code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """Speech2TextFeatureExtractor""" lowerCAmelCase_ = """Speech2TextTokenizer""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCamelCase__ = kwargs.pop('''raw_speech''' ) else: lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings['''input_ids'''] return inputs def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def __lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
209
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """Speech2TextFeatureExtractor""" lowerCAmelCase_ = """Speech2TextTokenizer""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCamelCase__ = kwargs.pop('''raw_speech''' ) else: lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings['''input_ids'''] return inputs def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def __lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
209
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : int ="mra" def __init__( self ,_snake_case=5_02_65 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=1 ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case="absolute" ,_snake_case=4 ,_snake_case="full" ,_snake_case=0 ,_snake_case=0 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Optional[Any] = block_per_row UpperCAmelCase_ : Any = approx_mode UpperCAmelCase_ : Dict = initial_prior_first_n_blocks UpperCAmelCase_ : str = initial_prior_diagonal_n_blocks
67
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def a__ ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
67
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _a ( UpperCamelCase_ : int ) -> str: """simple docstring""" def wrapper(*UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = timeit.default_timer() lowerCAmelCase__ = func(*UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase__ = timeit.default_timer() - starttime return delta lowerCAmelCase__ = func.__name__ return wrapper def _a ( UpperCamelCase_ : dict , UpperCamelCase_ : int=100 , UpperCamelCase_ : Optional[int]=None ) -> str: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = seq_shapes or {} for i in range(UpperCamelCase_ ): lowerCAmelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase_ , _ArrayXD ): lowerCAmelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase_ , datasets.Value ): if v.dtype == "string": lowerCAmelCase__ = "The small grey turtle was surprisingly fast when challenged." else: lowerCAmelCase__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase_ , datasets.Sequence ): while isinstance(UpperCamelCase_ , datasets.Sequence ): lowerCAmelCase__ = v.feature lowerCAmelCase__ = seq_shapes[k] lowerCAmelCase__ = np.random.rand(*UpperCamelCase_ ).astype(v.dtype ) lowerCAmelCase__ = data dummy_data.append((i, example) ) return dummy_data def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=100 , UpperCamelCase_ : Dict=None ) -> int: """simple docstring""" lowerCAmelCase__ = generate_examples(UpperCamelCase_ , num_examples=UpperCamelCase_ , seq_shapes=UpperCamelCase_ ) with ArrowWriter(features=UpperCamelCase_ , path=UpperCamelCase_ ) as writer: for key, record in dummy_data: lowerCAmelCase__ = features.encode_example(UpperCamelCase_ ) writer.write(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCAmelCase__ = datasets.Dataset.from_file(filename=UpperCamelCase_ , info=datasets.DatasetInfo(features=UpperCamelCase_ ) ) return dataset
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = "The Nymphenburg Palace is a beautiful palace in Munich!" def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : Optional[int] = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_0_2_4, """hidden_size""": 7_6_8, """max_length""": 5_1_2, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_0_2_4, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1E-5, """token_type_vocab_size""": 2, } __snake_case : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __snake_case : Any = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=__SCREAMING_SNAKE_CASE , output_all_encodings=__SCREAMING_SNAKE_CASE , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , __SCREAMING_SNAKE_CASE ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __snake_case : Optional[Any] = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab __snake_case : List[Any] = os.path.join(get_home_dir() , """models""" ) __snake_case : Optional[Any] = _load_vocab(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cls=__SCREAMING_SNAKE_CASE ) __snake_case : Dict = nlp.model.BERTModel( __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=__SCREAMING_SNAKE_CASE , use_token_type_embed=__SCREAMING_SNAKE_CASE , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=__SCREAMING_SNAKE_CASE , use_decoder=__SCREAMING_SNAKE_CASE , ) original_bort.load_parameters(__SCREAMING_SNAKE_CASE , cast_dtype=__SCREAMING_SNAKE_CASE , ignore_extra=__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __snake_case : Union[str, Any] = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(__SCREAMING_SNAKE_CASE ), } __snake_case : str = BertConfig.from_dict(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ): __snake_case : int = hf_param.shape __snake_case : Any = to_torch(params[gluon_param] ) __snake_case : List[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __snake_case : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) __snake_case : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) __snake_case : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) __snake_case : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __snake_case : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __snake_case : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : str = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __snake_case : Optional[Any] = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __snake_case : List[str] = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __snake_case : List[str] = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __snake_case : Tuple = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __snake_case : List[Any] = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Optional[Any] = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) __snake_case : str = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) __snake_case : Dict = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __snake_case : Tuple = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : List[Any] = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __snake_case : Union[str, Any] = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __snake_case : BertOutput = layer.output __snake_case : str = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __snake_case : Optional[int] = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __snake_case : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __snake_case : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __snake_case : Optional[Any] = RobertaTokenizer.from_pretrained("""roberta-base""" ) __snake_case : Dict = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE )["""input_ids"""] # Get gluon output __snake_case : str = mx.nd.array([input_ids] ) __snake_case : Any = original_bort(inputs=__SCREAMING_SNAKE_CASE , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = BertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) hf_bort_model.eval() __snake_case : Any = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __snake_case : Any = hf_bort_model(**__SCREAMING_SNAKE_CASE )[0] __snake_case : Dict = output_gluon[0].asnumpy() __snake_case : Optional[int] = output_hf[0].detach().numpy() __snake_case : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __snake_case : Optional[Any] = np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , **lowercase__ ): _lowerCamelCase : Dict = [x.strip() for x in open(lowercase__ ).readlines()] _lowerCamelCase : int = [x.strip() for x in open(lowercase__ ).readlines()][: len(lowercase__ )] _lowerCamelCase : int = calculate_rouge(lowercase__ , lowercase__ , **lowercase__ ) if save_path is not None: save_json(lowercase__ , lowercase__ , indent=lowercase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
96
'''simple docstring''' def a ( __a , __a ) -> int: '''simple docstring''' if len(__a ) != len(__a ): raise ValueError('''String lengths must match!''' ) UpperCamelCase__ :Union[str, Any] = 0 for chara, chara in zip(__a , __a ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
97
0
def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : list[int] ) -> tuple[float, float]: # Check if the input is valid if not len(snake_case_ ) == len(snake_case_ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients __snake_case , __snake_case , __snake_case = equationa __snake_case , __snake_case , __snake_case = equationa # Calculate the determinants of the matrices __snake_case = aa * ba - aa * ba __snake_case = ca * ba - ca * ba __snake_case = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __snake_case = determinant_x / determinant __snake_case = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
371
import math def lowerCamelCase__ ( snake_case_ : int ) -> list[int]: __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(snake_case_ ) ) # Size of every segment __snake_case = [True] * (end + 1) __snake_case = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): __snake_case = False start += 1 prime += in_prime __snake_case = end + 1 __snake_case = min(2 * end , snake_case_ ) while low <= n: __snake_case = [True] * (high - low + 1) for each in in_prime: __snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): __snake_case = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) __snake_case = high + 1 __snake_case = min(high + end , snake_case_ ) return prime print(sieve(10**6))
238
0
import math import unittest def A ( _lowerCamelCase ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def snake_case__ ( self): '''simple docstring''' with self.assertRaises(__a): is_prime(-19) self.assertFalse( is_prime(0), "Zero doesn't have any positive factors, primes must have exactly two.", ) self.assertFalse( is_prime(1), "One only has 1 positive factor, primes must have exactly two.", ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
36
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( a): def __get__( self, __a, __a=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") _lowerCAmelCase : List[Any] = "__cached_" + self.fget.__name__ _lowerCAmelCase : Dict = getattr(__a, __a, __a) if cached is None: _lowerCAmelCase : str = self.fget(__a) setattr(__a, __a, __a) return cached def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def A ( _lowerCamelCase ): '''simple docstring''' if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return isinstance(_lowerCamelCase , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return _is_numpy(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(_lowerCamelCase , torch.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(_lowerCamelCase , torch.device ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") _lowerCAmelCase : Dict = getattr(self, class_fields[0].name) _lowerCAmelCase : str = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a, __a): _lowerCAmelCase : Tuple = first_field.items() _lowerCAmelCase : Dict = True else: try: _lowerCAmelCase : Dict = iter(__a) _lowerCAmelCase : Any = True except TypeError: _lowerCAmelCase : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a, (list, tuple)) or not len(__a) == 2 or not isinstance(element[0], __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value).") break setattr(self, element[0], element[1]) if element[1] is not None: _lowerCAmelCase : Any = element[1] elif first_field is not None: _lowerCAmelCase : Any = first_field else: for field in class_fields: _lowerCAmelCase : Dict = getattr(self, field.name) if v is not None: _lowerCAmelCase : Union[str, Any] = v def __delitem__( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__( self, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : Optional[int] = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, __a, __a): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a, __a) super().__setattr__(__a, __a) def __setitem__( self, __a, __a): '''simple docstring''' super().__setitem__(__a, __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a, __a) def snake_case__ ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class UpperCAmelCase_ ( a , a): @classmethod def snake_case__ ( cls, __a): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}") class UpperCAmelCase_ ( a): lowerCamelCase__ = 'longest' lowerCamelCase__ = 'max_length' lowerCamelCase__ = 'do_not_pad' class UpperCAmelCase_ ( a): lowerCamelCase__ = 'pt' lowerCamelCase__ = 'tf' lowerCamelCase__ = 'np' lowerCamelCase__ = 'jax' class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = context_managers _lowerCAmelCase : Dict = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self, *__a, **__a): '''simple docstring''' self.stack.__exit__(*__a, **__a) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = infer_framework(_lowerCamelCase ) if framework == "tf": _lowerCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : str = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = model_class.__name__ _lowerCAmelCase : Optional[Any] = infer_framework(_lowerCamelCase ) if framework == "tf": _lowerCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ): '''simple docstring''' def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ): for k, v in d.items(): _lowerCAmelCase : Dict = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def A ( _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): _lowerCAmelCase : List[Any] = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase : Tuple = F"{repo_id}--{value}" return auto_map def A ( _lowerCamelCase ): '''simple docstring''' for base_class in inspect.getmro(_lowerCamelCase ): _lowerCAmelCase : Tuple = base_class.__module__ _lowerCAmelCase : int = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
36
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case : Dict = logging.get_logger(__name__) _snake_case : int = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( __lowercase , __lowercase ): """simple docstring""" a_ = '''nat''' a_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : List[str]=[3, 4, 6, 5] , lowerCAmelCase_ : Optional[Any]=[2, 4, 8, 1_6] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Optional[int]=3.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : Any=1e-5 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[int] , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase__ ) __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = num_heads __lowerCAmelCase = kernel_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
361
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : int=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = ViTConfig() __lowerCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCAmelCase = True __lowerCAmelCase = int(vit_name[-12:-10] ) __lowerCAmelCase = int(vit_name[-9:-6] ) else: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = int(vit_name[-6:-4] ) __lowerCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): __lowerCAmelCase = 192 __lowerCAmelCase = 768 __lowerCAmelCase = 12 __lowerCAmelCase = 3 elif vit_name[9:].startswith('small' ): __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): __lowerCAmelCase = 768 __lowerCAmelCase = 2304 __lowerCAmelCase = 8 __lowerCAmelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif vit_name[4:].startswith('huge' ): __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 # load original model from timm __lowerCAmelCase = timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCAmelCase = ViTModel(lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCAmelCase = DeiTImageProcessor(size=config.image_size ) else: __lowerCAmelCase = ViTImageProcessor(size=config.image_size ) __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_, outputs.pooler_output, atol=1E-3 ) else: __lowerCAmelCase = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
207
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = [] for part_id in partition_order: _snake_case : str = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Optional[Any] = spark.range(1_00 ).repartition(1 ) _snake_case : Tuple = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : int = spark.range(10 ).repartition(2 ) _snake_case : Tuple = [1, 0] _snake_case : Dict = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions. _snake_case : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _snake_case , _snake_case : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Any = spark.range(10 ).repartition(1 ) _snake_case : List[str] = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : int = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: _snake_case : Tuple = lambda snake_case__ : x.reverse() _snake_case : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] ) _snake_case : int = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): _snake_case , _snake_case : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _snake_case : List[Any] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): _snake_case , _snake_case : List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _snake_case : List[str] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): _snake_case , _snake_case : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Dict = spark.range(1_00 ).repartition(1 ) _snake_case : List[Any] = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
64
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: List[str] ): '''simple docstring''' _snake_case : int = data _snake_case : Dict = [0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def UpperCamelCase_ ( a_: Optional[Any], a_: Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xffffffff def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _snake_case : Optional[int] = self.data + padding + struct.pack(""">Q""", 8 * len(self.data ) ) return padded_data def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def UpperCamelCase_ ( self: Optional[Any], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = list(struct.unpack(""">16L""", a_ ) ) + [0] * 64 for i in range(16, 80 ): _snake_case : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = self.padding() _snake_case : str = self.split_blocks() for block in self.blocks: _snake_case : Any = self.expand_block(a_ ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = self.h for i in range(0, 80 ): if 0 <= i < 20: _snake_case : int = (b & c) | ((~b) & d) _snake_case : str = 0X5a827999 elif 20 <= i < 40: _snake_case : Optional[int] = b ^ c ^ d _snake_case : str = 0X6ed9eba1 elif 40 <= i < 60: _snake_case : List[Any] = (b & c) | (b & d) | (c & d) _snake_case : List[Any] = 0X8f1bbcdc elif 60 <= i < 80: _snake_case : List[Any] = b ^ c ^ d _snake_case : int = 0Xca62c1d6 _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = ( self.rotate(a_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(a_, 30 ), c, d, ) _snake_case : Union[str, Any] = ( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = B"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _snake_case : Union[str, Any] = parser.parse_args() _snake_case : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _snake_case : str = f.read() else: _snake_case : int = bytes(snake_case__ , """utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
64
1
'''simple docstring''' lowercase__ : Optional[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a__ ( lowercase : int ) -> List[str]: """simple docstring""" _UpperCamelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase__ : Union[str, Any] = [None] * 10_00_00_00 lowercase__ : int = True lowercase__ : List[str] = False def a__ ( lowercase : int ) -> Optional[int]: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCamelCase = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase = number_chain while number < 10000000: _UpperCamelCase = number_chain number *= 10 return number_chain def a__ ( lowercase : int = 10000000 ) -> Optional[Any]: """simple docstring""" for i in range(1, SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
367
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a__ ( lowercase : Tuple ) -> Dict: """simple docstring""" _UpperCamelCase = int(lowercase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Any=300 ) -> Any: """simple docstring""" return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def a__ ( lowercase : Optional[Any] ) -> Any: """simple docstring""" _UpperCamelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCamelCase = F"""{elt:.6f}""" if isinstance(lowercase, lowercase ) else str(lowercase ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowerCAmelCase : """simple docstring""" _snake_case : str = 5 _snake_case : Optional[int] = 0.2 def __init__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase__ : int = 300 , ) -> int: '''simple docstring''' _UpperCamelCase = total _UpperCamelCase = '''''' if prefix is None else prefix _UpperCamelCase = leave _UpperCamelCase = parent _UpperCamelCase = width _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : str = None ) -> Dict: '''simple docstring''' _UpperCamelCase = value if comment is not None: _UpperCamelCase = comment if self.last_value is None: _UpperCamelCase = _UpperCamelCase = time.time() _UpperCamelCase = _UpperCamelCase = value _UpperCamelCase = _UpperCamelCase = None _UpperCamelCase = self.warmup _UpperCamelCase = 1 self.update_bar(lowerCAmelCase__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCamelCase = time.time() _UpperCamelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCamelCase = self.elapsed_time / (value - self.start_value) else: _UpperCamelCase = None if value >= self.total: _UpperCamelCase = self.total _UpperCamelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCamelCase = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase__ ) _UpperCamelCase = value _UpperCamelCase = current_time if self.average_time_per_item is None: _UpperCamelCase = 1 else: _UpperCamelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase__ ) )) + str(lowerCAmelCase__ ) if self.elapsed_time is None: _UpperCamelCase = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _UpperCamelCase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _UpperCamelCase = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def snake_case__ ( self : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = None if column_names is None else [column_names] _UpperCamelCase = None def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' if self.inner_table is None: _UpperCamelCase = [list(values.keys() ), list(values.values() )] else: _UpperCamelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase__ ) _UpperCamelCase = columns self.inner_table.append([values[c] for c in columns] ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=300 ) -> int: '''simple docstring''' _UpperCamelCase = NotebookProgressBar(lowerCAmelCase__ , prefix=lowerCAmelCase__ , parent=self , width=lowerCAmelCase__ ) return self.child_bar def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = None self.display() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = False def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) _UpperCamelCase = NotebookTrainingTracker(state.max_steps , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _UpperCamelCase = False def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' if not has_length(lowerCAmelCase__ ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCamelCase = self.training_tracker.add_child(len(lowerCAmelCase__ ) ) else: _UpperCamelCase = NotebookProgressBar(len(lowerCAmelCase__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> Optional[int]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _UpperCamelCase = None def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCamelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCamelCase = state.global_step self.training_tracker.write_line(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if self.training_tracker is not None: _UpperCamelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _UpperCamelCase = log['''loss'''] break if self.first_column == "Epoch": _UpperCamelCase = int(state.epoch ) else: _UpperCamelCase = state.global_step _UpperCamelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): _UpperCamelCase = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop('''total_flos''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop('''epoch''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_runtime""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , lowerCAmelCase__ ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": _UpperCamelCase = v else: _UpperCamelCase = k.split('''_''' ) _UpperCamelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) _UpperCamelCase = v self.training_tracker.write_line(lowerCAmelCase__ ) self.training_tracker.remove_child() _UpperCamelCase = None # Evaluation takes a long time so we should force the next update. _UpperCamelCase = True def snake_case__ ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=lowerCAmelCase__ ) _UpperCamelCase = None
287
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : List[str] = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _A (__a , __a ) -> Tuple: """simple docstring""" try: with open(__a , '''rb''' ) as flax_state_f: SCREAMING_SNAKE_CASE_ : Optional[int] = from_bytes(__a , flax_state_f.read() ) except UnpicklingError as e: try: with open(__a ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(__a , __a ) def _A (__a , __a ) -> Tuple: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , __a ) ).values() if any(__a ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.tree_util.tree_map( lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __a ) SCREAMING_SNAKE_CASE_ : int = '''''' SCREAMING_SNAKE_CASE_ : str = flatten_dict(__a , sep='''.''' ) SCREAMING_SNAKE_CASE_ : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.transpose(__a , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ : Tuple = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ : Optional[int] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__a ): SCREAMING_SNAKE_CASE_ : List[str] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''.'''.join(__a ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(__a ) if not isinstance(__a , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(__a ) # remove from missing keys missing_keys.remove(__a ) else: # weight is not expected by PyTorch model unexpected_keys.append(__a ) pt_model.load_state_dict(__a ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ : int = list(__a ) if len(__a ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__a ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
91
1
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[str] = """Hello, World!""" SCREAMING_SNAKE_CASE__:Any = """en_XX""" def _lowerCamelCase( a , a , a ): __a = Path("data_bin" ) __a = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__snake_case ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__snake_case ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__snake_case ) __a = xmod.model.encoder.sentence_encoder __a = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __a = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __snake_case ) __a = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings __a = xmod_sent_encoder.embed_tokens.weight __a = xmod_sent_encoder.embed_positions.weight __a = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __a = xmod_sent_encoder.layernorm_embedding.weight __a = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __a = model.roberta.encoder.layer[i] __a = xmod_sent_encoder.layers[i] # self attention __a = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __a = xmod_layer.self_attn.q_proj.weight __a = xmod_layer.self_attn.q_proj.bias __a = xmod_layer.self_attn.k_proj.weight __a = xmod_layer.self_attn.k_proj.bias __a = xmod_layer.self_attn.v_proj.weight __a = xmod_layer.self_attn.v_proj.bias # self-attention output __a = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __a = xmod_layer.self_attn.out_proj.weight __a = xmod_layer.self_attn.out_proj.bias __a = xmod_layer.self_attn_layer_norm.weight __a = xmod_layer.self_attn_layer_norm.bias # intermediate __a = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __a = xmod_layer.fca.weight __a = xmod_layer.fca.bias # output __a = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __a = xmod_layer.fca.weight __a = xmod_layer.fca.bias __a = xmod_layer.final_layer_norm.weight __a = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __a = xmod_layer.adapter_layer_norm.weight __a = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __a = bert_output.adapter_modules[lang_code] __a = xmod_layer.adapter_modules[lang_code] __a = from_adapter.fca.weight __a = from_adapter.fca.bias __a = from_adapter.fca.weight __a = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __a = xmod_sent_encoder.layer_norm.weight __a = xmod_sent_encoder.layer_norm.bias if classification_head: __a = xmod.model.classification_heads["mnli"].dense.weight __a = xmod.model.classification_heads["mnli"].dense.bias __a = xmod.model.classification_heads["mnli"].out_proj.weight __a = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __a = xmod.model.encoder.lm_head.dense.weight __a = xmod.model.encoder.lm_head.dense.bias __a = xmod.model.encoder.lm_head.layer_norm.weight __a = xmod.model.encoder.lm_head.layer_norm.bias __a = xmod.model.encoder.lm_head.weight __a = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __a = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) __a = model(__snake_case )[0] if classification_head: __a = xmod.model.classification_heads["mnli"](xmod.extract_features(__snake_case ) ) else: __a = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __a = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __a = torch.allclose(__snake_case , __snake_case , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__:int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
356
"""simple docstring""" import math def _lowerCamelCase( a ): __a = [] __a = 2 __a = int(math.sqrt(a ) ) # Size of every segment __a = [True] * (end + 1) __a = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __a = False start += 1 prime += in_prime __a = end + 1 __a = min(2 * end , a ) while low <= n: __a = [True] * (high - low + 1) for each in in_prime: __a = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __a = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __a = high + 1 __a = min(high + end , a ) return prime print(sieve(10**6))
268
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): def __init__(self : List[str] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) -> None: """simple docstring""" warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
65
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' try: UpperCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase__ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase__ = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value UpperCamelCase__ = parse_flag_from_env('RUN_SLOW', default=False) UpperCamelCase__ = parse_flag_from_env('RUN_REMOTE', default=False) UpperCamelCase__ = parse_flag_from_env('RUN_LOCAL', default=True) UpperCamelCase__ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression UpperCamelCase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') UpperCamelCase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') UpperCamelCase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio UpperCamelCase__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam UpperCamelCase__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility UpperCamelCase__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows UpperCamelCase__ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' try: import faiss # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires faiss" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import regex # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires regex" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[str]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires elasticsearch" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: UpperCAmelCase__ = unittest.skip("test requires sqlalchemy" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[str]: '''simple docstring''' if not config.TORCH_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires PyTorch" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' if not config.TF_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires TensorFlow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if not config.JAX_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires JAX" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' if not config.PIL_AVAILABLE: UpperCAmelCase__ = unittest.skip("test requires Pillow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("test requires spacy" )(__A ) except OSError: return unittest.skip("test requires spacy model '{}'".format(__A ) )(__A ) else: return test_case return _require_spacy_model def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__A ) else: return test_case def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase__ = unittest.skip("test is slow" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase__ = unittest.skip("test is local" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase__ = unittest.skip("test is packaged" )(__A ) return test_case def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase__ = unittest.skip("test requires remote" )(__A ) return test_case def lowerCAmelCase_ ( *__A ) -> Optional[int]: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("test" ): for decorator in decorators: UpperCAmelCase__ = decorator(__A ) setattr(cls, __A, __A ) return cls return decorate class A ( UpperCAmelCase_ ): pass class A ( UpperCAmelCase_ ): __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 1 __UpperCAmelCase : int = 2 @contextmanager def lowerCAmelCase_ ( __A=OfflineSimulationMode.CONNECTION_FAILS, __A=1e-16 ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = requests.Session().request def timeout_request(__A, __A, __A, **__A ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase__ = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) UpperCAmelCase__ = timeout try: return online_request(__A, __A, **__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase__ = url UpperCAmelCase__ = e.args[0] UpperCAmelCase__ = (max_retry_error.args[0].replace("10.255.255.1", f"""OfflineMock[{url}]""" ),) UpperCAmelCase__ = (max_retry_error,) raise def raise_connection_error(__A, __A, **__A ): raise requests.ConnectionError("Offline mode is enabled.", request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send", __A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request", __A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE", __A ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def lowerCAmelCase_ ( *__A, **__A ) -> str: '''simple docstring''' UpperCAmelCase__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A, **__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' import gc gc.collect() UpperCAmelCase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' import gc gc.collect() UpperCAmelCase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' return deepcopy(__A ).integers(0, 100, 10 ).tolist() == deepcopy(__A ).integers(0, 100, 10 ).tolist() def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A, *__A, **__A ): try: return func(*__A, **__A ) except HTTPError as err: if str(__A ).startswith("500" ) or str(__A ).startswith("502" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper, __A ) class A : def __init__(self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = returncode UpperCAmelCase__ = stdout UpperCAmelCase__ = stderr async def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' while True: UpperCAmelCase__ = await stream.readline() if line: callback(__A ) else: break async def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=None, __A=False, __A=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: ", " ".join(__A ) ) UpperCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=__A, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__A, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase__ = [] UpperCAmelCase__ = [] def tee(__A, __A, __A, __A="" ): UpperCAmelCase__ = line.decode("utf-8" ).rstrip() sink.append(__A ) if not quiet: print(__A, __A, file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda __A : tee(__A, __A, sys.stdout, label="stdout:" ) ), _read_stream(p.stderr, lambda __A : tee(__A, __A, sys.stderr, label="stderr:" ) ), ], timeout=__A, ) return _RunOutput(await p.wait(), __A, __A ) def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=180, __A=False, __A=True ) -> _RunOutput: '''simple docstring''' UpperCAmelCase__ = asyncio.get_event_loop() UpperCAmelCase__ = loop.run_until_complete( _stream_subprocess(__A, env=__A, stdin=__A, timeout=__A, quiet=__A, echo=__A ) ) UpperCAmelCase__ = " ".join(__A ) if result.returncode > 0: UpperCAmelCase__ = "\n".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = os.environ.get("PYTEST_XDIST_WORKER", "gw0" ) UpperCAmelCase__ = re.sub(r"^gw", "", __A, 0, re.M ) return int(__A ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = 29_500 UpperCAmelCase__ = pytest_xdist_worker_id() return port + uniq_delta
65
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva __lowerCamelCase : List[Any] = "" __lowerCamelCase : str = "" __lowerCamelCase : Optional[int] = "" __lowerCamelCase : List[Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ = get_dataset(a__ , a__ ) print("""Processing...""" ) lowercase_ , lowercase_ , lowercase_ = update_image_and_anno(a__ , a__ , a__ ) for index, image in enumerate(a__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ = random_chars(32 ) lowercase_ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase_ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , a__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(a__ )} with {file_name}''' ) lowercase_ = [] for anno in new_annos[index]: lowercase_ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(a__ ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = [] lowercase_ = [] for label_file in glob.glob(os.path.join(a__ , """*.txt""" ) ): lowercase_ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(a__ ) as in_file: lowercase_ = in_file.readlines() lowercase_ = os.path.join(a__ , F'''{label_name}.jpg''' ) lowercase_ = [] for obj_list in obj_lists: lowercase_ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a__ ) labels.append(a__ ) return img_paths, labels def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 ) -> int: '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = [] for idx in range(len(a__ ) ): lowercase_ = [] lowercase_ = img_list[idx] path_list.append(a__ ) lowercase_ = anno_list[idx] lowercase_ = cva.imread(a__ ) if flip_type == 1: lowercase_ = cva.flip(a__ , a__ ) for bbox in img_annos: lowercase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowercase_ = cva.flip(a__ , a__ ) for bbox in img_annos: lowercase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a__ ) new_imgs_list.append(a__ ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 32 ) -> Dict: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowercase_ = ascii_lowercase + digits return "".join(random.choice(a__ ) for _ in range(a__ ) ) if __name__ == "__main__": main() print("DONE ✅")
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , _a=1_000 , ): lowercase : Optional[Any] = parent lowercase : Dict = batch_size lowercase : str = seq_length lowercase : List[Any] = is_training lowercase : Dict = use_input_mask lowercase : str = use_token_type_ids lowercase : int = use_labels lowercase : Union[str, Any] = vocab_size lowercase : Dict = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_act lowercase : int = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : Dict = num_labels lowercase : Optional[int] = num_choices lowercase : List[Any] = scope lowercase : Dict = range_bbox def __magic_name__ ( self ): lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : Any = bbox[i, j, 3] lowercase : Optional[Any] = bbox[i, j, 1] lowercase : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Dict = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : List[Any] = t lowercase : Any = tf.convert_to_tensor(_a ) lowercase : Dict = None if self.use_input_mask: lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = None lowercase : List[Any] = None lowercase : Tuple = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : str = TFLayoutLMModel(config=_a ) lowercase : Optional[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) lowercase : Dict = model(_a , _a , token_type_ids=_a ) lowercase : List[str] = model(_a , _a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = TFLayoutLMForMaskedLM(config=_a ) lowercase : Union[str, Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : Dict = self.num_labels lowercase : Any = TFLayoutLMForSequenceClassification(config=_a ) lowercase : List[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = self.num_labels lowercase : Dict = TFLayoutLMForTokenClassification(config=_a ) lowercase : Tuple = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = TFLayoutLMForQuestionAnswering(config=_a ) lowercase : Any = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : int = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = 10 def __magic_name__ ( self ): lowercase : List[Any] = TFLayoutLMModelTester(self ) lowercase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __magic_name__ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] = TFLayoutLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __magic_name__ ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowercase : str = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowercase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowercase : Optional[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Dict = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the sequence output on [0, :3, :3] lowercase : Any = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1E-3 ) ) # test the pooled output on [1, :3] lowercase : Optional[Any] = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _a , atol=1E-3 ) ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized sequence classification head lowercase : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowercase : Union[str, Any] = outputs.loss lowercase : Union[str, Any] = (2,) self.assertEqual(loss.shape , _a ) # test the shape of the logits lowercase : List[str] = outputs.logits lowercase : Optional[Any] = (2, 2) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Any = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) # test the shape of the logits lowercase : int = outputs.logits lowercase : Optional[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the shape of the logits lowercase : Any = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _a ) self.assertEqual(outputs.end_logits.shape , _a )
202
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Tuple: lowercase : Union[str, Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None ) -> Tuple: if conf_path is None: lowercase : List[Any] = "./model_checkpoints/vqgan_only.yaml" lowercase : Tuple = load_config(__snake_case , display=__snake_case ) lowercase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowercase : List[str] = "./model_checkpoints/vqgan_only.pt" lowercase : Optional[int] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowercase : str = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def __magic_name__ ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> int: lowercase , lowercase , lowercase : List[Any] = model.encode(__snake_case ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowercase : str = model.decode(__snake_case ) return xrec def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[int]=False ) -> int: lowercase , lowercase : Union[str, Any] = string.rsplit("." , 1 ) if reload: lowercase : Any = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def __magic_name__ ( __snake_case : str ) -> List[str]: if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __magic_name__ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any]=True , __snake_case : Dict=True ) -> str: lowercase : Optional[int] = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: # load the specified checkpoint if ckpt: lowercase : Dict = torch.load(__snake_case , map_location="cpu" ) lowercase : List[Any] = pl_sd["global_step"] print(f"""loaded model from global step {global_step}.""" ) else: lowercase : int = {"state_dict": None} lowercase : Optional[Any] = None lowercase : List[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
202
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __A = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } __A = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off __A = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCamelCase__ ( snake_case_ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = ['''input_ids''', '''attention_mask'''] lowerCamelCase = NllbTokenizer lowerCamelCase = [] lowerCamelCase = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase =legacy_behaviour super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =False if not self.vocab_file else True _lowerCAmelCase =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase ={ lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase =src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase =self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowerCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase =src_lang _lowerCAmelCase =self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase ) _lowerCAmelCase =tgt_lang_id return inputs def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "eng_Latn" , __UpperCAmelCase = None , __UpperCAmelCase = "fra_Latn" , **__UpperCAmelCase , ) -> BatchEncoding: _lowerCAmelCase =src_lang _lowerCAmelCase =tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCAmelCase ( self ) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase ) if self.legacy_behaviour: _lowerCAmelCase =[] _lowerCAmelCase =[self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase =[self.cur_lang_code] _lowerCAmelCase =[self.eos_token_id] _lowerCAmelCase =self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase =self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase ) if self.legacy_behaviour: _lowerCAmelCase =[] _lowerCAmelCase =[self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase =[self.cur_lang_code] _lowerCAmelCase =[self.eos_token_id] _lowerCAmelCase =self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase =self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = DiTPipeline __lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __lowerCamelCase = False def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_snake_case , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_snake_case , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = pipe(**_snake_case ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_snake_case , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(_snake_case ) _lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_snake_case , _snake_case ): _lowerCAmelCase = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(_snake_case ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_snake_case , _snake_case ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
82
def _UpperCAmelCase ( snake_case = 10_00 ): """simple docstring""" _lowerCAmelCase = -1 _lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) _lowerCAmelCase = n - a - b if c * c == (a * a + b * b): _lowerCAmelCase = a * b * c if candidate >= product: _lowerCAmelCase = candidate return product if __name__ == "__main__": print(f"{solution() = }")
82
1
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
150
"""simple docstring""" from ...configuration_utils import PretrainedConfig class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = """bert-generation""" def __init__( self , lowerCAmelCase=5_03_58 , lowerCAmelCase=10_24 , lowerCAmelCase=24 , lowerCAmelCase=16 , lowerCAmelCase=40_96 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache
150
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __A : Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __A : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __A : Union[str, Any] = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __A : Dict = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __A : Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __A : Dict = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
352
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A : Optional[Any] = logging.getLogger() def __UpperCamelCase ( _A : Path , _A : list ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ="""\n""".join(_A ) Path(_A ).open("""w""" ).writelines(_A ) __A : List[str] = 'patrickvonplaten/t5-tiny-random' __A : List[Any] = 'sshleifer/bart-tiny-random' __A : List[str] = 'sshleifer/tiny-mbart' __A : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCamelCase_ =input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCamelCase_ =[""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): run_generate() assert Path(_SCREAMING_SNAKE_CASE ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self )-> List[Any]: self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int: self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCamelCase_ =input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCamelCase_ ={ """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) lowerCamelCase_ =str(tmp_dir / """scores.json""" ) lowerCamelCase_ =str(tmp_dir / """val.target""" ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""en"""] ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""de"""] ) lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {str(_SCREAMING_SNAKE_CASE )}\n {str(_SCREAMING_SNAKE_CASE )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): with CaptureStdout() as cs: run_search() lowerCamelCase_ =[""" num_beams | length_penalty""", model, """Best score args"""] lowerCamelCase_ =["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(_SCREAMING_SNAKE_CASE ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_SCREAMING_SNAKE_CASE ).exists() os.remove(Path(_SCREAMING_SNAKE_CASE ) )
49
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" return EnvironmentCommand() class a__ ( A__ ): @staticmethod def __UpperCamelCase ( _A : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = parser.add_parser("env" ) download_parser.set_defaults(func=_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE_ : Optional[int] = "not installed" SCREAMING_SNAKE_CASE_ : Optional[int] = "NA" if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ : int = torch.__version__ SCREAMING_SNAKE_CASE_ : int = torch.cuda.is_available() SCREAMING_SNAKE_CASE_ : List[Any] = "not installed" if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE_ : Optional[int] = transformers.__version__ SCREAMING_SNAKE_CASE_ : str = "not installed" if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE_ : List[str] = "not installed" if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE_ : int = xformers.__version__ SCREAMING_SNAKE_CASE_ : str = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_A ) ) return info @staticmethod def __UpperCamelCase ( _A : int ): """simple docstring""" return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
18
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ : Optional[Any] = str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ : Any = str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCamelCase__ : List[str] = binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number >= 0: # Get binary representation of positive number UpperCamelCase__ : int = "0" + str(bin(__lowerCAmelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase__ : Union[str, Any] = len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCamelCase__ : List[str] = bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCamelCase__ : Dict = ( "1" + "0" * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
370
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Any = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Optional[int] = i + 1 else: UpperCamelCase__ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
196
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowercase : Dict = '.' if __name__ == "__main__": __lowercase : Union[str, Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') __lowercase : Any = [] __lowercase : Tuple = [] with open(doctest_file_path) as fp: for line in fp: __lowercase : Dict = line.strip() __lowercase : List[str] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowercase : List[Any] = '\n'.join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
27
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = inspect.getfile(accelerate.test_utils ) __a : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a : Union[str, Any] = test_metrics @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCAmelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCAmelCase ( self ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
27
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> list: if any(not isinstance(_lowercase , _lowercase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowercase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
lowercase__ : Dict = '''\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n''' lowercase__ : Optional[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase__ : Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
338
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
from __future__ import annotations import math def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list[int]: """simple docstring""" UpperCamelCase_ = str(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = [n] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> bool: """simple docstring""" if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ): return False return True def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_1 )-> list[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = 1_3 while len(SCREAMING_SNAKE_CASE_ ) != count: if validate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = list_truncated_nums(SCREAMING_SNAKE_CASE_ ) if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE_ ) num += 2 return list_truncated_primes def lowerCAmelCase( )-> int: """simple docstring""" return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
358
from ...processing_utils import ProcessorMixin class __magic_name__ ( snake_case ): UpperCamelCase_ :str = """SpeechT5FeatureExtractor""" UpperCamelCase_ :Optional[int] = """SpeechT5Tokenizer""" def __init__( self , _lowercase , _lowercase )-> Union[str, Any]: super().__init__(_lowercase , _lowercase ) def __call__( self , *_lowercase , **_lowercase )-> Tuple: UpperCamelCase_ = kwargs.pop("audio" , _lowercase ) UpperCamelCase_ = kwargs.pop("text" , _lowercase ) UpperCamelCase_ = kwargs.pop("text_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("audio_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("sampling_rate" , _lowercase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: UpperCamelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) elif text is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if audio_target is not None: UpperCamelCase_ = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_values"] elif text_target is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Optional[int]: UpperCamelCase_ = kwargs.pop("input_values" , _lowercase ) UpperCamelCase_ = kwargs.pop("input_ids" , _lowercase ) UpperCamelCase_ = kwargs.pop("labels" , _lowercase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) elif input_ids is not None: UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]): UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = self.feature_extractor.feature_size UpperCamelCase_ = self.feature_extractor.num_mel_bins UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) UpperCamelCase_ = feature_size_hack UpperCamelCase_ = targets["input_values"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.decode(*_lowercase , **_lowercase )
60
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowercase_ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
254
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : Any = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = """a""" * 1000 + """.lock""" __UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
254
1
"""simple docstring""" import unittest from transformers import DonutProcessor A = '''naver-clova-ix/donut-base''' class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : str = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __a : List[str] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __a : List[str] = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
188
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( a_ :List[Any]=None , a_ :Tuple=None) -> List[Any]: return field(default_factory=lambda: default , metadata=a_) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''The csv file to plot.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) __lowerCAmelCase = list_field( default=_UpperCamelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def __A ( a_ :Optional[Any]) -> Any: try: int(a_) return True except ValueError: return False def __A ( a_ :List[Any]) -> Any: try: float(a_) return True except ValueError: return False class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Dict = args __a : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __a : int = csv.DictReader(_UpperCAmelCase ) for row in reader: __a : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __a : Optional[int] = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __a : Optional[Any] = float(row['''result'''] ) def _lowerCamelCase ( self ): __a , __a : Optional[int] = plt.subplots() __a : str = '''Time usage''' if self.args.is_time else '''Memory usage''' __a : str = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __a : str = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __a : Dict = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __a : Dict = self.result_dict[model_name]['''result'''] ((__a) , (__a)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __a : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __a : Optional[int] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: __a : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__a) , (__a)) : Union[str, Any] = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __a : Any = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' ) title_str += f""" {label_model_name} vs.""" __a : Optional[Any] = title_str[:-4] __a : Optional[int] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( ) -> List[str]: __a : List[str] = HfArgumentParser(a_) __a : Optional[int] = parser.parse_args_into_dataclasses()[0] __a : Tuple = Plot(args=a_) plot.plot() if __name__ == "__main__": main()
188
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A : List[Any] = datasets.utils.logging.get_logger(__name__) __A : List[str] = ["names", "prefix"] __A : Union[str, Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __A : int = ["encoding_errors", "on_bad_lines"] __A : List[Any] = ["date_format"] @dataclass class _a ( datasets.BuilderConfig): """simple docstring""" UpperCamelCase__ = "," UpperCamelCase__ = None UpperCamelCase__ = "infer" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = "." UpperCamelCase__ = None UpperCamelCase__ = '"' UpperCamelCase__ = 0 UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 0 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = 10_000 UpperCamelCase__ = None UpperCamelCase__ = "strict" UpperCamelCase__ = "error" UpperCamelCase__ = None def lowercase__ ( self : Optional[int] )->Dict: if self.delimiter is not None: _UpperCAmelCase = self.delimiter if self.column_names is not None: _UpperCAmelCase = self.column_names @property def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _a ( datasets.ArrowBasedBuilder): """simple docstring""" UpperCamelCase__ = CsvConfig def lowercase__ ( self : str )->Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] )->Optional[Any]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): _UpperCAmelCase = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={'''files''': files} ) ) return splits def lowercase__ ( self : Tuple , __UpperCamelCase : pa.Table )->pa.Table: if self.config.features is not None: _UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(lowerCamelCase__ , lowerCamelCase__ ) return pa_table def lowercase__ ( self : Any , __UpperCamelCase : List[Any] )->Dict: _UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): _UpperCAmelCase = pd.read_csv(lowerCamelCase__ , iterator=lowerCamelCase__ , dtype=lowerCamelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase__ ): _UpperCAmelCase = pa.Table.from_pandas(lowerCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}' ) raise
260
import math import unittest def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,"""Zero doesn't have any positive factors, primes must have exactly two.""" ,) self.assertFalse( is_prime(1 ) ,"""One only has 1 positive factor, primes must have exactly two.""" ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
296
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __A : str = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , **_SCREAMING_SNAKE_CASE )-> List[str]: super().__init__(**_SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[Any]: return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ ={} if "candidate_labels" in kwargs: lowerCamelCase_ =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCamelCase_ =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This is a photo of {}." )-> Union[str, Any]: lowerCamelCase_ =load_image(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.image_processor(images=[image] , return_tensors=self.framework ) lowerCamelCase_ =candidate_labels lowerCamelCase_ =[hypothesis_template.format(_SCREAMING_SNAKE_CASE ) for x in candidate_labels] lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[text_inputs] return inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =model_inputs.pop("""candidate_labels""" ) lowerCamelCase_ =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =text_inputs[0] else: # Batching case. lowerCamelCase_ =text_inputs[0][0] lowerCamelCase_ =self.model(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =model_outputs.pop("""candidate_labels""" ) lowerCamelCase_ =model_outputs["""logits"""][0] if self.framework == "pt": lowerCamelCase_ =logits.softmax(dim=-1 ).squeeze(-1 ) lowerCamelCase_ =probs.tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =[scores] elif self.framework == "tf": lowerCamelCase_ =stable_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) lowerCamelCase_ =probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowerCamelCase_ =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , key=lambda _SCREAMING_SNAKE_CASE : -x[0] ) ] return result
49
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case_ : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = state_dict.pop(__A ) _UpperCamelCase : Tuple = val def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCamelCase : List[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _UpperCamelCase : str = value else: _UpperCamelCase : int = value return new_state_dict def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Any = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase : Optional[int] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCamelCase : int = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : int = in_proj_weight[:2_5_6, :] _UpperCamelCase : int = in_proj_bias[:2_5_6] _UpperCamelCase : Optional[int] = in_proj_weight[2_5_6:5_1_2, :] _UpperCamelCase : str = in_proj_bias[2_5_6:5_1_2] _UpperCamelCase : List[str] = in_proj_weight[-2_5_6:, :] _UpperCamelCase : Tuple = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCamelCase : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Optional[Any] = in_proj_weight[:2_5_6, :] _UpperCamelCase : List[Any] = in_proj_bias[:2_5_6] _UpperCamelCase : Union[str, Any] = in_proj_weight[2_5_6:5_1_2, :] _UpperCamelCase : str = in_proj_bias[2_5_6:5_1_2] _UpperCamelCase : Optional[Any] = in_proj_weight[-2_5_6:, :] _UpperCamelCase : int = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _UpperCamelCase : List[Any] = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _UpperCamelCase : str = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCamelCase : Union[str, Any] = in_proj_weight_cross_attn[:2_5_6, :] _UpperCamelCase : Optional[Any] = in_proj_bias_cross_attn[:2_5_6] _UpperCamelCase : Tuple = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _UpperCamelCase : Any = in_proj_bias_cross_attn[2_5_6:5_1_2] _UpperCamelCase : List[Any] = in_proj_weight_cross_attn[-2_5_6:, :] _UpperCamelCase : Optional[int] = in_proj_bias_cross_attn[-2_5_6:] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Optional[Any] = image.size _UpperCamelCase : List[Any] = max(__A , __A ) _UpperCamelCase : Optional[Any] = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 _UpperCamelCase : str = target_max_size / current_max_size _UpperCamelCase : Optional[int] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = F.to_tensor(__A ) _UpperCamelCase : Optional[int] = F.normalize(__A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): logger.info('Converting model...' ) # load original state dict _UpperCamelCase : List[str] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(__A , __A , __A ) _UpperCamelCase : Optional[Any] = rename_backbone_keys(__A ) # query, key and value matrices need special treatment read_in_q_k_v(__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase : Any = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _UpperCamelCase : Optional[int] = state_dict.pop(__A ) _UpperCamelCase : List[Any] = val # create HuggingFace model and load state dict _UpperCamelCase : Any = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCamelCase : Tuple = 1_5 _UpperCamelCase : int = 2 _UpperCamelCase : Optional[Any] = {0: 'table', 1: 'table rotated'} _UpperCamelCase : Tuple = idalabel _UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} else: _UpperCamelCase : str = 1_2_5 _UpperCamelCase : int = 6 _UpperCamelCase : Tuple = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } _UpperCamelCase : List[str] = idalabel _UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()} _UpperCamelCase : Any = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) _UpperCamelCase : Dict = TableTransformerForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion _UpperCamelCase : Optional[Any] = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' _UpperCamelCase : List[str] = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=__A ) _UpperCamelCase : Union[str, Any] = Image.open(__A ).convert('RGB' ) _UpperCamelCase : Tuple = normalize(resize(__A , __A ) ).unsqueeze(0 ) _UpperCamelCase : Dict = model(__A ) if "detection" in checkpoint_url: _UpperCamelCase : str = (1, 1_5, 3) _UpperCamelCase : str = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) _UpperCamelCase : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: _UpperCamelCase : int = (1, 1_2_5, 7) _UpperCamelCase : Any = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) _UpperCamelCase : int = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) _UpperCamelCase : List[str] = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(__A ) image_processor.push_to_hub(__A ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) snake_case_ : Optional[Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
83
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np a__ : Optional[int] = re.compile(R'\b(a|an|the)\b', re.UNICODE) a__ : int = None def _UpperCamelCase ( ) -> Dict: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__A , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__A , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = bool(qa["answers"]["text"] ) return qid_to_has_ans def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' def remove_articles(__A ): return ARTICLES_REGEX.sub(" " , __A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): UpperCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if not s: return [] return normalize_answer(__A ).split() def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__A ) == normalize_answer(__A ) ) def _UpperCamelCase ( __A , __A ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = get_tokens(__A ) UpperCamelCase__ = get_tokens(__A ) UpperCamelCase__ = collections.Counter(__A ) & collections.Counter(__A ) UpperCamelCase__ = sum(common.values() ) if len(__A ) == 0 or len(__A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCamelCase__ = 1.0 * num_same / len(__A ) UpperCamelCase__ = 1.0 * num_same / len(__A ) UpperCamelCase__ = (2 * precision * recall) / (precision + recall) return fa def _UpperCamelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = qa["id"] UpperCamelCase__ = [t for t in qa["answers"]["text"] if normalize_answer(__A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCamelCase__ = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCamelCase__ = preds[qid] # Take max over all gold answers UpperCamelCase__ = max(compute_exact(__A , __A ) for a in gold_answers ) UpperCamelCase__ = max(compute_fa(__A , __A ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCamelCase ( __A , __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = {} for qid, s in scores.items(): UpperCamelCase__ = na_probs[qid] > na_prob_thresh if pred_na: UpperCamelCase__ = float(not qid_to_has_ans[qid] ) else: UpperCamelCase__ = s return new_scores def _UpperCamelCase ( __A , __A , __A=None ) -> List[Any]: '''simple docstring''' if not qid_list: UpperCamelCase__ = len(__A ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCamelCase__ = len(__A ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def _UpperCamelCase ( __A , __A , __A ) -> Optional[int]: '''simple docstring''' for k in new_eval: UpperCamelCase__ = new_eval[k] def _UpperCamelCase ( __A , __A , __A , __A ) -> Optional[int]: '''simple docstring''' plt.step(__A , __A , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__A , __A , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__A ) plt.savefig(__A ) plt.clf() def _UpperCamelCase ( __A , __A , __A , __A , __A=None , __A=None ) -> Any: '''simple docstring''' UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] ) UpperCamelCase__ = 0.0 UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.0 UpperCamelCase__ = [1.0] UpperCamelCase__ = [0.0] UpperCamelCase__ = 0.0 for i, qid in enumerate(__A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCamelCase__ = true_pos / float(i + 1 ) UpperCamelCase__ = true_pos / float(__A ) if i == len(__A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__A ) recalls.append(__A ) if out_image: plot_pr_curve(__A , __A , __A , __A ) return {"ap": 100.0 * avg_prec} def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> List[str]: '''simple docstring''' if out_image_dir and not os.path.exists(__A ): os.makedirs(__A ) UpperCamelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCamelCase__ = {k: float(__A ) for k, v in qid_to_has_ans.items()} UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__A , __A , "pr_exact" ) merge_eval(__A , __A , "pr_f1" ) merge_eval(__A , __A , "pr_oracle" ) def _UpperCamelCase ( __A , __A , __A , __A ) -> List[str]: '''simple docstring''' if not qid_list: return UpperCamelCase__ = [na_probs[k] for k in qid_list] UpperCamelCase__ = np.ones_like(__A ) / float(len(__A ) ) plt.hist(__A , weights=__A , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__A , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCamelCase__ = num_no_ans UpperCamelCase__ = cur_score UpperCamelCase__ = 0.0 UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] ) for i, qid in enumerate(__A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCamelCase__ = scores[qid] else: if preds[qid]: UpperCamelCase__ = -1 else: UpperCamelCase__ = 0 cur_score += diff if cur_score > best_score: UpperCamelCase__ = cur_score UpperCamelCase__ = na_probs[qid] return 100.0 * best_score / len(__A ), best_thresh def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> Dict: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A ) UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A ) UpperCamelCase__ = best_exact UpperCamelCase__ = exact_thresh UpperCamelCase__ = best_fa UpperCamelCase__ = fa_thresh def _UpperCamelCase ( ) -> Any: '''simple docstring''' with open(OPTS.data_file ) as f: UpperCamelCase__ = json.load(__A ) UpperCamelCase__ = dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCamelCase__ = json.load(__A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCamelCase__ = json.load(__A ) else: UpperCamelCase__ = {k: 0.0 for k in preds} UpperCamelCase__ = make_qid_to_has_ans(__A ) # maps qid to True/False UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if v] UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if not v] UpperCamelCase__ , UpperCamelCase__ = get_raw_scores(__A , __A ) UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) UpperCamelCase__ = make_eval_dict(__A , __A ) if has_ans_qids: UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , "HasAns" ) if no_ans_qids: UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__A , __A , __A , __A , __A , __A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__A , __A , __A , __A , __A , OPTS.out_image_dir ) histogram_na_prob(__A , __A , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__A , __A , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__A , __A ) else: print(json.dumps(__A , indent=2 ) ) if __name__ == "__main__": a__ : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
80
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase__ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , snake_case__ = " " ): """simple docstring""" lowerCAmelCase : List[Any] = sentence_delimiter def lowercase__ ( self , snake_case__ ): """simple docstring""" return list(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] for sent_idx, sentence in enumerate(snake_case__ ): chars.extend(self.process_string(snake_case__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"] lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
133
0
import cva import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ ) -> Optional[Any]: if k in (0.04, 0.06): __UpperCamelCase =k __UpperCamelCase =window_size else: raise ValueError('invalid k value' ) def __str__( self ) -> str: return str(self.k ) def _a ( self , A_ ) -> tuple[cva.Mat, list[list[int]]]: __UpperCamelCase =cva.imread(A_ , 0 ) __UpperCamelCase , __UpperCamelCase =img.shape __UpperCamelCase =[] __UpperCamelCase =img.copy() __UpperCamelCase =cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) __UpperCamelCase , __UpperCamelCase =np.gradient(A_ ) __UpperCamelCase =dx**2 __UpperCamelCase =dy**2 __UpperCamelCase =dx * dy __UpperCamelCase =0.04 __UpperCamelCase =self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): __UpperCamelCase =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase =(wxx * wyy) - (wxy**2) __UpperCamelCase =wxx + wyy __UpperCamelCase =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _A = HarrisCorner(0.04, 3) _A , _A = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
62
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _A = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =size if size is not None else {'shortest_edge': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) __UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' ) __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =resample __UpperCamelCase =do_center_crop __UpperCamelCase =crop_size __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_normalize __UpperCamelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase =image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase =do_convert_rgb def _a ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase =get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =size if size is not None else self.size __UpperCamelCase =get_size_dict(A_ , param_name='size' , default_to_square=A_ ) __UpperCamelCase =resample if resample is not None else self.resample __UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase =crop_size if crop_size is not None else self.crop_size __UpperCamelCase =get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ ) __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase =image_mean if image_mean is not None else self.image_mean __UpperCamelCase =image_std if image_std is not None else self.image_std __UpperCamelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase =[convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase =[self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase =[self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __UpperCamelCase =[self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
62
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig""" # Base docstring _SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat""" _SCREAMING_SNAKE_CASE : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ ) UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ): UpperCamelCase__ : List[Any] =self.convolution(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ ) UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Any =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any =config.num_channels def _lowerCAmelCase ( self : str , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Dict =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ ) return embedding class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ): super().__init__() UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Dict =self.convolution(lowercase_ ) UpperCamelCase__ : Dict =self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : List[str] =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) UpperCamelCase__ : Any =ACTaFN[activation] def _lowerCAmelCase ( self : str , lowercase_ : Tuple ): UpperCamelCase__ : Any =hidden_state UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ ) UpperCamelCase__ : str =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : str =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] =out_channels // reduction UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : int =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) UpperCamelCase__ : List[Any] =ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): UpperCamelCase__ : Dict =hidden_state UpperCamelCase__ : str =self.layer(lowercase_ ) UpperCamelCase__ : Tuple =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ): super().__init__() UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : Union[str, Any] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =input for layer in self.layers: UpperCamelCase__ : Tuple =layer(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): UpperCamelCase__ : int =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,) UpperCamelCase__ : List[str] =stage_module(lowercase_ ) if output_hidden_states: UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = 'resnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =value _SCREAMING_SNAKE_CASE : int = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Dict =config UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : str =ResNetEncoder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : int =encoder_outputs[0] UpperCamelCase__ : List[Any] =self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : Union[str, Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Any =config.num_labels UpperCamelCase__ : Dict =ResNetModel(lowercase_ ) # classification head UpperCamelCase__ : Any =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ): UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ ) UpperCamelCase__ : int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Dict ='''single_label_classification''' else: UpperCamelCase__ : str ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Union[str, Any] =MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] =CrossEntropyLoss() UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss() UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ ) if not return_dict: UpperCamelCase__ : Tuple =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, ) class __a ( snake_case__, snake_case__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[Any] ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any =self.embedder(lowercase_ ) UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Optional[int] =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : int =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
157
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = DebertaTokenizer lowerCAmelCase__ = True lowerCAmelCase__ = DebertaTokenizerFast def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] __SCREAMING_SNAKE_CASE = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """[UNK]"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def UpperCAmelCase__ ( self : str , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = """lower newer""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer("""Hello""" , """World""" ) __SCREAMING_SNAKE_CASE = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , _lowerCAmelCase ) @slow def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode( """sequence builders""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] __SCREAMING_SNAKE_CASE = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = [tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) for seq in encoding["""input_ids"""]] # fmt: off __SCREAMING_SNAKE_CASE = { """input_ids""": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __SCREAMING_SNAKE_CASE = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , _lowerCAmelCase ) for expected, decoded in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
267
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE :Union[str, Any] = namedtuple('''covid_data''', '''cases deaths recovered''') def _lowerCAmelCase ( lowerCAmelCase_ :str = "https://www.worldometers.info/coronavirus/" )->covid_data: '''simple docstring''' snake_case_ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase_ ).content ).xpath(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE :str = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
159
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _a = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _a = {'facebook/blenderbot_small-90M': 5_12} def _A ( UpperCamelCase_ : Optional[int]) -> Optional[int]: '''simple docstring''' __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char)) __lowercase = char __lowercase = set(UpperCamelCase_) return pairs class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str="__start__", UpperCAmelCase__ : str="__end__", UpperCAmelCase__ : Optional[Any]="__unk__", UpperCAmelCase__ : Dict="__null__", **UpperCAmelCase__ : Tuple, ): super().__init__(unk_token=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, **UpperCAmelCase__ ) with open(UpperCAmelCase__, encoding="utf-8" ) as vocab_handle: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase__, encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in merges] __lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) ) __lowercase = {} @property def _lowercase ( self : Any ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder, **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ): if token in self.cache: return self.cache[token] __lowercase = re.sub("([.,!?()])", r" \1", UpperCAmelCase__ ) __lowercase = re.sub("(')", r" \1 ", UpperCAmelCase__ ) __lowercase = re.sub(r"\s{2,}", " ", UpperCAmelCase__ ) if "\n" in token: __lowercase = token.replace("\n", " __newln__" ) __lowercase = token.split(" " ) __lowercase = [] for token in tokens: if not len(UpperCAmelCase__ ): continue __lowercase = token.lower() __lowercase = tuple(UpperCAmelCase__ ) __lowercase = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __lowercase = get_pairs(UpperCAmelCase__ ) if not pairs: words.append(UpperCAmelCase__ ) continue while True: __lowercase = min(UpperCAmelCase__, key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__, float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase ,__lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(UpperCAmelCase__ ): try: __lowercase = word.index(UpperCAmelCase__, UpperCAmelCase__ ) new_word.extend(word[i:j] ) __lowercase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(UpperCAmelCase__ ) __lowercase = new_word if len(UpperCAmelCase__ ) == 1: break else: __lowercase = get_pairs(UpperCAmelCase__ ) __lowercase = "@@ ".join(UpperCAmelCase__ ) __lowercase = word[:-4] __lowercase = word words.append(UpperCAmelCase__ ) return " ".join(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ): __lowercase = [] __lowercase = re.findall(r"\S+\n?", UpperCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase__ ).split(" " ) ) ) return split_tokens def _lowercase ( self : str, UpperCAmelCase__ : str ): __lowercase = token.lower() return self.encoder.get(UpperCAmelCase__, self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : int ): return self.decoder.get(UpperCAmelCase__, self.unk_token ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = " ".join(UpperCAmelCase__ ).replace("@@ ", "" ).strip() return out_string def _lowercase ( self : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase__, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=UpperCAmelCase__, ensure_ascii=UpperCAmelCase__ ) + "\n" ) __lowercase = 0 with open(UpperCAmelCase__, "w", encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda UpperCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(UpperCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file
358
"""simple docstring""" _a = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
144
0
def _a ( UpperCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" assert ( isinstance(A__ , A__ ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 lowerCAmelCase__ , lowerCAmelCase__ = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase__ , lowerCAmelCase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
340
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
104
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowerCamelCase_ : List[Any] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Tuple = 42 __UpperCamelCase : str = 42 __UpperCamelCase : Optional[Any] = 42 @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[int] = 42 __UpperCamelCase : Dict = 42 __UpperCamelCase : Tuple = None __UpperCamelCase : Optional[Any] = None class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCamelCase : int = """train""" __UpperCamelCase : List[Any] = """dev""" __UpperCamelCase : Union[str, Any] = """test""" class _UpperCamelCase : '''simple docstring''' @staticmethod def lowerCAmelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Union[Split, str] ): raise NotImplementedError @staticmethod def lowerCAmelCase__ ( snake_case_ : str ): raise NotImplementedError @staticmethod def lowerCAmelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , snake_case_ : str=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Optional[int]=1 , snake_case_ : List[str]="[SEP]" , snake_case_ : int=False , snake_case_ : List[Any]=False , snake_case_ : List[Any]=0 , snake_case_ : Dict=0 , snake_case_ : List[str]=-100 , snake_case_ : Optional[Any]=0 , snake_case_ : Any=True , ): UpperCamelCase_: Dict = {label: i for i, label in enumerate(_lowerCamelCase )} UpperCamelCase_: Union[str, Any] = [] for ex_index, example in enumerate(_lowerCamelCase ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" , _lowerCamelCase , len(_lowerCamelCase ) ) UpperCamelCase_: int = [] UpperCamelCase_: Optional[int] = [] for word, label in zip(example.words , example.labels ): UpperCamelCase_: Dict = tokenizer.tokenize(_lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowerCamelCase ) > 0: tokens.extend(_lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. UpperCamelCase_: Union[str, Any] = tokenizer.num_special_tokens_to_add() if len(_lowerCamelCase ) > max_seq_length - special_tokens_count: UpperCamelCase_: List[Any] = tokens[: (max_seq_length - special_tokens_count)] UpperCamelCase_: Dict = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] UpperCamelCase_: Optional[Any] = [sequence_a_segment_id] * len(_lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: UpperCamelCase_: Union[str, Any] = [cls_token] + tokens UpperCamelCase_: List[Any] = [pad_token_label_id] + label_ids UpperCamelCase_: Optional[Any] = [cls_token_segment_id] + segment_ids UpperCamelCase_: Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. UpperCamelCase_: Any = [1 if mask_padding_with_zero else 0] * len(_lowerCamelCase ) # Zero-pad up to the sequence length. UpperCamelCase_: Union[str, Any] = max_seq_length - len(_lowerCamelCase ) if pad_on_left: UpperCamelCase_: Any = ([pad_token] * padding_length) + input_ids UpperCamelCase_: Dict = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask UpperCamelCase_: List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids UpperCamelCase_: Optional[int] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(_lowerCamelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: UpperCamelCase_: List[str] = None features.append( InputFeatures( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , label_ids=_lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCamelCase : int = 42 __UpperCamelCase : Any = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Tuple=False , snake_case_ : Split = Split.train , ): # Load data features from cache or dataset file UpperCamelCase_: Dict = os.path.join( _lowerCamelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(_lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_: Any = cached_features_file + """.lock""" with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCamelCase_: List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCamelCase_: Dict = token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers UpperCamelCase_: Optional[Any] = token_classification_task.convert_examples_to_features( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , _lowerCamelCase ) def __len__( self : Any ): return len(self.features ) def __getitem__( self : List[Any] , snake_case_ : List[Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : List[str] = 42 __UpperCamelCase : Any = -100 def __init__( self : str , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Union[str, Any]=False , snake_case_ : Split = Split.train , ): UpperCamelCase_: Any = token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers UpperCamelCase_: int = token_classification_task.convert_examples_to_features( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: UpperCamelCase_: Optional[int] = tf.data.Dataset.from_generator( _lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: UpperCamelCase_: int = tf.data.Dataset.from_generator( _lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Any ): return len(self.features ) def __getitem__( self : List[Any] , snake_case_ : Tuple ): return self.features[i]
368
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Union[str, Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCamelCase_: Optional[int] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Union[str, Any]: assert _test_patching.open is open UpperCamelCase_: List[Any] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , lowerCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> Optional[Any]: # pandas.read_csv is not present in _test_patching UpperCamelCase_: Optional[Any] = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , lowerCamelCase ): pass def A__ ( ) -> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point UpperCamelCase_: List[Any] = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , lowerCamelCase ) is None with patch_submodule(_test_patching , """len""" , lowerCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> Any: UpperCamelCase_: Dict = """__test_patch_submodule_start_and_stop_mock__""" UpperCamelCase_: List[str] = patch_submodule(_test_patching , """open""" , lowerCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> List[str]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCamelCase_: Optional[Any] = """__test_patch_submodule_successive_join__""" UpperCamelCase_: Any = """__test_patch_submodule_successive_dirname__""" UpperCamelCase_: Dict = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ): with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase ): with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> Union[str, Any]: UpperCamelCase_: Dict = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , lowerCamelCase ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , lowerCamelCase ): pass
223
0
from __future__ import annotations def snake_case( __magic_name__ = 4 ) -> list[list[int]]: '''simple docstring''' lowercase : Tuple = abs(__magic_name__ ) or 4 return [[1 + x + y * row_size for x in range(__magic_name__ )] for y in range(__magic_name__ )] def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__magic_name__ ) ) # OR.. transpose(reverse_column(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__magic_name__ ) ) # OR.. reverse_column(reverse_row(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__magic_name__ ) ) # OR.. transpose(reverse_row(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : Optional[Any] = [list(__magic_name__ ) for x in zip(*__magic_name__ )] return matrix def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : Any = matrix[::-1] return matrix def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : List[str] = [x[::-1] for x in matrix] return matrix def snake_case( __magic_name__ ) -> None: '''simple docstring''' for i in matrix: print(*__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A = 16 _A = 32 def a__( lowerCAmelCase , lowerCAmelCase = 16 , lowerCAmelCase = "bert-base-cased" ) -> Dict: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ : Optional[int] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase__ : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def a__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: model.eval() UpperCAmelCase__ : List[str] = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : Any = model(**lowerCAmelCase__ ) UpperCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase__ : int = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: UpperCAmelCase__ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a__( lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : str = config["""lr"""] UpperCAmelCase__ : Union[str, Any] = int(config["""num_epochs"""] ) UpperCAmelCase__ : List[str] = int(config["""seed"""] ) UpperCAmelCase__ : Union[str, Any] = int(config["""batch_size"""] ) UpperCAmelCase__ : Union[str, Any] = args.model_name_or_path set_seed(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : Any = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer UpperCAmelCase__ : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Tuple = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: UpperCAmelCase__ : int = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ : int = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase__ : Tuple = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase__ : Optional[int] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ : Tuple = args.resume_from_checkpoint.split("""epoch_""" )[1] UpperCAmelCase__ : str = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase__ : List[Any] = int(lowerCAmelCase__ ) + 1 UpperCAmelCase__ : Any = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.print("""resumed checkpoint performance:""" , lowerCAmelCase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: UpperCAmelCase__ : Any = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase__ : List[str] = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : int = outputs.loss UpperCAmelCase__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase__ : Tuple = F"""epoch_{epoch}""" UpperCAmelCase__ : int = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) UpperCAmelCase__ : str = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Any = accuracy UpperCAmelCase__ : Dict = lr_scheduler.get_lr()[0] UpperCAmelCase__ : Dict = optimizer.param_groups[0]["""lr"""] UpperCAmelCase__ : Tuple = epoch UpperCAmelCase__ : Optional[Any] = overall_step accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def a__( ) -> Optional[Any]: UpperCAmelCase__ : Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=2 , help="""Number of train epochs.""" , ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
366
"""simple docstring""" from math import factorial, radians def a__ ( lowerCAmelCase , lowerCAmelCase = 18 , lowerCAmelCase = 10 ) -> float: UpperCAmelCase__ : List[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase__ : Any = radians(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = angle_in_radians UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) UpperCAmelCase__ : int = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
166
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case__ ( _A: List[Any] ) -> List[str]: '''simple docstring''' if "model" in orig_key: lowerCAmelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: lowerCAmelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: lowerCAmelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: lowerCAmelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: lowerCAmelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] lowerCAmelCase = orig_key.replace(f"transformer_{layer_num}" , f"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: lowerCAmelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: lowerCAmelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: lowerCAmelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: lowerCAmelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: lowerCAmelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: lowerCAmelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: lowerCAmelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: lowerCAmelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: lowerCAmelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: lowerCAmelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: lowerCAmelCase = """yoso.""" + orig_key return orig_key def snake_case__ ( _A: List[str] , _A: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_A ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCAmelCase = val lowerCAmelCase = orig_state_dict["""cls.predictions.decoder.bias"""] lowerCAmelCase = torch.arange(_A ).expand((1, -1) ) + 2 return orig_state_dict def snake_case__ ( _A: int , _A: Any , _A: Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase = torch.load(_A , map_location="""cpu""" )["""model_state_dict"""] lowerCAmelCase = YosoConfig.from_json_file(_A ) lowerCAmelCase = YosoForMaskedLM(_A ) lowerCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , _A ) print(model.load_state_dict(_A ) ) model.eval() model.save_pretrained(_A ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
272
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = XLMRobertaTokenizer UpperCAmelCase_ : int = XLMRobertaTokenizerFast UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Optional[int] = True def a_ ( self): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = """<pad>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(__lowerCAmelCase) , 1002) def a_ ( self): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002) def a_ ( self): """simple docstring""" lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowerCAmelCase = tokenizer.tokenize("""This is a test""") self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def a_ ( self): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) @cached_property def a_ ( self): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""") def a_ ( self): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name) lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase) lowerCAmelCase = pickle.dumps(__lowerCAmelCase) pickle.loads(__lowerCAmelCase) def a_ ( self): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = """I was born in 92000, and this is falsé.""" lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = """Hello World!""" lowerCAmelCase = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
272
1
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: SCREAMING_SNAKE_CASE = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
1
'''simple docstring''' import os def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCamelCase ) , UpperCamelCase ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(UpperCamelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowerCamelCase__ : Any = len(UpperCamelCase ) lowerCamelCase__ : int = len(matrix[0] ) lowerCamelCase__ : Optional[Any] = [[-1 for _ in range(UpperCamelCase )] for _ in range(UpperCamelCase )] for i in range(UpperCamelCase ): lowerCamelCase__ : int = matrix[i][0] for j in range(1 , UpperCamelCase ): for i in range(UpperCamelCase ): lowerCamelCase__ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCamelCase ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
41
'''simple docstring''' from __future__ import annotations _A : Any ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class _lowercase : def __init__( self: Tuple , UpperCamelCase__: dict[str, list[str]] , UpperCamelCase__: str ): lowerCamelCase__ : str = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ : dict[str, str | None] = {} lowerCamelCase__ : Any = source_vertex def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : List[str] = {self.source_vertex} lowerCamelCase__ : List[str] = None lowerCamelCase__ : Tuple = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ : Tuple = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) lowerCamelCase__ : List[str] = vertex queue.append(UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ : Tuple = self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: lowerCamelCase__ : int = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + F'''->{target_vertex}''' if __name__ == "__main__": _A : int =Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
41
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCamelCase ( ) ->Dict: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCamelCase_ ="""__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , _A ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCamelCase ( ) ->Optional[int]: """simple docstring""" assert _test_patching.open is open lowerCamelCase_ ="""__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , _A ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCamelCase ( ) ->List[str]: """simple docstring""" lowerCamelCase_ ="""__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , _A ): pass def __UpperCamelCase ( ) ->Optional[int]: """simple docstring""" lowerCamelCase_ ="""__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , _A ) is None with patch_submodule(_test_patching , """len""" , _A ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ ="""__test_patch_submodule_start_and_stop_mock__""" lowerCamelCase_ =patch_submodule(_test_patching , """open""" , _A ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCamelCase ( ) ->Dict: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCamelCase_ ="""__test_patch_submodule_successive_join__""" lowerCamelCase_ ="""__test_patch_submodule_successive_dirname__""" lowerCamelCase_ ="""__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ="""__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _A ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _A ): pass
354
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __a = a + h while x < (b - h): yield x __a = x + h def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): # enter your function here """simple docstring""" __a = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ): """simple docstring""" __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"y = {y}" ) if __name__ == "__main__": main()
302
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowerCAmelCase = int(input('Enter the base: ').strip()) lowerCAmelCase = int(input('Enter the exponent: ').strip()) lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
93
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __A = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } __A = "▁" class A ( __UpperCAmelCase ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) lowercase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ = len(self.sp_model ) - 1 lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def A__ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' lowercase__ = [] lowercase__ = """""" lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase__ ) lowercase__ = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self ) -> int: '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
164
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A ( __UpperCAmelCase ): lowerCamelCase : Union[str, Any] = """MCTCTFeatureExtractor""" lowerCamelCase : Dict = """AutoTokenizer""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self.feature_extractor lowercase__ = False def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowercase__ = kwargs.pop("""raw_speech""" ) else: lowercase__ = kwargs.pop("""audio""" , lowerCamelCase__ ) lowercase__ = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) lowercase__ = kwargs.pop("""text""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowercase__ = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: lowercase__ = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ = encodings["""input_ids"""] return inputs def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) lowercase__ = kwargs.pop("""input_features""" , lowerCamelCase__ ) lowercase__ = kwargs.pop("""labels""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if input_features is not None: lowercase__ = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: lowercase__ = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__ = labels["""input_ids"""] return input_features def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def A__ ( self ) -> Any: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.feature_extractor lowercase__ = False
164
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Dict = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } snake_case_ : Any = { "allenai/led-base-16384": 16384, } class __snake_case ( a ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = LEDTokenizer UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : str , _snake_case : Optional[int]=None , _snake_case : int=None , _snake_case : str=None , _snake_case : Optional[Any]="replace" , _snake_case : Dict="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : Dict="</s>" , _snake_case : List[str]="<s>" , _snake_case : Union[str, Any]="<unk>" , _snake_case : Dict="<pad>" , _snake_case : Tuple="<mask>" , _snake_case : str=False , _snake_case : List[Any]=True , **_snake_case : Tuple , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , _snake_case) != add_prefix_space: UpperCAmelCase_ = getattr(_snake_case , pre_tok_state.pop('''type''')) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**_snake_case) UpperCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ = '''post_processor''' UpperCAmelCase_ = getattr(self.backend_tokenizer , _snake_case , _snake_case) if tokenizer_component_instance: UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ = tuple(state['''sep''']) if "cls" in state: UpperCAmelCase_ = tuple(state['''cls''']) UpperCAmelCase_ = False if state.get('''add_prefix_space''' , _snake_case) != add_prefix_space: UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = True if state.get('''trim_offsets''' , _snake_case) != trim_offsets: UpperCAmelCase_ = trim_offsets UpperCAmelCase_ = True if changes_to_apply: UpperCAmelCase_ = getattr(_snake_case , state.pop('''type''')) UpperCAmelCase_ = component_class(**_snake_case) setattr(self.backend_tokenizer , _snake_case , _snake_case) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase ( self : str): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def lowerCamelCase ( self : Dict , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else value UpperCAmelCase_ = value def lowerCamelCase ( self : Union[str, Any] , *_snake_case : str , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : int , **_snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" UpperCAmelCase_ = self._tokenizer.model.save(_snake_case , name=_snake_case) return tuple(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : List[str] , _snake_case : List[str]=None): """simple docstring""" UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : str , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase ( self : Dict , _snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , _snake_case : Optional[int] = None , _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , ): """simple docstring""" UpperCAmelCase_ = super()._pad( encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ = len(encoded_inputs['''global_attention_mask''']) != len(_snake_case) if needs_to_be_padded: UpperCAmelCase_ = len(_snake_case) - len(encoded_inputs['''global_attention_mask''']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side)) return encoded_inputs
355
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
0
from collections.abc import Sequence def UpperCAmelCase_( a__ , a__ = False ): """simple docstring""" if not arr: return 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 if allow_empty_subarrays else float('''-inf''' ) SCREAMING_SNAKE_CASE : List[Any] = 0.0 for num in arr: SCREAMING_SNAKE_CASE : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) SCREAMING_SNAKE_CASE : Optional[int] = max(a__ , a__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a__ : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> List[str]: UpperCamelCase__ : List[str] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowercase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Optional[int] = StableDiffusionLatentUpscalePipeline a : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } a : Optional[Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} a : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : Union[str, Any] = frozenset([] ) a : Tuple = True @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Tuple = 4 UpperCamelCase__ : Optional[Any] = (16, 16) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(__magic_name__ ) return image def UpperCamelCase__ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : str = UNetaDConditionModel( act_fn='''gelu''', attention_head_dim=8, norm_num_groups=__magic_name__, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ), in_channels=8, mid_block_type=__magic_name__, only_cross_attention=__magic_name__, out_channels=5, resnet_time_scale_shift='''scale_shift''', time_embedding_type='''fourier''', timestep_post_act='''gelu''', up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D'''), ) UpperCamelCase__ : Tuple = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) UpperCamelCase__ : Tuple = EulerDiscreteScheduler(prediction_type='''sample''' ) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='''quick_gelu''', projection_dim=512, ) UpperCamelCase__ : List[Any] = CLIPTextModel(__magic_name__ ) UpperCamelCase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ : int = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> Dict: """simple docstring""" if str(__magic_name__ ).startswith('''mps''' ): UpperCamelCase__ : Tuple = torch.manual_seed(__magic_name__ ) else: UpperCamelCase__ : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCamelCase__ : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = '''cpu''' UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : List[str] = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Tuple = pipe(**__magic_name__ ).images UpperCamelCase__ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3) ) UpperCamelCase__ : Optional[int] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) UpperCamelCase__ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__, 1E-3 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] UpperCamelCase__ : List[str] = self.get_dummy_components() UpperCamelCase__ : Union[str, Any] = self.pipeline_class(**__magic_name__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : int = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : List[Any] = 2 UpperCamelCase__ : Union[str, Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCamelCase__ : Tuple = getattr(__magic_name__, scheduler_enum.name ) UpperCamelCase__ : List[Any] = scheduler_cls.from_config(pipe.scheduler.config ) UpperCamelCase__ : List[str] = pipe(**__magic_name__ )[0] outputs.append(__magic_name__ ) assert check_same_shape(__magic_name__ ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = torch.manual_seed(33 ) UpperCamelCase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''', torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCamelCase__ : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase__ : Any = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' UpperCamelCase__ : str = pipe(__magic_name__, generator=__magic_name__, output_type='''latent''' ).images UpperCamelCase__ : Any = upscaler( prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0] UpperCamelCase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = torch.manual_seed(33 ) UpperCamelCase__ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase__ : List[Any] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' UpperCamelCase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) UpperCamelCase__ : Any = upscaler( prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0] UpperCamelCase__ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
355
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase_ = '\nHuman: <<task>>\n\nAssistant: ' UpperCAmelCase_ = 'huggingface-tools/default-prompts' UpperCAmelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[Any]="run" ) -> int: if prompt_or_repo_id is None: UpperCamelCase__ : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , __UpperCAmelCase ) is not None: return prompt_or_repo_id UpperCamelCase__ : Any = cached_file( __UpperCAmelCase , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: return f.read()
247
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __lowercase ( _A , _A , _A ) -> Union[str, Any]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _A ) SCREAMING_SNAKE_CASE : Any = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE : Any = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Union[str, Any] = is_small_dataset(_A ) assert result == expected
245
import os import pytest from attr import dataclass UpperCAmelCase__ : Optional[int] = """us-east-1""" # defaults region @dataclass class a__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] ="""arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCAmelCase__ : Tuple ={ """task_name""": """mnli""", """per_device_train_batch_size""": 1_6, """per_device_eval_batch_size""": 1_6, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_0_0, """save_steps""": 5_5_0_0, } UpperCAmelCase__ : Optional[int] ={**hyperparameters, """max_steps""": 1_0_0_0} @property def _lowercase ( self : List[str] ) ->str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ) ->str: """simple docstring""" return f"{self.framework}-transfromers-test" @property def _lowercase ( self : Union[str, Any] ) ->str: """simple docstring""" return f"./tests/sagemaker/scripts/{self.framework}" @property def _lowercase ( self : Dict ) ->str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowercase ( _A ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
245
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase = 10 def lowercase ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: for i in range(a__ , a__ ): if array[i] == target: return i return -1 def lowercase ( a__ : list[int] , a__ : int ) -> int: _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCamelCase = one_third - 1 elif array[two_third] < target: _UpperCamelCase = two_third + 1 else: _UpperCamelCase = one_third + 1 _UpperCamelCase = two_third - 1 else: return -1 def lowercase ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = input("""Enter numbers separated by comma:\n""").strip() UpperCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) UpperCAmelCase = ite_ternary_search(collection, target) UpperCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
54
"""simple docstring""" import numpy as np def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict: _UpperCamelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(a__ ): _UpperCamelCase = f(a__ , y[k] ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + h , y[k] + h * ka ) _UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
54
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int = 4 ) ->list[list[int]]: """simple docstring""" __snake_case : str = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[Any] = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[Any] = matrix[::-1] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : str = [x[::-1] for x in matrix] return matrix def lowercase ( _snake_case : list[list[int]] ) ->None: """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : List[str] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : Optional[int] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
102
import math def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
48
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase : """simple docstring""" UpperCAmelCase = PegasusConfig UpperCAmelCase = {} UpperCAmelCase = """gelu""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=False ,a_=99 ,a_=32 ,a_=2 ,a_=4 ,a_=37 ,a_=0.1 ,a_=0.1 ,a_=40 ,a_=2 ,a_=1 ,a_=0 ,) -> Dict: _UpperCAmelCase : Dict = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : Union[str, Any] = pad_token_id _UpperCAmelCase : List[Any] = bos_token_id def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _UpperCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] ,axis=1 ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) _UpperCAmelCase : int = prepare_pegasus_inputs_dict(a_ ,a_ ,a_ ) return config, inputs_dict def _snake_case ( self ,a_ ,a_ ) -> Dict: _UpperCAmelCase : Optional[int] = TFPegasusModel(config=a_ ).get_decoder() _UpperCAmelCase : Dict = inputs_dict["""input_ids"""] _UpperCAmelCase : Any = input_ids[:1, :] _UpperCAmelCase : Optional[int] = inputs_dict["""attention_mask"""][:1, :] _UpperCAmelCase : Dict = inputs_dict["""head_mask"""] _UpperCAmelCase : Tuple = 1 # first forward pass _UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ ,head_mask=a_ ,use_cache=a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _UpperCAmelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _UpperCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) _UpperCAmelCase : Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ )[0] _UpperCAmelCase : str = model(a_ ,attention_mask=a_ ,past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Union[str, Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_ ,a_ ,rtol=1E-3 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , )-> Union[str, Any]: '''simple docstring''' if attention_mask is None: _UpperCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TFPegasusModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ) def _snake_case ( self ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase = """google/pegasus-xsum""" @cached_property def _snake_case ( self ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self ,**a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = self.translate_src_text(**a_ ) assert self.expected_text == generated_words def _snake_case ( self ,**a_ ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text ,**a_ ,padding=a_ ,return_tensors="""tf""" ) _UpperCAmelCase : Dict = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=a_ ,) _UpperCAmelCase : Any = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=a_ ) return generated_words @slow def _snake_case ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' def _A ( A__ = 3 , A__ = 7 , A__ = 1000000 ): """simple docstring""" __lowercase = 0 __lowercase = 1 for current_denominator in range(1 , limit + 1 ): __lowercase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase = current_numerator __lowercase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
104
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase ( __snake_case ): def lowerCAmelCase_ ( self ) -> Any: snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_heads""" ) ) class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=64 , lowerCamelCase=3 , lowerCamelCase=[16, 48, 96] , lowerCamelCase=[1, 3, 6] , lowerCamelCase=[1, 2, 10] , lowerCamelCase=[7, 3, 3] , lowerCamelCase=[4, 2, 2] , lowerCamelCase=[2, 1, 1] , lowerCamelCase=[2, 2, 2] , lowerCamelCase=[False, False, True] , lowerCamelCase=[0.0, 0.0, 0.0] , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=2 , ) -> Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_sizes snake_case_ = patch_stride snake_case_ = patch_padding snake_case_ = is_training snake_case_ = use_labels snake_case_ = num_labels snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = num_heads snake_case_ = stride_kv snake_case_ = depth snake_case_ = cls_token snake_case_ = attention_drop_rate snake_case_ = initializer_range snake_case_ = layer_norm_eps def lowerCAmelCase_ ( self ) -> List[str]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: snake_case_ = CvtModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase ) snake_case_ = (self.image_size, self.image_size) snake_case_ , snake_case_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = self.num_labels snake_case_ = CvtForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowerCamelCase_ : List[Any] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : str = False lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Any = False def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case_ = CvtModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> Dict: return @unittest.skip(reason="""Cvt does not output attentions""" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowerCAmelCase_ ( self ) -> Dict: pass def lowerCAmelCase_ ( self ) -> Dict: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case_ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self ) -> List[str]: pass @slow def lowerCAmelCase_ ( self ) -> List[str]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = CvtModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase( ) -> List[Any]: '''simple docstring''' snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[str]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**lowerCamelCase ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case_ = torch.tensor([0.9285, 0.9015, -0.3150] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
34
def UpperCamelCase( lowercase_ , lowercase_ ) -> str: '''simple docstring''' return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
34
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase__ ( unittest.TestCase , _UpperCAmelCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = load_tool('''text-to-speech''' ) self.tool.setup() def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : List[str] = self.tool('''hey''' ) UpperCamelCase__ : Dict = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ), ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = self.tool('''hey''' ) UpperCamelCase__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ), ) )
201
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
0
'''simple docstring''' lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =set() # keep track of all the paths to be checked __lowercase =[[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowercase =queue.pop(0 ) # get the last node from the path __lowercase =path[-1] if node not in explored: __lowercase =graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowercase =list(lowerCamelCase__ ) new_path.append(lowerCamelCase__ ) queue.append(lowerCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase__ ) # in case there's no path between the 2 nodes return [] def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowercase =[start] __lowercase =set(lowerCamelCase__ ) # Keep tab on distances from `start` node. __lowercase ={start: 0, target: -1} while queue: __lowercase =queue.pop(0 ) if node == target: __lowercase =( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase__ ) queue.append(lowerCamelCase__ ) __lowercase =dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
354
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =XLNetConfig.from_json_file(_lowerCAmelCase ) __lowercase =finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) __lowercase =finetuning_task __lowercase =GLUE_TASKS_NUM_LABELS[finetuning_task] __lowercase =XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __lowercase =finetuning_task __lowercase =XLNetForQuestionAnswering(_lowerCAmelCase ) else: __lowercase =XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) print(f"""Save configuration file to {os.path.abspath(_lowerCAmelCase )}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) lowerCamelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
48
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCAmelCase : Optional[Any] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCAmelCase : Union[str, Any] = { "ctrl": 2_56, } UpperCAmelCase : List[str] = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = set() lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase = char lowerCamelCase = set(lowerCamelCase__ ) return pairs class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self , A , A , A="<unk>" , **A ) -> int: '''simple docstring''' super().__init__(unk_token=A , **A ) with open(A , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(A ) lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] lowerCamelCase = [tuple(merge.split() ) for merge in merges] lowerCamelCase = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase = {} @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , A ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase = tuple(A ) lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCamelCase = get_pairs(A ) if not pairs: return token while True: lowerCamelCase = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase = bigram lowerCamelCase = [] lowerCamelCase = 0 while i < len(A ): try: lowerCamelCase = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase = tuple(A ) lowerCamelCase = new_word if len(A ) == 1: break else: lowerCamelCase = get_pairs(A ) lowerCamelCase = """@@ """.join(A ) lowerCamelCase = word[:-4] lowerCamelCase = word return word def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = [] lowerCamelCase = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def __A ( self , A ) -> int: '''simple docstring''' return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def __A ( self , A ) -> Any: '''simple docstring''' return self.decoder.get(A , self.unk_token ) def __A ( self , A ) -> str: '''simple docstring''' lowerCamelCase = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) lowerCamelCase = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) lowerCamelCase = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase : Dict = 1_6 lowercase : List[Any] = 3_2 def A_ ( A__ , A__ = 16 , A__ = "bert-base-cased" ) -> Dict: a__ : List[str] = AutoTokenizer.from_pretrained(A__ ) a__ : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) a__ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. a__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) a__ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def A_ ( A__ , A__ ) -> List[str]: # Initialize accelerator a__ : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : List[Any] = config['lr'] a__ : int = int(config['num_epochs'] ) a__ : Optional[Any] = int(config['seed'] ) a__ : Optional[int] = int(config['batch_size'] ) a__ : Optional[int] = args.model_name_or_path set_seed(A__ ) a__ : str = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Tuple = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer a__ : str = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : int = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: a__ : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: a__ : Dict = 1 a__ : Optional[int] = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: a__ : List[str] = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ : Union[str, Any] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over a__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Optional[Any] = 0 # Now we train the model a__ : List[Any] = evaluate.load('glue' , 'mrpc' ) a__ : Optional[int] = 0 a__ : Any = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): a__ : Union[str, Any] = model(**A__ ) a__ : List[Any] = outputs.loss a__ : Dict = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ : int = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ : Union[str, Any] = model(**A__ ) a__ : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a__ : str = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: a__ : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) a__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , A__ ) a__ : Optional[int] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: a__ : Any = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(A__ , A__ ) def A_ ( ) -> Tuple: a__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=A__ , default=A__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=3 , help='Number of train epochs.' , ) a__ : Optional[Any] = parser.parse_args() a__ : List[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
358
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ) -> Tuple: '''simple docstring''' a__ : str = parent a__ : Optional[Any] = batch_size a__ : str = seq_length a__ : int = is_training a__ : str = use_attention_mask a__ : List[str] = use_token_type_ids a__ : Optional[Any] = use_labels a__ : List[Any] = vocab_size a__ : Tuple = hidden_size a__ : Dict = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Optional[int] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : str = num_choices def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : Dict = None if self.use_attention_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Dict = None if self.use_token_type_ids: a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Optional[int] = config_and_inputs a__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : int = config_and_inputs a__ : str = True a__ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = True __A : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = FlaxBertModelTester(self) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased') a__ : Optional[Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowercase)
225
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __lowerCamelCase ( lowerCAmelCase_ = True , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _a : Tuple = False if main_process_only: _a : str = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
89
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , *lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , **lowercase__ : Optional[int]): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__) lowerCAmelCase__ = eval_examples lowerCAmelCase__ = post_process_function lowerCAmelCase__ = quant_trainer_args lowerCAmelCase__ = 128 # default number of calibration samples def __snake_case ( self : Tuple , lowercase__ : Any=None): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') lowerCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase__ = self._remove_unused_columns(lowercase__ , description='Calibration') return DataLoader( lowercase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase__ , ) def __snake_case ( self : List[Any] , lowercase__ : Union[str, Any]=None): '''simple docstring''' lowerCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase__ = self.get_calib_dataloader(lowercase__) lowerCAmelCase__ = self.model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args , calib=lowercase__) model.eval() quant_trainer.enable_calibration(lowercase__) logger.info('***** Running calibration *****') logger.info(F""" Num examples = {self.calib_num}""") logger.info(F""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(lowercase__): # Prediction step lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prediction_step(lowercase__ , lowercase__ , prediction_loss_only=lowercase__) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = model def __snake_case ( self : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : str = "eval"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions) lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) self.log(lowercase__) else: lowerCAmelCase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__) return metrics def __snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Any , lowercase__ : List[str]=None , lowercase__ : str = "test"): '''simple docstring''' lowerCAmelCase__ = self.get_test_dataloader(lowercase__) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions , 'predict') lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__) def __snake_case ( self : List[str] , lowercase__ : List[str]="./"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = next(iter(lowercase__)) # saving device - to make it consistent lowerCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple lowerCAmelCase__ = tuple(v.to(lowercase__) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase__ = True lowerCAmelCase__ = self.model.to(lowercase__) model.eval() model.float() lowerCAmelCase__ = model.module if hasattr(lowercase__ , 'module') else model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = os.path.join(lowercase__ , 'model.onnx') logger.info(F"""exporting model to {output_model_file}""") lowerCAmelCase__ = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( lowercase__ , lowercase__ , lowercase__ , export_params=lowercase__ , opset_version=13 , do_constant_folding=lowercase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=lowercase__ , ) logger.info('onnx export finished')
119
import argparse from collections import defaultdict import yaml lowerCAmelCase__ = 'docs/source/en/_toctree.yml' def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = defaultdict(lowerCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase__ = [key for key, value in counts.items() if value > 1] lowerCAmelCase__ = [] for duplicate_key in duplicates: lowerCAmelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) def __lowerCamelCase ( lowerCAmelCase__=False ): with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowerCAmelCase__ = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase__ = content[api_idx]['sections'] # Then to the model doc lowerCAmelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase__ = api_doc[model_idx]['sections'] lowerCAmelCase__ = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if 'sections' in section] lowerCAmelCase__ = False for idx, modality_doc in modalities_docs: lowerCAmelCase__ = modality_doc['sections'] lowerCAmelCase__ = clean_model_doc_toc(lowerCAmelCase__ ) if old_modality_doc != new_modality_doc: lowerCAmelCase__ = True if overwrite: lowerCAmelCase__ = new_modality_doc if diff: if overwrite: lowerCAmelCase__ = model_doc lowerCAmelCase__ = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
119
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCAmelCase =datasets.load_iris() __UpperCAmelCase =np.array(data["data"]) __UpperCAmelCase =np.array(data["target"]) __UpperCAmelCase =data["target_names"] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =train_test_split(X, y) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=5 ) -> int: __lowerCamelCase = zip(UpperCamelCase__ , UpperCamelCase__ ) # List of distances of all points from the point to be classified __lowerCamelCase = [] for data_point in data: __lowerCamelCase = euclidean_distance(data_point[0] , UpperCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __lowerCamelCase = [i[1] for i in sorted(UpperCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCamelCase = Counter(UpperCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
67
import logging from transformers import PretrainedConfig _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''bertabs''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=5_1_2 , lowercase=6 , lowercase=5_1_2 , lowercase=8 , lowercase=5_1_2 , lowercase=0.2 , lowercase=6 , lowercase=7_6_8 , lowercase=8 , lowercase=2_0_4_8 , lowercase=0.2 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = vocab_size A_ : Union[str, Any] = max_pos A_ : List[str] = enc_layers A_ : Tuple = enc_hidden_size A_ : List[Any] = enc_heads A_ : str = enc_ff_size A_ : Optional[Any] = enc_dropout A_ : Dict = dec_layers A_ : Optional[Any] = dec_hidden_size A_ : int = dec_heads A_ : Any = dec_ff_size A_ : List[str] = dec_dropout
140
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "M-CLIP" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : List[str]=7_6_8 , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = transformerDimSize lowercase_ = imageDimSize super().__init__(**lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = MCLIPConfig def __init__( self : List[str] , lowerCAmelCase_ : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple): """simple docstring""" super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = XLMRobertaModel(lowerCAmelCase_) lowercase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.transformer(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)[0] lowercase_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowerCAmelCase_), embs
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
import math from numpy import inf from scipy.integrate import quad def _a ( SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
322
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A = get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): '''simple docstring''' lowercase_ = "all_checks" lowercase_ = "basic_checks" lowercase_ = "no_checks" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( __a , __a , __a=None ) -> Optional[int]: """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__a ) - set(__a ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__a ) - set(__a ) ) ) if len(set(__a ) - set(__a ) ) > 0: raise UnexpectedDownloadedFile(str(set(__a ) - set(__a ) ) ) lowerCamelCase__: List[Any] =[url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCamelCase__: Union[str, Any] =" for " + verification_name if verification_name is not None else "" if len(__a ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__a ) - set(__a ) ) > 0: raise ExpectedMoreSplits(str(set(__a ) - set(__a ) ) ) if len(set(__a ) - set(__a ) ) > 0: raise UnexpectedSplits(str(set(__a ) - set(__a ) ) ) lowerCamelCase__: Optional[int] =[ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__a ) > 0: raise NonMatchingSplitsSizesError(str(__a ) ) logger.info("All the splits matched successfully." ) def lowerCAmelCase_ ( __a , __a = True ) -> dict: """simple docstring""" if record_checksum: lowerCamelCase__: str =shaaaa() with open(__a , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"" ): m.update(__a ) lowerCamelCase__: Dict =m.hexdigest() else: lowerCamelCase__: List[str] =None return {"num_bytes": os.path.getsize(__a ), "checksum": checksum} def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
273
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCamelCase__ = 3 def a__ ( lowerCAmelCase__ ) -> int: print('''Generating primitive root of p''' ) while True: UpperCAmelCase__ : List[str] = random.randrange(3 , lowerCAmelCase__ ) if pow(lowerCAmelCase__ , 2 , lowerCAmelCase__ ) == 1: continue if pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) == 1: continue return g def a__ ( lowerCAmelCase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('''Generating prime p...''' ) UpperCAmelCase__ : Union[str, Any] = rabin_miller.generate_large_prime(lowerCAmelCase__ ) # select large prime number. UpperCAmelCase__ : List[Any] = primitive_root(lowerCAmelCase__ ) # one primitive root on modulo p. UpperCAmelCase__ : int = random.randrange(3 , lowerCAmelCase__ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase__ : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = (key_size, e_a, e_a, p) UpperCAmelCase__ : Tuple = (key_size, d) return public_key, private_key def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() UpperCAmelCase__ , UpperCAmelCase__ : Tuple = generate_key(lowerCAmelCase__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def a__ ( ) -> None: print('''Making key files...''' ) make_key_files('''elgamal''' , 20_48 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
181
'''simple docstring''' import pprint import requests UpperCamelCase__ = '''https://zenquotes.io/api''' def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
181
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) lowercase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) lowercase__ = tokenizer.decode(greedy_ids[0] ) lowercase__ = TextIteratorStreamer(_lowercase ) lowercase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ = Thread(target=model.generate , kwargs=_lowercase ) thread.start() lowercase__ = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) lowercase__ = greedy_ids[:, input_ids.shape[1] :] lowercase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("distilgpt2" ) lowercase__ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowercase ) lowercase__ = -1 lowercase__ = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ = cs.out[:-1] # Remove the final "\n" lowercase__ = tokenizer(_lowercase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase ) lowercase__ = -1 lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) lowercase__ = TextIteratorStreamer(_lowercase , timeout=0.001 ) lowercase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): lowercase__ = "" for new_text in streamer: streamer_text += new_text
201
from __future__ import annotations from collections import deque class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowercase ) self.set_fail_transitions() def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self :List[str] , _lowercase :str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_lowercase , _lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowercase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowercase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_lowercase ) ): while ( self.find_next_state(_lowercase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_lowercase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
201
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from scipy.stats import pearsonr import datasets _UpperCamelCase: str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _UpperCamelCase: Tuple = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _UpperCamelCase: Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : Optional[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'], ) def lowercase ( self : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : List[str]=False ) -> int: if return_pvalue: lowercase : Optional[int] = pearsonr(lowerCAmelCase, lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase, lowerCAmelCase )[0] )}
255
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Tuple = CycleDiffusionPipeline UpperCamelCase_ :int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } UpperCamelCase_ :str = PipelineTesterMixin.required_optional_params - {"latents"} UpperCamelCase_ :Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) UpperCamelCase_ :List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ :Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self )-> int: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_000 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase_ = CLIPTextModel(_lowercase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Optional[Any]: UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = image / 2 + 0.5 if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = CycleDiffusionPipeline(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCamelCase_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , "half" ): UpperCamelCase_ = module.half() UpperCamelCase_ = CycleDiffusionPipeline(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCamelCase_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self )-> Union[str, Any]: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def UpperCAmelCase_ ( self )-> Tuple: return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase_ ( self )-> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self )-> Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self )-> Any: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) UpperCamelCase_ = init_image.resize((512, 512) ) UpperCamelCase_ = "CompVis/stable-diffusion-v1-4" UpperCamelCase_ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) UpperCamelCase_ = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() UpperCamelCase_ = "A black colored car" UpperCamelCase_ = "A blue colored car" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , ) UpperCamelCase_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) UpperCamelCase_ = init_image.resize((512, 512) ) UpperCamelCase_ = "CompVis/stable-diffusion-v1-4" UpperCamelCase_ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) UpperCamelCase_ = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() UpperCamelCase_ = "A black colored car" UpperCamelCase_ = "A blue colored car" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , ) UpperCamelCase_ = output.images assert np.abs(image - expected_image ).max() < 2e-2
352
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE :int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __magic_name__ : UpperCamelCase_ :str = PegasusConfig UpperCamelCase_ :List[str] = {} UpperCamelCase_ :str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , )-> Tuple: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Tuple: """simple docstring""" if attention_mask is None: UpperCamelCase_ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCamelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase_ :Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase_ :List[str] = True UpperCamelCase_ :Any = False UpperCamelCase_ :Union[str, Any] = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxPegasusModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase_ = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCamelCase_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self )-> int: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase ) UpperCamelCase_ = np.ones((1, 1) ) UpperCamelCase_ = model(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCamelCase_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCamelCase_ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=512 , padding=_lowercase ) UpperCamelCase_ = model.generate(**_lowercase , num_beams=2 ).sequences UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) assert tgt_text == decoded
60
0
from __future__ import annotations def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = sum(SCREAMING_SNAKE_CASE_) create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return result def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if sum(SCREAMING_SNAKE_CASE_) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE_)) < max_sum: return if sum(SCREAMING_SNAKE_CASE_) == max_sum: result.append(SCREAMING_SNAKE_CASE_) return for index in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_)): create_state_space_tree( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE_ , remaining_nums_sum - nums[index] , ) UpperCAmelCase : Union[str, Any] =[3, 34, 4, 12, 5, 2] UpperCAmelCase : Union[str, Any] =9 UpperCAmelCase : str =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
128
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = rotary_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = None _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 def _snake_case ( self ) -> str: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> List[str]: _lowerCAmelCase = FlaxGPTJModelTester(self ) def _snake_case ( self ) -> List[str]: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @tooslow def _snake_case ( self ) -> Any: _lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) _lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = False _lowerCAmelCase = model.config.eos_token_id _lowerCAmelCase = jax.jit(model.generate ) _lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @is_pt_flax_cross_test def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _lowerCAmelCase = fx_state with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _lowerCAmelCase = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _snake_case ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
158
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = "utf-8" lowerCAmelCase : List[Any] = None lowerCAmelCase : int = None lowerCAmelCase : int = True # deprecated lowerCAmelCase : List[Any] = None # deprecated lowerCAmelCase : int = 10 << 20 # 10MB lowerCAmelCase : Any = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) _UpperCAmelCase : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple ) ->List[str]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): _UpperCAmelCase : Dict = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[str] = [files] _UpperCAmelCase : str = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Dict = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[Any] = [files] _UpperCAmelCase : Dict = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : pa.Table ) ->Optional[int]: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : List[Any] = self.config.features.arrow_schema.field(lowerCamelCase__ ).type _UpperCAmelCase : Optional[int] = pa_table.append_column(lowerCamelCase__ , pa.array([None] * len(lowerCamelCase__ ) , type=lowerCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(lowerCamelCase__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] ) ->Any: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : str = json.load(lowerCamelCase__ ) # We keep only the field we are interested in _UpperCAmelCase : Optional[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase__ , (list, tuple) ): _UpperCAmelCase : int = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : List[Any] = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} else: _UpperCAmelCase : Dict = dataset _UpperCAmelCase : Tuple = pa.Table.from_pydict(lowerCamelCase__ ) yield file_idx, self._cast_table(lowerCamelCase__ ) # If the file has one json object per line else: with open(lowerCamelCase__ , "rb" ) as f: _UpperCAmelCase : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _UpperCAmelCase : List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _UpperCAmelCase : str = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : Optional[int] = batch.decode(self.config.encoding , errors=lowerCamelCase__ ).encode("utf-8" ) try: while True: try: _UpperCAmelCase : Tuple = paj.read_json( io.BytesIO(lowerCamelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase__ ) or block_size > len(lowerCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowerCamelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : Any = json.load(lowerCamelCase__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : Optional[int] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Dict = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} _UpperCAmelCase : List[str] = pa.Table.from_pydict(lowerCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) batch_idx += 1
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _a = None _a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Tuple = None # Automatically constructed SCREAMING_SNAKE_CASE__ : str = """PIL.Image.Image""" SCREAMING_SNAKE_CASE__ : int = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) SCREAMING_SNAKE_CASE__ : str = field(default="""Image""" ,init=lowerCAmelCase__ ,repr=lowerCAmelCase__ ) def __call__( self ): """simple docstring""" return self.pa_type def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase_ : List[Any] = np.array(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCamelCase ) elif isinstance(_lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCamelCase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : Dict = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_lowerCamelCase ): UpperCAmelCase_ : List[str] = PIL.Image.open(_lowerCamelCase ) else: UpperCAmelCase_ : List[str] = path.split("::" )[-1] try: UpperCAmelCase_ : int = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""] UpperCAmelCase_ : str = token_per_repo_id.get(_lowerCamelCase ) except ValueError: UpperCAmelCase_ : int = None with xopen(_lowerCamelCase , "rb" , use_auth_token=_lowerCamelCase ) as f: UpperCAmelCase_ : Union[str, Any] = BytesIO(f.read() ) UpperCAmelCase_ : Dict = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : int = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ : Optional[Any] = storage.field("bytes" ) else: UpperCAmelCase_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ : List[Any] = storage.field("path" ) else: UpperCAmelCase_ : Optional[int] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) UpperCAmelCase_ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Dict = pa.array( [encode_np_array(np.array(_lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase_ : str = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) UpperCAmelCase_ : Optional[int] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowercase_ ): with xopen(_lowerCamelCase , "rb" ) as f: UpperCAmelCase_ : int = f.read() return bytes_ UpperCAmelCase_ : Tuple = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ : Tuple = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def __a ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Tuple = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : Optional[Any] = image.format else: UpperCAmelCase_ : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__lowerCamelCase, format=__lowerCamelCase ) return buffer.getvalue() def __a ( __lowerCamelCase ): if hasattr(__lowerCamelCase, "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCAmelCase_ : int = array.dtype UpperCAmelCase_ : Any = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCAmelCase_ : Any = dtype.kind UpperCAmelCase_ : List[Any] = dtype.itemsize UpperCAmelCase_ : Optional[int] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Any = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = np.dtype(__lowerCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCAmelCase_ : Dict = PIL.Image.fromarray(array.astype(__lowerCamelCase ) ) return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCAmelCase_ : str = first_non_null_value(__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__lowerCamelCase, np.ndarray ): UpperCAmelCase_ : Tuple = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] elif isinstance(__lowerCamelCase, PIL.Image.Image ): UpperCAmelCase_ : str = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] else: return objs else: return objs
61
"""simple docstring""" import numpy as np def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1E-12 , lowerCAmelCase = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = np.iscomplexobj(lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Optional[int] = 1E12 while not convergence: # Multiple matrix by the vector. UpperCAmelCase__ : int = np.dot(lowerCAmelCase , lowerCAmelCase ) # Normalize the resulting output vector. UpperCAmelCase__ : Optional[Any] = w / np.linalg.norm(lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase__ : List[Any] = vector.conj().T if is_complex else vector.T UpperCAmelCase__ : Optional[Any] = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) ) # Check convergence. UpperCAmelCase__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = lambda_ if is_complex: UpperCAmelCase__ : Any = np.real(lambda_ ) return lambda_, vector def a__ ( ) -> None: UpperCAmelCase__ : Tuple = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase__ : int = np.array([41, 4, 20] ) UpperCAmelCase__ : str = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase__ : Any = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase__ : List[str] = real_input_matrix UpperCAmelCase__ : Any = real_vector elif problem_type == "complex": UpperCAmelCase__ : List[Any] = complex_input_matrix UpperCAmelCase__ : int = complex_vector # Our implementation. UpperCAmelCase__ , UpperCAmelCase__ : int = power_iteration(lowerCAmelCase , lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase__ , UpperCAmelCase__ : List[str] = np.linalg.eigh(lowerCAmelCase ) # Last eigenvalue is the maximum one. UpperCAmelCase__ : str = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase__ : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
171
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap snake_case : Dict = "Usage of script: script_name <size_of_canvas:int>" snake_case : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCAmelCase_ ( _snake_case : int ) -> list[list[bool]]: '''simple docstring''' __magic_name__ : int = [[False for i in range(_snake_case )] for j in range(_snake_case )] return canvas def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(_snake_case ): for j, _ in enumerate(_snake_case ): __magic_name__ : Optional[int] = bool(random.getrandbits(1 ) ) def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' __magic_name__ : List[Any] = np.array(_snake_case ) __magic_name__ : Tuple = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_snake_case ): for c, pt in enumerate(_snake_case ): __magic_name__ : Any = __judge_point( _snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __magic_name__ : Tuple = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __magic_name__ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowerCAmelCase_ ( _snake_case : bool , _snake_case : list[list[bool]] ) -> bool: '''simple docstring''' __magic_name__ : List[Any] = 0 __magic_name__ : Optional[int] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __magic_name__ : Union[str, Any] = pt if pt: if alive < 2: __magic_name__ : Optional[Any] = False elif alive == 2 or alive == 3: __magic_name__ : Optional[int] = True elif alive > 3: __magic_name__ : Dict = False else: if alive == 3: __magic_name__ : List[str] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) snake_case : List[Any] = int(sys.argv[1]) # main working structure of this module. snake_case : int = create_canvas(canvas_size) seed(c) snake_case ,snake_case : Union[str, Any] = plt.subplots() fig.show() snake_case : List[Any] = ListedColormap(["w", "k"]) try: while True: snake_case : Tuple = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
41
from __future__ import annotations snake_case : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Any = graph # mapping node to its parent in resulting breadth first tree __magic_name__ : dict[str, str | None] = {} __magic_name__ : List[str] = source_vertex def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.source_vertex} __magic_name__ : Optional[int] = None __magic_name__ : int = [self.source_vertex] # first in first out queue while queue: __magic_name__ : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_a ) __magic_name__ : Dict = vertex queue.append(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): if target_vertex == self.source_vertex: return self.source_vertex __magic_name__ : str = self.parent.get(_a ) if target_vertex_parent is None: __magic_name__ : Union[str, Any] = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_a ) return self.shortest_path(_a ) + f'''->{target_vertex}''' if __name__ == "__main__": snake_case : int = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
41
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: _snake_case = [0] * len(__A ) _snake_case = [] _snake_case = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: _snake_case = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _snake_case = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph lowercase : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
42
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( _snake_case , unittest.TestCase ): lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def snake_case_ ( self , UpperCamelCase__=0 ) -> Tuple: '''simple docstring''' A_ = np.random.RandomState(UpperCamelCase__ ) A_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] A_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A_ = prompt_embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * ["""this is a negative prompt"""] A_ = negative_prompt A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = [] for p in [prompt, negative_prompt]: A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A_ , A_ = embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ort.SessionOptions() A_ = False return options def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # using the PNDM scheduler by default A_ = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """A painting of a squirrel eating a burger""" np.random.seed(0 ) A_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = 0 def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 A_ = False A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """Andromeda galaxy in a bottle""" A_ = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) A_ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
162
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def _a ( a :Dict ) -> Dict: return int(x / 2**20 ) class lowercase_ : '''simple docstring''' def __enter__( self : List[str] ) ->Optional[int]: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero a = torch.cuda.memory_allocated() return self def __exit__( self : Optional[Any] , *__UpperCAmelCase : str ) ->int: """simple docstring""" gc.collect() torch.cuda.empty_cache() a = torch.cuda.memory_allocated() a = torch.cuda.max_memory_allocated() a = bamb(self.end - self.begin ) a = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _a ( a :Accelerator , a :int = 16 , a :str = "bert-base-cased" , a :int = 320 , a :int = 160 , ) -> Optional[int]: a = AutoTokenizer.from_pretrained(a ) a = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"""train[:{n_train}]""", '''validation''': F"""validation[:{n_val}]"""} ) def tokenize_function(a :int ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a = datasets.map( a , batched=a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a :str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''] , shuffle=a , collate_fn=a , batch_size=a ) a = DataLoader( tokenized_datasets['''validation'''] , shuffle=a , collate_fn=a , batch_size=a ) return train_dataloader, eval_dataloader def _a ( a :Any , a :str ) -> int: # Initialize accelerator a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = args.model_name_or_path set_seed(a ) a , a = get_dataloaders(a , a , a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained(a , return_dict=a ) # Instantiate optimizer a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a = optimizer_cls(params=model.parameters() , lr=a ) if accelerator.state.deepspeed_plugin is not None: a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: a = 1 a = (len(a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=0 , num_training_steps=a , ) else: a = DummyScheduler(a , total_num_steps=a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( a , a , a , a , a ) # We need to keep track of how many total steps we have iterated over a = 0 # We also need to keep track of the stating epoch so files are named properly a = 0 # Now we train the model a = {} for epoch in range(a , a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(a ): a = model(**a ) a = outputs.loss a = loss / gradient_accumulation_steps accelerator.backward(a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) a = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(a , a ) def _a ( ) -> List[Any]: a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a , ) parser.add_argument( '''--output_dir''' , type=a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=a , default=a , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=a , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=a , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=a , default=1 , help='''Number of train epochs.''' , ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(a , a ) if __name__ == "__main__": main()
26
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
1
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _snake_case ( _a ): def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,**SCREAMING_SNAKE_CASE__ : str ): if tokenize_kwargs is None: SCREAMING_SNAKE_CASE:Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) SCREAMING_SNAKE_CASE:Any = truncation SCREAMING_SNAKE_CASE:Union[str, Any] = tokenize_kwargs SCREAMING_SNAKE_CASE:int = {} if return_tensors is not None: SCREAMING_SNAKE_CASE:Optional[Any] = return_tensors return preprocess_params, {}, postprocess_params def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.framework SCREAMING_SNAKE_CASE:List[str] = self.tokenizer(SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) return model_inputs def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:List[Any] = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Any ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any] ): return super().__call__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
139
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( _a ): _A : Optional[int] = '''t5''' _A : Union[str, Any] = ['''past_key_values'''] _A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Any = d_model SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv SCREAMING_SNAKE_CASE:Optional[int] = d_ff SCREAMING_SNAKE_CASE:Tuple = num_layers SCREAMING_SNAKE_CASE:str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE:Dict = dropout_rate SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:List[str] = initializer_factor SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj SCREAMING_SNAKE_CASE:str = use_cache SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE:Any = act_info[-1] SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE:int = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _snake_case ( _a ): @property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE:str = {0: "batch"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" ) return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): return 13
139
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase__ : Any =logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') UpperCAmelCase__ : Tuple ={ '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase__ : Dict ={ '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase__ : Dict =sorted(arg_to_scheduler.keys()) UpperCAmelCase__ : Any ='''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class __A ( pl.LightningModule ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="base" , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCAmelCase_ ) lowerCamelCase =0 lowerCamelCase =Path(self.hparams.output_dir ) lowerCamelCase =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: lowerCamelCase =config lowerCamelCase =("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , UpperCAmelCase_ , UpperCAmelCase_ ): assert hasattr(self.config , UpperCAmelCase_ ), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , UpperCAmelCase_ , getattr(self.hparams , UpperCAmelCase_ ) ) if tokenizer is None: lowerCamelCase =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCAmelCase_ , ) else: lowerCamelCase =tokenizer lowerCamelCase =MODEL_MODES[mode] if model is None: lowerCamelCase =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCAmelCase_ , ) else: lowerCamelCase =model def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): lowerCamelCase =self.model_type.from_pretrained(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCamelCase ={"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def _snake_case ( self ): lowerCamelCase =self.model lowerCamelCase =["""bias""", """LayerNorm.weight"""] lowerCamelCase =[ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: lowerCamelCase =Adafactor( UpperCAmelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCAmelCase_ , relative_step=UpperCAmelCase_ ) else: lowerCamelCase =AdamW( UpperCAmelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCamelCase =optimizer lowerCamelCase =self.get_lr_scheduler() return [optimizer], [scheduler] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): return self.validation_step(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.validation_end(UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _snake_case ( self , UpperCAmelCase_ ): if stage == "test": lowerCamelCase =len(self.test_dataloader().dataset ) else: lowerCamelCase =self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=UpperCAmelCase_ ) lowerCamelCase =len(self.train_dataloader().dataset ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): raise NotImplementedError("""You must implement this for your task""" ) def _snake_case ( self ): return self.train_loader def _snake_case ( self ): return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=UpperCAmelCase_ ) def _snake_case ( self ): return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( UpperCAmelCase_ , list(filter(UpperCAmelCase_ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.output_dir.joinpath("""best_tfmr""" ) lowerCamelCase =self.step_count self.model.save_pretrained(UpperCAmelCase_ ) self.tokenizer.save_pretrained(UpperCAmelCase_ ) @staticmethod def _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ): parser.add_argument( """--model_name_or_path""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=UpperCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(UpperCAmelCase_ ).parent / """test_run""" / """cache""" ) , type=UpperCAmelCase_ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=UpperCAmelCase_ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=UpperCAmelCase_ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=UpperCAmelCase_ , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=UpperCAmelCase_ , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=UpperCAmelCase_ , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=UpperCAmelCase_ , metavar=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCAmelCase_ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=UpperCAmelCase_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=UpperCAmelCase_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=UpperCAmelCase_ , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=UpperCAmelCase_ ) parser.add_argument("""--train_batch_size""" , default=32 , type=UpperCAmelCase_ ) parser.add_argument("""--eval_batch_size""" , default=32 , type=UpperCAmelCase_ ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class __A ( pl.Callback ): def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __A ( pl.Callback ): def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCAmelCase_ ) class __A ( pl.Callback ): def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =trainer.lr_schedulers[0]["""scheduler"""] lowerCamelCase ={f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): rank_zero_info("""***** Validation results *****""" ) lowerCamelCase =trainer.callback_metrics # Log results for key in sorted(UpperCAmelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): rank_zero_info("""***** Test results *****""" ) lowerCamelCase =trainer.callback_metrics # Log and save results to file lowerCamelCase =os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(UpperCAmelCase_ , """w""" ) as writer: for key in sorted(UpperCAmelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( """--output_dir""" , default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_UpperCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_UpperCAmelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_UpperCAmelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_UpperCAmelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_UpperCAmelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=_UpperCAmelCase , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_UpperCAmelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[] , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Dict: pl.seed_everything(args.seed ) # init model lowerCamelCase =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: lowerCamelCase =LoggingCallback() lowerCamelCase ={} if args.fpaa: lowerCamelCase =16 if args.gpus > 1: lowerCamelCase ="""auto""" lowerCamelCase ="""ddp""" lowerCamelCase =args.accumulate_grad_batches lowerCamelCase =None lowerCamelCase ="""auto""" lowerCamelCase =pl.Trainer.from_argparse_args( _UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , ) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
262
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return (preds == labels).mean() @dataclass class __A : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : __A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __A = field(metadata={"""help""": """Should contain the data files for the task."""} ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase =processors[data_args.task_name]() lowerCamelCase =processor.get_labels() lowerCamelCase =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )} # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
262
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["GLPNFeatureExtractor"] __UpperCamelCase : str = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = ShapEImgaImgPipeline UpperCamelCase__ = ['''image'''] UpperCamelCase__ = ['''image'''] UpperCamelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase__ = False @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :str ): '''simple docstring''' return 8 @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a = CLIPVisionModel(__magic_name__ ) return model @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = CLIPImageProcessor( crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } a = PriorTransformer(**__magic_name__ ) return model @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) a = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__magic_name__ ) return model def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_image_processor a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) a = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Tuple=0 ): '''simple docstring''' a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = pipe(**self.get_dummy_inputs(__magic_name__ ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = torch_device == """cpu""" a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = 1 a = 2 a = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) a = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = torch.Generator(device=__magic_name__ ).manual_seed(0 ) a = pipe( __magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
228
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCamelCase = datasets.logging.get_logger(__name__) __UpperCamelCase = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __UpperCamelCase = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __UpperCamelCase = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __UpperCamelCase = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> Any: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/google-research/bleurt', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence'), 'references': datasets.Value('string', id='sequence'), }), codebase_urls=['https://github.com/google-research/bleurt'], reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'], ) def a_ ( self, lowerCAmelCase__) -> Any: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').') snake_case_ = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ = self.config_name.upper() else: raise KeyError( f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}') # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) snake_case_ = score.BleurtScorer(os.path.join(lowerCAmelCase__, lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = self.scorer.score(references=lowerCAmelCase__, candidates=lowerCAmelCase__) return {"scores": scores}
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _lowerCamelCase : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> List[Any]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase = getattr(A__ , A__ ) if weight_type is not None: UpperCamelCase = getattr(A__ , A__ ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A__ )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , A__ ) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' else: UpperCamelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A__ ) @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__=None , A__=None , A__=True ) -> int: """simple docstring""" if config_path is not None: UpperCamelCase = UniSpeechSatConfig.from_pretrained(A__ ) else: UpperCamelCase = UniSpeechSatConfig() UpperCamelCase = '' if is_finetuned: UpperCamelCase = UniSpeechSatForCTC(A__ ) else: UpperCamelCase = UniSpeechSatForPreTraining(A__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCamelCase = model[0].eval() recursively_load_weights(A__ , A__ ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCamelCase : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
28
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _lowerCamelCase : Optional[int] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _lowerCamelCase : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False ): """simple docstring""" if rouge_types is None: UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase__ , use_stemmer=UpperCamelCase__ ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = scorer.score(UpperCamelCase__ , UpperCamelCase__ ) if use_aggregator: aggregator.add_scores(UpperCamelCase__ ) else: scores.append(UpperCamelCase__ ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
28
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = LDMTextToImagePipeline UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase : List[str] = CLIPTextModel(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Any = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=0 ) -> Union[str, Any]: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Tuple = LDMTextToImagePipeline(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) _UpperCAmelCase : List[str] = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=torch.floataa , lowerCAmelCase__ : Tuple=0 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) _UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) _UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.get_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase : int = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) _UpperCAmelCase : Optional[int] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa , lowerCAmelCase__ : Any=0 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : int = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 5_0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = self.get_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipe(**lowerCAmelCase__ ).images[0] _UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) _UpperCAmelCase : Any = np.abs(expected_image - image ).max() assert max_diff < 1e-3
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : str , a : Any=sys.maxsize ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : str = "bilinear" SCREAMING_SNAKE_CASE : List[str] = max_size SCREAMING_SNAKE_CASE : int = short_edge_length def __call__( self : List[Any] , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for img in imgs: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE : str = size * 1.0 / min(a , a ) if h < w: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = size, scale * w else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = scale * h, size if max(a , a ) > self.max_size: SCREAMING_SNAKE_CASE : Any = self.max_size * 1.0 / max(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = newh * scale SCREAMING_SNAKE_CASE : Any = neww * scale SCREAMING_SNAKE_CASE : Union[str, Any] = int(neww + 0.5 ) SCREAMING_SNAKE_CASE : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE : Dict = Image.fromarray(a ) SCREAMING_SNAKE_CASE : Dict = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE : Tuple = np.asarray(a ) else: SCREAMING_SNAKE_CASE : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.interpolate( a , (newh, neww) , mode=self.interp_method , align_corners=a ).squeeze(0 ) img_augs.append(a ) return img_augs class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE : int = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE : Union[str, Any] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE : str = cfg.PAD_VALUE SCREAMING_SNAKE_CASE : int = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE : Any = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = lambda a : (x - self.pixel_mean) / self.pixel_std def __UpperCamelCase ( self : Tuple , a : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tuple(max(a ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE : str = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [ nn.functional.pad( a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a , a ) ] return torch.stack(a ), torch.tensor(a ) def __call__( self : Optional[Any] , a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(a , a ): SCREAMING_SNAKE_CASE : int = [images] if single_image: assert len(a ) == 1 for i in range(len(a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a , images.pop(a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a , torch.as_tensor(img_tensorize(images.pop(a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE : Optional[int] = self.aug(a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalizer(a ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.pad(a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE : Tuple = torch.true_divide(a , a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase__ ( _a , _a): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase__ ( _a , _a): assert torch.isfinite(_a).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = box_size tensor[:, 0].clamp_(min=0 , max=_a) tensor[:, 1].clamp_(min=0 , max=_a) tensor[:, 2].clamp_(min=0 , max=_a) tensor[:, 3].clamp_(min=0 , max=_a)
76
'''simple docstring''' from PIL import Image def _a( UpperCamelCase__ : Image, UpperCamelCase__ : float ): '''simple docstring''' def brightness(UpperCamelCase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a_ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
152
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def A__ ( lowerCamelCase ) -> Any: UpperCamelCase_: Optional[int] = DPTConfig() if "large" in checkpoint_url: UpperCamelCase_: Tuple = 10_24 UpperCamelCase_: Union[str, Any] = 40_96 UpperCamelCase_: Union[str, Any] = 24 UpperCamelCase_: str = 16 UpperCamelCase_: Dict = [5, 11, 17, 23] UpperCamelCase_: Any = [2_56, 5_12, 10_24, 10_24] UpperCamelCase_: str = (1, 3_84, 3_84) if "ade" in checkpoint_url: UpperCamelCase_: Tuple = True UpperCamelCase_: Any = 1_50 UpperCamelCase_: str = """huggingface/label-files""" UpperCamelCase_: List[Any] = """ade20k-id2label.json""" UpperCamelCase_: List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) UpperCamelCase_: str = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_: str = idalabel UpperCamelCase_: str = {v: k for k, v in idalabel.items()} UpperCamelCase_: Tuple = [1, 1_50, 4_80, 4_80] return config, expected_shape def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: int = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase ) -> Union[str, Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase_: int = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCamelCase_: List[str] = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCamelCase_: Optional[int] = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: UpperCamelCase_: Any = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCamelCase_: int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCamelCase_: List[str] = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCamelCase_: int = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCamelCase_: str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase_: Tuple = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: UpperCamelCase_: str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase_: Optional[int] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCamelCase_: List[str] = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCamelCase_: Optional[Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCamelCase_: Union[str, Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCamelCase_: List[str] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCamelCase_: Optional[int] = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCamelCase_: str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCamelCase_: Dict = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase_: Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCamelCase_: List[str] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCamelCase_: List[Any] = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCamelCase_: List[str] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCamelCase_: Optional[int] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCamelCase_: Tuple = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase_: int = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase_: int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCamelCase_: List[str] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCamelCase_: Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCamelCase_: Any = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCamelCase_: Optional[Any] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCamelCase_: Optional[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCamelCase_: List[str] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCamelCase_: Dict = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCamelCase_: Tuple = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_: Union[str, Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCamelCase_: Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_: Tuple = in_proj_weight[: config.hidden_size, :] UpperCamelCase_: int = in_proj_bias[: config.hidden_size] UpperCamelCase_: Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_: Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase_: Any = in_proj_bias[-config.hidden_size :] def A__ ( ) -> Dict: UpperCamelCase_: Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_: List[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_, UpperCamelCase_: Any = get_dpt_config(lowerCamelCase ) # load original state_dict from URL UpperCamelCase_: Dict = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): UpperCamelCase_: Any = state_dict.pop(lowerCamelCase ) UpperCamelCase_: Optional[int] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase , lowerCamelCase ) # load HuggingFace model UpperCamelCase_: Optional[int] = DPTForSemanticSegmentation(lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image UpperCamelCase_: str = 4_80 if """ade""" in checkpoint_url else 3_84 UpperCamelCase_: Union[str, Any] = DPTImageProcessor(size=lowerCamelCase ) UpperCamelCase_: List[Any] = prepare_img() UpperCamelCase_: Optional[int] = image_processor(lowerCamelCase , return_tensors="""pt""" ) # forward pass UpperCamelCase_: Optional[int] = model(**lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**lowerCamelCase ).predicted_depth # Assert logits UpperCamelCase_: Optional[int] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCamelCase_: int = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase ) ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCamelCase_ : Any = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
223
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[Any] = DownBlockaD # noqa F405 a :Any = 'down' def _lowercase ( self : Dict ) -> str: lowercase_ = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :int = ResnetDownsampleBlockaD # noqa F405 a :Dict = 'down' def _lowercase ( self : Dict ) -> int: lowercase_ = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :int = AttnDownBlockaD # noqa F405 a :Tuple = 'down' def _lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase_ = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = CrossAttnDownBlockaD # noqa F405 a :str = 'down' def _lowercase ( self : List[Any] ) -> Optional[Any]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict def _lowercase ( self : List[Any] ) -> Dict: lowercase_ = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[str] = SimpleCrossAttnDownBlockaD # noqa F405 a :List[Any] = 'down' @property def _lowercase ( self : Tuple ) -> Dict: return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = SkipDownBlockaD # noqa F405 a :str = 'down' @property def _lowercase ( self : int ) -> Optional[int]: return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> List[str]: lowercase_ = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[Any] = AttnSkipDownBlockaD # noqa F405 a :Optional[Any] = 'down' @property def _lowercase ( self : Optional[int] ) -> List[str]: return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> Dict: lowercase_ = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = DownEncoderBlockaD # noqa F405 a :Tuple = 'down' @property def _lowercase ( self : List[Any] ) -> Optional[int]: return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Dict: lowercase_ = { '''in_channels''': 3_2, '''out_channels''': 3_2, } lowercase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : List[Any] ) -> Tuple: lowercase_ = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = AttnDownEncoderBlockaD # noqa F405 a :Optional[Any] = 'down' @property def _lowercase ( self : List[str] ) -> Dict: return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = { '''in_channels''': 3_2, '''out_channels''': 3_2, } lowercase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : str ) -> Any: lowercase_ = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = UNetMidBlockaD # noqa F405 a :str = 'mid' def _lowercase ( self : Any ) -> int: lowercase_ = { '''in_channels''': 3_2, '''temb_channels''': 1_2_8, } lowercase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = UNetMidBlockaDCrossAttn # noqa F405 a :str = 'mid' def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict def _lowercase ( self : Any ) -> str: lowercase_ = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = UNetMidBlockaDSimpleCrossAttn # noqa F405 a :List[str] = 'mid' @property def _lowercase ( self : Any ) -> int: return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict def _lowercase ( self : Tuple ) -> int: lowercase_ = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = UpBlockaD # noqa F405 a :Optional[int] = 'up' @property def _lowercase ( self : List[str] ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[Any] = ResnetUpsampleBlockaD # noqa F405 a :Tuple = 'up' @property def _lowercase ( self : int ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Optional[Any]: lowercase_ = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = CrossAttnUpBlockaD # noqa F405 a :Optional[Any] = 'up' @property def _lowercase ( self : Optional[Any] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Optional[Any]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 a :List[str] = 'up' @property def _lowercase ( self : Tuple ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> List[str]: lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common() lowercase_ = 3_2 return init_dict, inputs_dict def _lowercase ( self : Dict ) -> Any: lowercase_ = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = AttnUpBlockaD # noqa F405 a :Tuple = 'up' @property def _lowercase ( self : Any ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = SkipUpBlockaD # noqa F405 a :Tuple = 'up' @property def _lowercase ( self : Tuple ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Optional[int]: lowercase_ = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Union[str, Any] = AttnSkipUpBlockaD # noqa F405 a :List[Any] = 'up' @property def _lowercase ( self : Optional[Any] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> List[str]: lowercase_ = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = UpDecoderBlockaD # noqa F405 a :Optional[Any] = 'up' @property def _lowercase ( self : Dict ) -> Union[str, Any]: return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Tuple: lowercase_ = {'''in_channels''': 3_2, '''out_channels''': 3_2} lowercase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : int ) -> Tuple: lowercase_ = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = AttnUpDecoderBlockaD # noqa F405 a :List[str] = 'up' @property def _lowercase ( self : Union[str, Any] ) -> Optional[int]: return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> str: lowercase_ = {'''in_channels''': 3_2, '''out_channels''': 3_2} lowercase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(SCREAMING_SNAKE_CASE_ )
30
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None , ): snake_case : int = {} if train_file is not None: snake_case : List[Any] = [train_file] if eval_file is not None: snake_case : Optional[int] = [eval_file] if test_file is not None: snake_case : Any = [test_file] snake_case : int = datasets.load_dataset("csv" , data_files=__lowerCamelCase ) snake_case : str = list(ds[list(files.keys() )[0]].features.keys() ) snake_case : int = features_name.pop(__lowerCamelCase ) snake_case : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case : str = {label: i for i, label in enumerate(__lowerCamelCase )} snake_case : List[Any] = tokenizer.model_input_names snake_case : List[Any] = {} if len(__lowerCamelCase ) == 1: for k in files.keys(): snake_case : Tuple = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) , batched=__lowerCamelCase , ) elif len(__lowerCamelCase ) == 2: for k in files.keys(): snake_case : List[Any] = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) , batched=__lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case : str = {k: v for k, v in ex.items() if k in input_names} snake_case : Any = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case : str = {k: v for k, v in ex.items() if k in input_names} snake_case : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case : int = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case : Tuple = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case : Optional[int] = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCamelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase : A__ : int = field(metadata={"help": "Which column contains the label"} ) A__ : str = field(default=A_ ,metadata={"help": "The path of the training file"} ) A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the development file"} ) A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the test file"} ) A__ : int = field( default=1_28 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) A__ : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase : A__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A__ : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A__ : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A__ : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case , snake_case , snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case , snake_case , snake_case , snake_case : Tuple = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowerCamelCase ) , labelaid=__lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__lowerCamelCase : EvalPrediction ) -> Dict: snake_case : Optional[int] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case : int = TFTrainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case : Any = trainer.evaluate() snake_case : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__lowerCamelCase ) return results if __name__ == "__main__": main()
59
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase__ : List[str] = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def __lowercase ( _a = "mumbai" ): snake_case_ : Tuple = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): snake_case_ : Any = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() snake_case_ : Any = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
155
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ : List[Any] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ['''CLIPFeatureExtractor'''] lowercase__ : Any = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
155
1
import math def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' if ( not isinstance(__snake_case ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' if ( not isinstance(__snake_case ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
209
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__(__snake_case ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__() -> Any: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1] ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = [1, 2] lowerCamelCase__ = {'''a''': 1, '''b''': 2} lowerCamelCase__ = {'''a''': [1, 2], '''b''': [3, 4]} lowerCamelCase__ = {'''a''': {'''1''': 1}, '''b''': 2} lowerCamelCase__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {'''a''': 2, '''b''': 3} lowerCamelCase__ = {'''a''': [2, 3], '''b''': [4, 5]} lowerCamelCase__ = {'''a''': {'''1''': 2}, '''b''': 3} lowerCamelCase__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
209
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCAmelCase ( unittest.TestCase , A ): def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = load_tool('text-classification') self.tool.setup() _UpperCAmelCase = load_tool('text-classification' , remote=A) def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(A , 'positive') def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" _UpperCAmelCase = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(A , 'positive') def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(A , 'positive') def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(A , 'positive')
290
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = 'Hello world! cécé herlolip' def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : int = FairseqRobertaModel.from_pretrained(_snake_case ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE__ : Any = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" ,_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = XLMRobertaXLForSequenceClassification(_snake_case ) if classification_head else XLMRobertaXLForMaskedLM(_snake_case ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE__ : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ : int = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ : str = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ : Optional[int] = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ : torch.Tensor = roberta.encode(_snake_case ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE__ : Tuple = model(_snake_case )[0] if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_snake_case ) ) else: SCREAMING_SNAKE_CASE__ : Tuple = roberta.model(_snake_case )[0] print(our_output.shape ,their_output.shape ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ : Tuple = torch.allclose(_snake_case ,_snake_case ,atol=1E-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_snake_case ).mkdir(parents=_snake_case ,exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase__ : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
25
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
1
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int | None = None , lowerCamelCase_ : int | None = None ): """simple docstring""" if start is None: UpperCAmelCase_ : Optional[Any] = 0 if end is None: UpperCAmelCase_ : Optional[int] = len(lowerCamelCase_ ) - 1 if start >= end: return UpperCAmelCase_ : Optional[int] = (start + end) // 2 slowsort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) slowsort(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = sequence[mid], sequence[end] slowsort(lowerCamelCase_ , lowerCamelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
274
'''simple docstring''' snake_case__ : str = '''Tobias Carryer''' from time import time class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase_ : str = multiplier UpperCAmelCase_ : Dict = increment UpperCAmelCase_ : Tuple = modulo UpperCAmelCase_ : Dict = seed def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : Any = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
274
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''SpeechT5FeatureExtractor''' UpperCAmelCase_ : Union[str, Any] = '''SpeechT5Tokenizer''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase) def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = kwargs.pop("""audio""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""text""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""text_target""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""audio_target""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""sampling_rate""" , __lowerCAmelCase) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""") if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""") if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""") if audio is not None: lowerCAmelCase = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase) elif text is not None: lowerCAmelCase = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase) else: lowerCAmelCase = None if audio_target is not None: lowerCAmelCase = self.feature_extractor(audio_target=__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = targets["""input_values"""] elif text_target is not None: lowerCAmelCase = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = targets["""input_ids"""] else: lowerCAmelCase = None if inputs is None: return targets if targets is not None: lowerCAmelCase = labels lowerCAmelCase = targets.get("""attention_mask""") if decoder_attention_mask is not None: lowerCAmelCase = decoder_attention_mask return inputs def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = kwargs.pop("""input_values""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""input_ids""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""labels""" , __lowerCAmelCase) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""") if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""") if input_values is not None: lowerCAmelCase = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase) elif input_ids is not None: lowerCAmelCase = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase) else: lowerCAmelCase = None if labels is not None: if "input_ids" in labels or (isinstance(__lowerCAmelCase , __lowerCAmelCase) and "input_ids" in labels[0]): lowerCAmelCase = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = targets["""input_ids"""] else: lowerCAmelCase = self.feature_extractor.feature_size lowerCAmelCase = self.feature_extractor.num_mel_bins lowerCAmelCase = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = feature_size_hack lowerCAmelCase = targets["""input_values"""] else: lowerCAmelCase = None if inputs is None: return targets if targets is not None: lowerCAmelCase = labels lowerCAmelCase = targets.get("""attention_mask""") if decoder_attention_mask is not None: lowerCAmelCase = decoder_attention_mask return inputs def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase)
272
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__( enum.Enum ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Any = 2 @add_end_docstrings(lowerCAmelCase__ ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""") lowerCAmelCase = handle_long_generation preprocess_params.update(__lowerCAmelCase) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) if len(__lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , __lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": lowerCAmelCase = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.FULL_TEXT , __lowerCAmelCase=True): """simple docstring""" lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(__lowerCAmelCase) return records
272
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Dict =original_name.split("." )[0] lowerCamelCase__: Any =key.split("." ) lowerCamelCase__: Union[str, Any] =int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 2] ) lowerCamelCase__: List[Any] =int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 1] ) lowerCamelCase__: List[str] =orig_block_num - offset lowerCamelCase__: Tuple =key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =OrderedDict() lowerCamelCase__: Optional[int] =0, 0 for key, value in state_dict.items(): if key.startswith("network" ): lowerCamelCase__: Dict =key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCamelCase__: int =key[: key.find("proj" )] lowerCamelCase__: Dict =key.replace(__SCREAMING_SNAKE_CASE , F"""patch_embeddings.{total_embed_found}.""" ) lowerCamelCase__: Optional[int] =key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: lowerCamelCase__: int ="poolformer.encoder." + key if "mlp.fc1" in key: lowerCamelCase__: Optional[Any] =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: lowerCamelCase__: Optional[int] =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: lowerCamelCase__: Any =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: lowerCamelCase__: int =key.replace("head" , "classifier" ) lowerCamelCase__: Tuple =value return new_state_dict def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Union[str, Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: int =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Any =PoolFormerConfig() # set attributes based on model_name lowerCamelCase__: Any ="huggingface/label-files" lowerCamelCase__: int =model_name[-3:] lowerCamelCase__: List[Any] =1000 lowerCamelCase__: Tuple ="imagenet-1k-id2label.json" lowerCamelCase__: str =(1, 1000) # set config attributes lowerCamelCase__: Dict =json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: List[str] ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase__: Any =idalabel lowerCamelCase__: Any ={v: k for k, v in idalabel.items()} if size == "s12": lowerCamelCase__: Dict =[2, 2, 6, 2] lowerCamelCase__: str =[64, 128, 320, 512] lowerCamelCase__: Optional[Any] =4.0 lowerCamelCase__: Union[str, Any] =0.9 elif size == "s24": lowerCamelCase__: Tuple =[4, 4, 12, 4] lowerCamelCase__: List[str] =[64, 128, 320, 512] lowerCamelCase__: Tuple =4.0 lowerCamelCase__: Optional[int] =0.9 elif size == "s36": lowerCamelCase__: int =[6, 6, 18, 6] lowerCamelCase__: int =[64, 128, 320, 512] lowerCamelCase__: List[str] =4.0 lowerCamelCase__: Dict =1e-6 lowerCamelCase__: List[Any] =0.9 elif size == "m36": lowerCamelCase__: Dict =[6, 6, 18, 6] lowerCamelCase__: Dict =[96, 192, 384, 768] lowerCamelCase__: str =4.0 lowerCamelCase__: Union[str, Any] =1e-6 lowerCamelCase__: Union[str, Any] =0.9_5 elif size == "m48": lowerCamelCase__: str =[8, 8, 24, 8] lowerCamelCase__: Optional[int] =[96, 192, 384, 768] lowerCamelCase__: str =4.0 lowerCamelCase__: int =1e-6 lowerCamelCase__: str =0.9_5 else: raise ValueError(F"""Size {size} not supported""" ) # load image processor lowerCamelCase__: Union[str, Any] =PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) # Prepare image lowerCamelCase__: int =prepare_img() lowerCamelCase__: Tuple =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict lowerCamelCase__: Optional[int] =torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys lowerCamelCase__: Any =rename_keys(__SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCamelCase__: str =PoolFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowerCamelCase__: Any =PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) lowerCamelCase__: Any =image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass lowerCamelCase__: int =model(__SCREAMING_SNAKE_CASE ) lowerCamelCase__: Union[str, Any] =outputs.logits # define expected logit slices for different models if size == "s12": lowerCamelCase__: List[str] =torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": lowerCamelCase__: Optional[int] =torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": lowerCamelCase__: List[str] =torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": lowerCamelCase__: Union[str, Any] =torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": lowerCamelCase__: List[str] =torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
370
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : int) ->None: '''simple docstring''' lowerCamelCase__: int =num_of_nodes lowerCamelCase__: list[list[int]] =[] lowerCamelCase__: dict[int, int] ={} def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight]) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int) ->None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: lowerCamelCase__: Dict =self.find_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: lowerCamelCase__: Optional[int] =v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_) elif component_size[u_node] >= component_size[v_node]: lowerCamelCase__: Tuple =self.find_component(UpperCAmelCase_) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->None: '''simple docstring''' lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =0 lowerCamelCase__: list[Any] =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) lowerCamelCase__: List[str] =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: List[Any] =self.m_component[u] lowerCamelCase__: str =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCamelCase__: Union[str, Any] =[u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: str =self.m_component[u] lowerCamelCase__: Any =self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 lowerCamelCase__: Tuple =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def lowerCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
273
0
"""simple docstring""" import qiskit def UpperCamelCase__ ( lowercase__ : int , lowercase__ : int ): snake_case : Tuple = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register snake_case : List[str] = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator snake_case : List[str] = qiskit.execute(lowercase__ , lowercase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
148
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 13 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 37 , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : List[str] = image_size snake_case : int = patch_size snake_case : int = num_channels snake_case : Any = is_training snake_case : int = use_labels snake_case : Optional[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Dict = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : Any = encoder_stride snake_case : Tuple = num_attention_outputs snake_case : Dict = embed_dim snake_case : Optional[Any] = embed_dim + 1 snake_case : Any = resolution snake_case : int = depths snake_case : int = hidden_sizes snake_case : int = dim snake_case : Tuple = mlp_expansion_ratio def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = self.type_sequence_label_size snake_case : Tuple = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Tuple = 1 snake_case : Any = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Tuple = config_and_inputs snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): a__ : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : int = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : int = False a__ : List[str] = False a__ : Union[str, Any] = False a__ : Optional[Any] = False a__ : str = False def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = TFEfficientFormerModelTester(self ) snake_case : Dict = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(SCREAMING_SNAKE_CASE ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case : Optional[int] = seq_length * self.model_tester.chunk_length else: snake_case : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case : Optional[int] = True snake_case : List[Any] = False snake_case : Optional[int] = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case : Any = model(SCREAMING_SNAKE_CASE ) self.assertTrue(outputs_dict is not None ) def UpperCamelCase__ ( ): snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case : List[Any] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Dict = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case : int = self.default_image_processor snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Any = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : Any = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while second != 0: lowercase__ : List[Any] = first & second first ^= second lowercase__ : Optional[int] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('''Enter the first number: ''').strip()) UpperCamelCase = int(input('''Enter the second number: ''').strip()) print(f"{add(first, second) = }")
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
1
def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]: if not head: return True # split the list to two parts UpperCamelCase_ , UpperCamelCase_ = head.next, head while fast and fast.next: UpperCamelCase_ = fast.next.next UpperCamelCase_ = slow.next UpperCamelCase_ = slow.next UpperCamelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase_ = None while second: UpperCamelCase_ = second.next UpperCamelCase_ = node UpperCamelCase_ = second UpperCamelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase_ = node.next UpperCamelCase_ = head.next return True def lowerCamelCase__ ( a__ : List[str] ) -> int: if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase_ = UpperCamelCase_ = UpperCamelCase_ = head while fast and fast.next: UpperCamelCase_ , UpperCamelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase_ = [slow.val] while slow.next: UpperCamelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase_ = cur.next return True def lowerCamelCase__ ( a__ : Tuple ) -> Dict: if not head or not head.next: return True UpperCamelCase_ = {} UpperCamelCase_ = 0 while head: if head.val in d: d[head.val].append(a__ ) else: UpperCamelCase_ = [pos] UpperCamelCase_ = head.next pos += 1 UpperCamelCase_ = pos - 1 UpperCamelCase_ = 0 for v in d.values(): if len(a__ ) % 2 != 0: middle += 1 else: UpperCamelCase_ = 0 for i in range(0 , len(a__ ) ): if v[i] + v[len(a__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
261
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """EncodecFeatureExtractor""" A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.feature_extractor UpperCamelCase_ = False def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if audio is not None: UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase_ = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase_ = audio_inputs["""padding_mask"""] return inputs def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase ) else: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = to_numpy(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape if padding_mask is None: return list(__UpperCamelCase ) UpperCamelCase_ = to_numpy(__UpperCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase_ = seq_len - padding_mask.shape[-1] UpperCamelCase_ = 1 - self.feature_extractor.padding_value UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase ) UpperCamelCase_ = audio_values.tolist() for i in range(__UpperCamelCase ): UpperCamelCase_ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 ) return audio_values
261
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : int = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
from __future__ import annotations from collections.abc import Callable __lowerCAmelCase = list[list[float | int]] def snake_case_ ( snake_case , snake_case ) -> Matrix: lowercase__: int = len(snake_case ) lowercase__: Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case )] lowercase__: int lowercase__: int lowercase__: int lowercase__: int lowercase__: int lowercase__: float for row in range(snake_case ): for col in range(snake_case ): lowercase__: List[Any] = matrix[row][col] lowercase__: Optional[int] = vector[row][0] lowercase__: str = 0 lowercase__: Any = 0 while row < size and col < size: # pivoting lowercase__: List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case , snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase__ , lowercase__: Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , snake_case ): lowercase__: Any = augmented[rowa][col] / augmented[row][col] lowercase__: int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , snake_case ): for row in range(snake_case ): lowercase__: Union[str, Any] = augmented[row][col] / augmented[col][col] for cola in range(snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case ) ] def snake_case_ ( snake_case ) -> Callable[[int], int]: lowercase__: int = len(snake_case ) lowercase__: Matrix = [[0 for _ in range(snake_case )] for _ in range(snake_case )] lowercase__: Matrix = [[0] for _ in range(snake_case )] lowercase__: Matrix lowercase__: int lowercase__: int lowercase__: int for x_val, y_val in enumerate(snake_case ): for col in range(snake_case ): lowercase__: List[str] = (x_val + 1) ** (size - col - 1) lowercase__: str = y_val lowercase__: Optional[int] = solve(snake_case , snake_case ) def interpolated_func(snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case ) ) return interpolated_func def snake_case_ ( snake_case ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def snake_case_ ( snake_case = question_function , snake_case = 10 ) -> int: lowercase__: list[int] = [func(snake_case ) for x_val in range(1 , order + 1 )] lowercase__: list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase__: int = 0 lowercase__: Callable[[int], int] lowercase__: int for poly in polynomials: lowercase__: List[str] = 1 while func(snake_case ) == poly(snake_case ): x_val += 1 ret += poly(snake_case ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
196
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase: Dict = logging.get_logger(__name__) _UpperCamelCase: Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _UpperCamelCase: Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _UpperCamelCase: Any = {'facebook/blenderbot-3B': 1_2_8} class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['input_ids', 'attention_mask'] _lowerCamelCase = BlenderbotTokenizer def __init__( self : List[str], lowerCAmelCase : List[Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : Tuple="replace", lowerCAmelCase : List[Any]="<s>", lowerCAmelCase : Union[str, Any]="</s>", lowerCAmelCase : Optional[Any]="</s>", lowerCAmelCase : int="<s>", lowerCAmelCase : str="<unk>", lowerCAmelCase : int="<pad>", lowerCAmelCase : Dict="<mask>", lowerCAmelCase : int=False, lowerCAmelCase : List[Any]=True, **lowerCAmelCase : Optional[int], ) -> str: super().__init__( lowerCAmelCase, lowerCAmelCase, tokenizer_file=lowerCAmelCase, errors=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, sep_token=lowerCAmelCase, cls_token=lowerCAmelCase, unk_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token=lowerCAmelCase, add_prefix_space=lowerCAmelCase, trim_offsets=lowerCAmelCase, **lowerCAmelCase, ) lowercase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowerCAmelCase ) != add_prefix_space: lowercase : Tuple = getattr(lowerCAmelCase, pre_tok_state.pop('type' ) ) lowercase : Optional[int] = add_prefix_space lowercase : Tuple = pre_tok_class(**lowerCAmelCase ) lowercase : Union[str, Any] = add_prefix_space lowercase : Dict = 'post_processor' lowercase : Dict = getattr(self.backend_tokenizer, lowerCAmelCase, lowerCAmelCase ) if tokenizer_component_instance: lowercase : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : List[Any] = tuple(state['sep'] ) if "cls" in state: lowercase : Optional[int] = tuple(state['cls'] ) lowercase : Union[str, Any] = False if state.get('add_prefix_space', lowerCAmelCase ) != add_prefix_space: lowercase : Any = add_prefix_space lowercase : Tuple = True if state.get('trim_offsets', lowerCAmelCase ) != trim_offsets: lowercase : Dict = trim_offsets lowercase : Union[str, Any] = True if changes_to_apply: lowercase : Any = getattr(lowerCAmelCase, state.pop('type' ) ) lowercase : List[str] = component_class(**lowerCAmelCase ) setattr(self.backend_tokenizer, lowerCAmelCase, lowerCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : Optional[int], lowerCAmelCase : Optional[Any] ) -> Any: lowercase : Tuple = AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else value lowercase : str = value def lowercase ( self : List[Any], *lowerCAmelCase : Any, **lowerCAmelCase : Optional[Any] ) -> BatchEncoding: lowercase : Optional[Any] = kwargs.get('is_split_into_words', lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[Any], *lowerCAmelCase : Dict, **lowerCAmelCase : Union[str, Any] ) -> BatchEncoding: lowercase : str = kwargs.get('is_split_into_words', lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: lowercase : Optional[int] = self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : List[int], lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: lowercase : str = [self.sep_token_id] lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : List[Any], lowerCAmelCase : List[int], lowerCAmelCase : Optional[List[int]] = None ) -> Union[str, Any]: return token_ids_a + [self.eos_token_id] def lowercase ( self : Dict, lowerCAmelCase : "Conversation" ) -> List[int]: lowercase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase ) lowercase : Dict = ' '.join(lowerCAmelCase ) lowercase : int = self.encode(lowerCAmelCase ) if len(lowerCAmelCase ) > self.model_max_length: lowercase : Any = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
53
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase: str = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCamelCase: int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCamelCase: Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : List[str] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Optional[Any] ) -> Optional[Any]: lowercase : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase : Any = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase : int = evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
53
1
"""simple docstring""" import math from datetime import datetime, timedelta def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: __lowerCAmelCase: str = year % 1_9 __lowerCAmelCase: List[Any] = year % 4 __lowerCAmelCase: Tuple = year % 7 __lowerCAmelCase: Optional[Any] = math.floor(year / 1_0_0 ) __lowerCAmelCase: int = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowerCAmelCase: str = leap_day_inhibits / 4 __lowerCAmelCase: List[Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowerCAmelCase: Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowerCAmelCase: Tuple = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowerCAmelCase: List[str] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 1_8 ) else: return datetime(UpperCAmelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __A = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
217
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
0
import numpy as np from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ : Tuple = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 return updated_arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : List[str] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCamelCase__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0