : List[Any] = reset_position_index_per_cell lowerCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : List[str] = aggregation_labels lowerCAmelCase : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): lowerCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
133
1
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): # Checks if the entire collection has been sorted if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : int ): # Checks order between adjacent elements if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase_ : str = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": a_ = input('Enter integers separated by spaces: ') a_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
175
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase : Optional[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase : int = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } UpperCamelCase : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } UpperCamelCase : Optional[Any] = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } UpperCamelCase : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase : Any = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase : str = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRContextEncoderTokenizer class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRQuestionEncoderTokenizer UpperCamelCase : str = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCamelCase : Union[str, Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCamelCase : Tuple = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase : def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: __UpperCamelCase = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [titles] __UpperCamelCase = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [texts] __UpperCamelCase = len(__UpperCAmelCase ) __UpperCamelCase = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [questions] * n_passages assert len(__UpperCAmelCase ) == len( __UpperCAmelCase ), F'There should be as many titles than texts but got {len(__UpperCAmelCase )} titles and {len(__UpperCAmelCase )} texts.' __UpperCamelCase = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )['input_ids'] __UpperCamelCase = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )['input_ids'] __UpperCamelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase ) ] } if return_attention_mask is not False: __UpperCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCamelCase = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , ): '''simple docstring''' __UpperCamelCase = reader_input['input_ids'] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = reader_output[:3] __UpperCamelCase = len(__UpperCAmelCase ) __UpperCamelCase = sorted(range(__UpperCAmelCase ) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__ ) __UpperCamelCase = [] for doc_id in sorted_docs: __UpperCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCamelCase = sequence_ids.index(self.pad_token_id ) else: __UpperCamelCase = len(__UpperCAmelCase ) __UpperCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = [] for start_index, start_score in enumerate(__UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCamelCase = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) __UpperCamelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __UpperCamelCase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"] lowercase = DPRReaderTokenizer
263
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCamelCase : List[Any] = False @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase = CLIPTextModel(__UpperCAmelCase ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = __UpperCamelCase = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCamelCase = pipe(**__UpperCAmelCase ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __UpperCamelCase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = torch.manual_seed(51 ) __UpperCamelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) __UpperCamelCase = 'a painting of an elephant with glasses' __UpperCamelCase = [5, 7] __UpperCamelCase = pipe( prompt=__UpperCAmelCase , token_indices=__UpperCAmelCase , guidance_scale=7.5 , generator=__UpperCAmelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase ( UpperCamelCase__ ): UpperCAmelCase__ = """Speech2TextFeatureExtractor""" UpperCAmelCase__ = """Speech2TextTokenizer""" def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str ) -> List[Any]: super().__init__(lowercase_ , lowercase_ ) lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : List[str] ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : int = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : List[str] = kwargs.pop('audio' , lowercase_ ) lowerCamelCase__ : Dict = kwargs.pop('sampling_rate' , lowercase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: lowerCamelCase__ : int = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Dict = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: lowerCamelCase__ : Tuple = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : str = encodings['input_ids'] return inputs def A_ ( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def A_ ( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> Dict: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def A_ ( self : Dict ) -> Dict: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[str] = self.tokenizer yield lowerCamelCase__ : Union[str, Any] = self.feature_extractor lowerCamelCase__ : Optional[Any] = False
50
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase : List[str] ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Dict ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Union[str, Any] ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Tuple ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Dict ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase ( _lowerCamelCase : Tuple ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]=False ): A__ = checkpoint[F"{old_prefix}.in_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.in_layers.2.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.2.bias"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.weight"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.3.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: A__ = checkpoint[F"{old_prefix}.skip_connection.weight"] A__ = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None ): A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) A__ = checkpoint[F"{old_prefix}.norm.weight"] A__ = checkpoint[F"{old_prefix}.norm.bias"] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : List[str] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = {} A__ = checkpoint["time_embed.0.weight"] A__ = checkpoint["time_embed.0.bias"] A__ = checkpoint["time_embed.2.weight"] A__ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: A__ = checkpoint["label_emb.weight"] A__ = checkpoint["input_blocks.0.0.weight"] A__ = checkpoint["input_blocks.0.0.bias"] A__ = unet_config["down_block_types"] A__ = unet_config["layers_per_block"] A__ = unet_config["attention_head_dim"] A__ = unet_config["block_out_channels"] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(_lowerCamelCase ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"down_blocks.{i}.attentions.{j}" A__ = F"input_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"down_blocks.{i}.downsamplers.0" A__ = F"input_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = "mid_block.resnets.0" A__ = "middle_block.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.attentions.0" A__ = "middle_block.1" A__ = convert_attention(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.resnets.1" A__ = "middle_block.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = 0 A__ = unet_config["up_block_types"] for i, layer_type in enumerate(_lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.1" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"up_blocks.{i}.attentions.{j}" A__ = F"output_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = checkpoint["out.0.weight"] A__ = checkpoint["out.0.bias"] A__ = checkpoint["out.2.weight"] A__ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __lowerCAmelCase : Optional[Any] =parser.parse_args() __lowerCAmelCase : List[Any] =strabool(args.class_cond) __lowerCAmelCase : List[str] =os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase : List[str] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : List[str] =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase : Any =TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __lowerCAmelCase : Dict =None __lowerCAmelCase : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase : Dict =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase : List[str] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase : Dict =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : Dict =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") __lowerCAmelCase : Dict =CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase : str =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
237
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : Dict = logging.get_logger(__name__) def UpperCamelCase (lowercase_: List[str] , lowercase_: int ) -> Dict: try: with open(lowercase_ , """rb""" ) as flax_state_f: A__ : Optional[Any] = from_bytes(lowercase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Any , lowercase_: Dict ) -> Optional[int]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A__ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowercase_ : x.dtype == jnp.bfloataa , lowercase_ ) ).values() if any(lowercase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A__ : Union[str, Any] = jax.tree_util.tree_map( lambda lowercase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase_ ) A__ : str = """""" A__ : Tuple = flatten_dict(lowercase_ , sep=""".""" ) A__ : Dict = pt_model.state_dict() # keep track of unexpected & missing keys A__ : int = [] A__ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A__ : Tuple = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A__ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A__ : Tuple = jnp.transpose(lowercase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A__ : int = flax_key_tuple_array[:-1] + ["""weight"""] A__ : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A__ : List[str] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase_ ): A__ : List[Any] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A__ : Optional[int] = """.""".join(lowercase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict A__ : Tuple = np.asarray(lowercase_ ) if not isinstance(lowercase_ , np.ndarray ) else flax_tensor A__ : Tuple = torch.from_numpy(lowercase_ ) # remove from missing keys missing_keys.remove(lowercase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase_ ) pt_model.load_state_dict(lowercase_ ) # re-transform missing_keys to list A__ : str = list(lowercase_ ) if len(lowercase_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowercase_ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
141
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Union[str, Any] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : List[str] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : Optional[Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Optional[Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_MAPPING A_ : Any = auto_class_update(FlaxAutoModel) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Optional[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : List[str] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
141
1
import os def _a ( ) -> Union[str, Any]: with open(os.path.dirname(a ) + '''/p022_names.txt''' ) as file: a = str(file.readlines()[0] ) a = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() a = 0 a = 0 for i, name in enumerate(a ): for letter in name: name_score += ord(a ) - 64 total_score += (i + 1) * name_score a = 0 return total_score if __name__ == "__main__": print(solution())
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ShapEPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt'''] __snake_case = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return 8 @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } a = PriorTransformer(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" torch.manual_seed(0 ) a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__UpperCAmelCase ) return model def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.dummy_prior a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) a = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = torch_device == '''cpu''' a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = 1 a = 2 a = self.get_dummy_inputs(__UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) a = ShapEPipeline.from_pretrained('''openai/shap-e''' ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) a = pipe( '''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
0
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCamelCase_ ( self : List[str] ,A : Dict=0 ): __A = floats_tensor((1, 3, 1_28, 1_28) ,rng=random.Random(A ) ) __A = np.random.RandomState(A ) __A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase_ ( self : int ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=A ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self : Optional[Any] ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) __A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self : Union[str, Any] ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) __A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) # warmup pass to apply optimizations __A = pipe(**self.get_dummy_inputs() ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self : Optional[Any] ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) __A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self : str ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) __A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self : Optional[int] ): __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) __A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __A = self.get_dummy_inputs() __A = pipe(**A ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self : Any ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self : str ): __A = ort.SessionOptions() __A = False return options def UpperCamelCase_ ( self : Optional[Any] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __A = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" ,revision="onnx" ,safety_checker=A ,feature_extractor=A ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A ) __A = "A fantasy landscape, trending on artstation" __A = np.random.RandomState(0 ) __A = pipe( prompt=A ,image=A ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A ,output_type="np" ,) __A = output.images __A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase_ ( self : List[Any] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __A = init_image.resize((7_68, 5_12) ) __A = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" ,subfolder="scheduler" ,revision="onnx" ) __A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,revision="onnx" ,scheduler=A ,safety_checker=A ,feature_extractor=A ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A ) __A = "A fantasy landscape, trending on artstation" __A = np.random.RandomState(0 ) __A = pipe( prompt=A ,image=A ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A ,output_type="np" ,) __A = output.images __A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
360
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,A : Optional[Any] ,A : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Tuple ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): __A = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __A = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample __A = (image / 2 + 0.5).clamp(0 ,1 ) __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
0
import math import sys def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """""" try: with open(_SCREAMING_SNAKE_CASE , """rb""" ) as binary_file: SCREAMING_SNAKE_CASE = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE = F"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""0""": """0""", """1""": """1"""} SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = """""", """""" SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id SCREAMING_SNAKE_CASE = last_match_id + """0""" if math.loga(_SCREAMING_SNAKE_CASE ).is_integer(): SCREAMING_SNAKE_CASE = {} for curr_key in list(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = lexicon.pop(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = new_lex SCREAMING_SNAKE_CASE = last_match_id + """1""" index += 1 SCREAMING_SNAKE_CASE = """""" return result def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = 8 try: with open(_SCREAMING_SNAKE_CASE , """wb""" ) as opened_file: SCREAMING_SNAKE_CASE = [ to_write[i : i + byte_length] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 for letter in data_bits: if letter == "1": break counter += 1 SCREAMING_SNAKE_CASE = data_bits[counter:] SCREAMING_SNAKE_CASE = data_bits[counter + 1 :] return data_bits def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = read_file_binary(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = remove_prefix(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = decompress_data(_SCREAMING_SNAKE_CASE ) write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
296
from argparse import ArgumentParser from .env import EnvironmentCommand def __lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) SCREAMING_SNAKE_CASE = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go SCREAMING_SNAKE_CASE = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
296
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Dict = 10 __magic_name__ : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) __magic_name__ : List[Any] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(_snake_case ) ), } , features=_snake_case , ) return dataset @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : int ) -> List[str]: '''simple docstring''' __magic_name__ : str = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_snake_case ) return filename # FILE_CONTENT + files snake_case : int = "\\n Text data.\n Second line of data." @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Any: '''simple docstring''' __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''file.txt''' __magic_name__ : Union[str, Any] = FILE_CONTENT with open(_snake_case , "w" ) as f: f.write(_snake_case ) return filename @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Any ) -> int: '''simple docstring''' import bza __magic_name__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / '''file.txt.bz2''' __magic_name__ : int = bytes(_snake_case , "utf-8" ) with bza.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' import gzip __magic_name__ : Tuple = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) __magic_name__ : Union[str, Any] = bytes(_snake_case , "utf-8" ) with gzip.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __magic_name__ : List[str] = tmp_path_factory.mktemp("data" ) / '''file.txt.lz4''' __magic_name__ : Optional[Any] = bytes(_snake_case , "utf-8" ) with lza.frame.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''file.txt.7z''' with pyazr.SevenZipFile(_snake_case , "w" ) as archive: archive.write(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : str , _snake_case : Union[str, Any] ) -> List[Any]: '''simple docstring''' import tarfile __magic_name__ : Any = tmp_path_factory.mktemp("data" ) / '''file.txt.tar''' with tarfile.TarFile(_snake_case , "w" ) as f: f.add(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Any ) -> int: '''simple docstring''' import lzma __magic_name__ : List[str] = tmp_path_factory.mktemp("data" ) / '''file.txt.xz''' __magic_name__ : Any = bytes(_snake_case , "utf-8" ) with lzma.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' import zipfile __magic_name__ : Optional[Any] = tmp_path_factory.mktemp("data" ) / '''file.txt.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : str ) -> int: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''file.txt.zst''' __magic_name__ : List[str] = bytes(_snake_case , "utf-8" ) with zstd.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' __magic_name__ : Any = tmp_path_factory.mktemp("data" ) / '''file.xml''' __magic_name__ : Union[str, Any] = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_snake_case , "w" ) as f: f.write(_snake_case ) return filename snake_case : Any = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] snake_case : Tuple = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] snake_case : List[Any] = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } snake_case : Union[str, Any] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] snake_case : str = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Any = datasets.Dataset.from_dict(_snake_case ) __magic_name__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict ) -> Any: '''simple docstring''' __magic_name__ : Any = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_snake_case ) ) as con: __magic_name__ : str = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict ) -> str: '''simple docstring''' __magic_name__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_snake_case , "w" , newline="" ) as f: __magic_name__ : Optional[int] = csv.DictWriter(_snake_case , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : str = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_snake_case , "w" , newline="" ) as f: __magic_name__ : Optional[Any] = csv.DictWriter(_snake_case , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import bza __magic_name__ : Tuple = tmp_path_factory.mktemp("data" ) / '''dataset.csv.bz2''' with open(_snake_case , "rb" ) as f: __magic_name__ : str = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_snake_case , "wb" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : str , _snake_case : List[str] ) -> str: '''simple docstring''' __magic_name__ : Tuple = tmp_path_factory.mktemp("data" ) / '''dataset.csv.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : int , _snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = tmp_path_factory.mktemp("data" ) / '''dataset.csv.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_snake_case , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : int ) -> Optional[int]: '''simple docstring''' __magic_name__ : Dict = tmp_path_factory.mktemp("data" ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int ) -> Optional[Any]: '''simple docstring''' __magic_name__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) __magic_name__ : Optional[int] = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_snake_case , "wb" ) as f: __magic_name__ : str = pq.ParquetWriter(_snake_case , schema=_snake_case ) __magic_name__ : Dict = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_snake_case ) )] for k in DATA[0]} , schema=_snake_case ) writer.write_table(_snake_case ) writer.close() return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __magic_name__ : List[Any] = {'''data''': DATA} with open(_snake_case , "w" ) as f: json.dump(_snake_case , _snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] ) -> Any: '''simple docstring''' __magic_name__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __magic_name__ : Optional[int] = {'''data''': DATA_DICT_OF_LISTS} with open(_snake_case , "w" ) as f: json.dump(_snake_case , _snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[Any] ) -> Dict: '''simple docstring''' __magic_name__ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_snake_case , "w" ) as f: for item in DATA: f.write(json.dumps(_snake_case ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : str ) -> str: '''simple docstring''' __magic_name__ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_snake_case , "w" ) as f: for item in DATA: f.write(json.dumps(_snake_case ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int ) -> Any: '''simple docstring''' __magic_name__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_snake_case , "w" ) as f: for item in DATA_312: f.write(json.dumps(_snake_case ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Tuple ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_snake_case , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_snake_case ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' import gzip __magic_name__ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_snake_case , "rb" ) as orig_file: with gzip.open(_snake_case , "wb" ) as zipped_file: zipped_file.writelines(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Any ) -> Dict: '''simple docstring''' import gzip __magic_name__ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_snake_case , "rb" ) as orig_file: with gzip.open(_snake_case , "wb" ) as zipped_file: zipped_file.writelines(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : int ) -> Tuple: '''simple docstring''' __magic_name__ : Dict = tmp_path_factory.mktemp("data" ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' __magic_name__ : str = tmp_path_factory.mktemp("data" ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.join("nested" , os.path.basename(_snake_case ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : str , _snake_case : Dict , _snake_case : int ) -> int: '''simple docstring''' __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Tuple ) -> Dict: '''simple docstring''' __magic_name__ : Any = tmp_path_factory.mktemp("data" ) / '''dataset.jsonl.tar''' with tarfile.TarFile(_snake_case , "w" ) as f: f.add(_snake_case , arcname=os.path.basename(_snake_case ) ) f.add(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : List[Any] ) -> str: '''simple docstring''' __magic_name__ : List[str] = tmp_path_factory.mktemp("data" ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(_snake_case , "w" ) as f: f.add(_snake_case , arcname=os.path.join("nested" , os.path.basename(_snake_case ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : List[str] = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_snake_case , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] ) -> Any: '''simple docstring''' __magic_name__ : List[str] = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_snake_case , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''dataset.abc''' with open(_snake_case , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Dict , _snake_case : List[Any] ) -> int: '''simple docstring''' __magic_name__ : Dict = tmp_path_factory.mktemp("data" ) / '''dataset.text.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Any , _snake_case : Any ) -> Tuple: '''simple docstring''' __magic_name__ : List[Any] = tmp_path_factory.mktemp("data" ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) f.write(_snake_case , arcname=os.path.join("main_dir" , os.path.basename(_snake_case ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Any ) -> List[Any]: '''simple docstring''' __magic_name__ : int = tmp_path_factory.mktemp("data" ) / '''dataset.ext.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename("unsupported.ext" ) ) f.write(_snake_case , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[str] ) -> int: '''simple docstring''' __magic_name__ : int = '''\n'''.join(["First", "Second\u2029with Unicode new line", "Third"] ) __magic_name__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(_snake_case ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : List[str] ) -> Optional[int]: '''simple docstring''' __magic_name__ : str = tmp_path_factory.mktemp("data" ) / '''dataset.img.zip''' with zipfile.ZipFile(_snake_case , "w" ) as f: f.write(_snake_case , arcname=os.path.basename(_snake_case ) ) f.write(_snake_case , arcname=os.path.basename(_snake_case ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : Tuple ) -> Any: '''simple docstring''' __magic_name__ : Union[str, Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
370
from scipy.stats import pearsonr import datasets snake_case : Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" snake_case : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" snake_case : int = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): if return_pvalue: __magic_name__ : Union[str, Any] = pearsonr(_a , _a ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_a , _a )[0] )}
41
0
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
231
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ) -> Union[str, Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_stages lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = num_labels lowerCAmelCase_ = initializer_range lowerCAmelCase_ = out_features lowerCAmelCase_ = out_indices lowerCAmelCase_ = scope def __a ( self ) -> Optional[int]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ = None lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self ) -> Any: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict def __a ( self ) -> str: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _lowerCAmelCase ( __a , __a , unittest.TestCase ): _lowercase =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowercase =( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowercase =False _lowercase =False _lowercase =False _lowercase =False _lowercase =False def __a ( self ) -> Tuple: lowerCAmelCase_ = ConvNextVaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __a ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ) -> Any: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __a ( self ) -> List[Any]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __a ( self ) -> int: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __a ( self ) -> str: pass def __a ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = False lowerCAmelCase_ = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_UpperCamelCase ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __a ( self ) -> List[Any]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __a ( self ) -> Optional[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> int: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase_ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
231
1
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = '''openai/whisper-base''' _SCREAMING_SNAKE_CASE : str = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) _SCREAMING_SNAKE_CASE : Dict = '''transcriber''' _SCREAMING_SNAKE_CASE : Any = WhisperProcessor _SCREAMING_SNAKE_CASE : Union[str, Any] = WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''audio'''] _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] def lowerCAmelCase (self : Optional[int] , snake_case_ : Optional[Any] ): return self.pre_processor(UpperCAmelCase__ , return_tensors='''pt''' ).input_features def lowerCAmelCase (self : int , snake_case_ : Optional[int] ): return self.model.generate(inputs=UpperCAmelCase__ ) def lowerCAmelCase (self : Any , snake_case_ : Tuple ): return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
361
import os import sys import unittest lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ =os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase__ =os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = get_test_to_tester_mapping(snake_case_ ) __a : Tuple = get_test_to_tester_mapping(snake_case_ ) __a : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __a : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : str ): __a : Optional[int] = get_model_to_test_mapping(snake_case_ ) __a : Any = get_model_to_test_mapping(snake_case_ ) __a : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __a : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : int ): __a : Any = get_model_to_tester_mapping(snake_case_ ) __a : List[str] = get_model_to_tester_mapping(snake_case_ ) __a : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __a : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
90
0
def __magic_name__ ( __a : list , __a : list ): '''simple docstring''' _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def __magic_name__ ( __a : list[float] ): '''simple docstring''' if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): UpperCamelCase__ = ( """Expected a list of numbers as input, found """ f"{type(__a ).__name__}" ) raise TypeError(__a ) else: UpperCamelCase__ = f"Expected a list of numbers as input, found {type(__a ).__name__}" raise TypeError(__a ) else: raise ValueError("""Missing an input""" ) def __magic_name__ ( __a : list , __a : list ): '''simple docstring''' _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
244
from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ = TypeVar('''T''') class __A( Generic[T] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __A( Generic[T] ): """simple docstring""" def __init__(self ): # map from node name to the node object UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) ) class __A( Generic[T] ): """simple docstring""" def __init__(self ): # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return graph
244
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int , _SCREAMING_SNAKE_CASE: str = "▁" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<unk>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "</s>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<pad>" , ) -> int: """simple docstring""" UpperCamelCase_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } UpperCamelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCamelCase_ = token_dict["token"] UpperCamelCase_ = Tokenizer(Unigram() ) UpperCamelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) UpperCamelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) UpperCamelCase_ = decoders.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) UpperCamelCase_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, List[str]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> int: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [files] self._tokenizer.train(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[Iterator[str], Iterator[Iterator[str]]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> Tuple: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = json.loads(self._tokenizer.to_str() ) UpperCamelCase_ = self.special_tokens["unk"]["id"] UpperCamelCase_ = Tokenizer.from_str(json.dumps(_SCREAMING_SNAKE_CASE ) )
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0