code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __A ( lowerCAmelCase ):
'''simple docstring'''
lowerCAmelCase_ = """Speech2TextFeatureExtractor"""
lowerCAmelCase_ = """Speech2TextTokenizer"""
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = self.feature_extractor
lowerCamelCase__ = False
def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
lowerCamelCase__ = kwargs.pop('''raw_speech''' )
else:
lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase )
lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase )
lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = args[0]
lowerCamelCase__ = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None:
lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCamelCase__ = encodings['''input_ids''']
return inputs
def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@contextmanager
def __lowerCamelCase ( self ):
'''simple docstring'''
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
lowerCamelCase__ = True
lowerCamelCase__ = self.tokenizer
yield
lowerCamelCase__ = self.feature_extractor
lowerCamelCase__ = False
| 209 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __A ( lowerCAmelCase ):
'''simple docstring'''
lowerCAmelCase_ = """Speech2TextFeatureExtractor"""
lowerCAmelCase_ = """Speech2TextTokenizer"""
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = self.feature_extractor
lowerCamelCase__ = False
def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
lowerCamelCase__ = kwargs.pop('''raw_speech''' )
else:
lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase )
lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase )
lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = args[0]
lowerCamelCase__ = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None:
lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCamelCase__ = encodings['''input_ids''']
return inputs
def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@contextmanager
def __lowerCamelCase ( self ):
'''simple docstring'''
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
lowerCamelCase__ = True
lowerCamelCase__ = self.tokenizer
yield
lowerCamelCase__ = self.feature_extractor
lowerCamelCase__ = False
| 209 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
"""uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""",
}
class _snake_case (__SCREAMING_SNAKE_CASE):
__A : int ="mra"
def __init__( self ,_snake_case=5_02_65 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=1 ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case="absolute" ,_snake_case=4 ,_snake_case="full" ,_snake_case=0 ,_snake_case=0 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,**_snake_case ,):
super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case )
UpperCAmelCase_ : int = vocab_size
UpperCAmelCase_ : Tuple = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : int = num_attention_heads
UpperCAmelCase_ : Any = intermediate_size
UpperCAmelCase_ : Any = hidden_act
UpperCAmelCase_ : List[Any] = hidden_dropout_prob
UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = initializer_range
UpperCAmelCase_ : Dict = type_vocab_size
UpperCAmelCase_ : Optional[int] = layer_norm_eps
UpperCAmelCase_ : Tuple = position_embedding_type
UpperCAmelCase_ : Optional[Any] = block_per_row
UpperCAmelCase_ : Any = approx_mode
UpperCAmelCase_ : Dict = initial_prior_first_n_blocks
UpperCAmelCase_ : str = initial_prior_diagonal_n_blocks
| 67 |
'''simple docstring'''
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def a__ ( ) -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 67 | 1 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def _a ( UpperCamelCase_ : int ) -> str:
"""simple docstring"""
def wrapper(*UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase__ = timeit.default_timer()
lowerCAmelCase__ = func(*UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase__ = timeit.default_timer() - starttime
return delta
lowerCAmelCase__ = func.__name__
return wrapper
def _a ( UpperCamelCase_ : dict , UpperCamelCase_ : int=100 , UpperCamelCase_ : Optional[int]=None ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = seq_shapes or {}
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(UpperCamelCase_ , _ArrayXD ):
lowerCAmelCase__ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(UpperCamelCase_ , datasets.Value ):
if v.dtype == "string":
lowerCAmelCase__ = "The small grey turtle was surprisingly fast when challenged."
else:
lowerCAmelCase__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(UpperCamelCase_ , datasets.Sequence ):
while isinstance(UpperCamelCase_ , datasets.Sequence ):
lowerCAmelCase__ = v.feature
lowerCAmelCase__ = seq_shapes[k]
lowerCAmelCase__ = np.random.rand(*UpperCamelCase_ ).astype(v.dtype )
lowerCAmelCase__ = data
dummy_data.append((i, example) )
return dummy_data
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=100 , UpperCamelCase_ : Dict=None ) -> int:
"""simple docstring"""
lowerCAmelCase__ = generate_examples(UpperCamelCase_ , num_examples=UpperCamelCase_ , seq_shapes=UpperCamelCase_ )
with ArrowWriter(features=UpperCamelCase_ , path=UpperCamelCase_ ) as writer:
for key, record in dummy_data:
lowerCAmelCase__ = features.encode_example(UpperCamelCase_ )
writer.write(UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCAmelCase__ = datasets.Dataset.from_file(filename=UpperCamelCase_ , info=datasets.DatasetInfo(features=UpperCamelCase_ ) )
return dataset
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
lowercase_ = "The Nymphenburg Palace is a beautiful palace in Munich!"
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1_0_2_4,
"""hidden_size""": 7_6_8,
"""max_length""": 5_1_2,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1_0_2_4,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1E-5,
"""token_type_vocab_size""": 2,
}
__snake_case : Any = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__snake_case : Any = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=__SCREAMING_SNAKE_CASE , output_all_encodings=__SCREAMING_SNAKE_CASE , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , __SCREAMING_SNAKE_CASE ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__snake_case : Optional[Any] = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
__snake_case : List[Any] = os.path.join(get_home_dir() , """models""" )
__snake_case : Optional[Any] = _load_vocab(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cls=__SCREAMING_SNAKE_CASE )
__snake_case : Dict = nlp.model.BERTModel(
__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=__SCREAMING_SNAKE_CASE , use_token_type_embed=__SCREAMING_SNAKE_CASE , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=__SCREAMING_SNAKE_CASE , use_decoder=__SCREAMING_SNAKE_CASE , )
original_bort.load_parameters(__SCREAMING_SNAKE_CASE , cast_dtype=__SCREAMING_SNAKE_CASE , ignore_extra=__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = original_bort._collect_params_with_prefix()
# Build our config 🤗
__snake_case : Union[str, Any] = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(__SCREAMING_SNAKE_CASE ),
}
__snake_case : str = BertConfig.from_dict(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
__snake_case : int = hf_param.shape
__snake_case : Any = to_torch(params[gluon_param] )
__snake_case : List[Any] = gluon_param.shape
assert (
shape_hf == shape_gluon
), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__snake_case : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
__snake_case : int = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
__snake_case : int = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
__snake_case : str = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__snake_case : str = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__snake_case : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : str = check_and_map_params(
self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__snake_case : Optional[Any] = check_and_map_params(
self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__snake_case : List[str] = check_and_map_params(
self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__snake_case : List[str] = check_and_map_params(
self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__snake_case : Tuple = check_and_map_params(
self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__snake_case : List[Any] = check_and_map_params(
self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Optional[Any] = check_and_map_params(
self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' )
__snake_case : str = check_and_map_params(
self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' )
__snake_case : Dict = check_and_map_params(
self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__snake_case : Tuple = check_and_map_params(
self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : List[Any] = check_and_map_params(
intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__snake_case : Union[str, Any] = check_and_map_params(
intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__snake_case : BertOutput = layer.output
__snake_case : str = check_and_map_params(
bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__snake_case : Optional[int] = check_and_map_params(
bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__snake_case : Optional[int] = check_and_map_params(
bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__snake_case : Union[str, Any] = check_and_map_params(
bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__snake_case : Optional[Any] = RobertaTokenizer.from_pretrained("""roberta-base""" )
__snake_case : Dict = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE )["""input_ids"""]
# Get gluon output
__snake_case : str = mx.nd.array([input_ids] )
__snake_case : Any = original_bort(inputs=__SCREAMING_SNAKE_CASE , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = BertModel.from_pretrained(__SCREAMING_SNAKE_CASE )
hf_bort_model.eval()
__snake_case : Any = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
__snake_case : Any = hf_bort_model(**__SCREAMING_SNAKE_CASE )[0]
__snake_case : Dict = output_gluon[0].asnumpy()
__snake_case : Optional[int] = output_hf[0].detach().numpy()
__snake_case : int = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__snake_case : Optional[Any] = np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
"""simple docstring"""
import fire
from utils import calculate_rouge, save_json
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , **lowercase__ ):
_lowerCamelCase : Dict = [x.strip() for x in open(lowercase__ ).readlines()]
_lowerCamelCase : int = [x.strip() for x in open(lowercase__ ).readlines()][: len(lowercase__ )]
_lowerCamelCase : int = calculate_rouge(lowercase__ , lowercase__ , **lowercase__ )
if save_path is not None:
save_json(lowercase__ , lowercase__ , indent=lowercase__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path) | 96 |
'''simple docstring'''
def a ( __a , __a ) -> int:
'''simple docstring'''
if len(__a ) != len(__a ):
raise ValueError('''String lengths must match!''' )
UpperCamelCase__ :Union[str, Any] = 0
for chara, chara in zip(__a , __a ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 97 | 0 |
def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : list[int] ) -> tuple[float, float]:
# Check if the input is valid
if not len(snake_case_ ) == len(snake_case_ ) == 3:
raise ValueError('''Please enter a valid equation.''' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('''Both a & b of two equations can\'t be zero.''' )
# Extract the coefficients
__snake_case , __snake_case , __snake_case = equationa
__snake_case , __snake_case , __snake_case = equationa
# Calculate the determinants of the matrices
__snake_case = aa * ba - aa * ba
__snake_case = ca * ba - ca * ba
__snake_case = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('''Infinite solutions. (Consistent system)''' )
else:
raise ValueError('''No solution. (Inconsistent system)''' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__snake_case = determinant_x / determinant
__snake_case = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 371 |
import math
def lowerCamelCase__ ( snake_case_ : int ) -> list[int]:
__snake_case = []
__snake_case = 2
__snake_case = int(math.sqrt(snake_case_ ) ) # Size of every segment
__snake_case = [True] * (end + 1)
__snake_case = []
while start <= end:
if temp[start] is True:
in_prime.append(snake_case_ )
for i in range(start * start , end + 1 , snake_case_ ):
__snake_case = False
start += 1
prime += in_prime
__snake_case = end + 1
__snake_case = min(2 * end , snake_case_ )
while low <= n:
__snake_case = [True] * (high - low + 1)
for each in in_prime:
__snake_case = math.floor(low / each ) * each
if t < low:
t += each
for j in range(snake_case_ , high + 1 , snake_case_ ):
__snake_case = False
for j in range(len(snake_case_ ) ):
if temp[j] is True:
prime.append(j + low )
__snake_case = high + 1
__snake_case = min(high + end , snake_case_ )
return prime
print(sieve(10**6))
| 238 | 0 |
import math
import unittest
def A ( _lowerCamelCase ):
'''simple docstring'''
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class UpperCAmelCase_ ( unittest.TestCase):
def snake_case__ ( self):
'''simple docstring'''
self.assertTrue(is_prime(2))
self.assertTrue(is_prime(3))
self.assertTrue(is_prime(5))
self.assertTrue(is_prime(7))
self.assertTrue(is_prime(11))
self.assertTrue(is_prime(13))
self.assertTrue(is_prime(17))
self.assertTrue(is_prime(19))
self.assertTrue(is_prime(23))
self.assertTrue(is_prime(29))
def snake_case__ ( self):
'''simple docstring'''
with self.assertRaises(__a):
is_prime(-19)
self.assertFalse(
is_prime(0), "Zero doesn't have any positive factors, primes must have exactly two.", )
self.assertFalse(
is_prime(1), "One only has 1 positive factor, primes must have exactly two.", )
self.assertFalse(is_prime(2 * 2))
self.assertFalse(is_prime(2 * 3))
self.assertFalse(is_prime(3 * 3))
self.assertFalse(is_prime(3 * 5))
self.assertFalse(is_prime(3 * 5 * 7))
if __name__ == "__main__":
unittest.main()
| 36 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class UpperCAmelCase_ ( a):
def __get__( self, __a, __a=None):
'''simple docstring'''
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
_lowerCAmelCase : List[Any] = "__cached_" + self.fget.__name__
_lowerCAmelCase : Dict = getattr(__a, __a, __a)
if cached is None:
_lowerCAmelCase : str = self.fget(__a)
setattr(__a, __a, __a)
return cached
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(F"invalid truth value {val!r}" )
def A ( _lowerCamelCase ):
'''simple docstring'''
if is_torch_fx_proxy(_lowerCamelCase ):
return True
if is_torch_available():
import torch
if isinstance(_lowerCamelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(_lowerCamelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(_lowerCamelCase , np.ndarray )
def A ( _lowerCamelCase ):
'''simple docstring'''
return isinstance(_lowerCamelCase , np.ndarray )
def A ( _lowerCamelCase ):
'''simple docstring'''
return _is_numpy(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import torch
return isinstance(_lowerCamelCase , torch.Tensor )
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import torch
return isinstance(_lowerCamelCase , torch.device )
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_device(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import torch
if isinstance(_lowerCamelCase , _lowerCamelCase ):
if hasattr(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase )
else:
return False
return isinstance(_lowerCamelCase , torch.dtype )
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import tensorflow as tf
return isinstance(_lowerCamelCase , tf.Tensor )
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(_lowerCamelCase , "is_symbolic_tensor" ):
return tf.is_symbolic_tensor(_lowerCamelCase )
return type(_lowerCamelCase ) == tf.Tensor
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
import jax.numpy as jnp # noqa: F811
return isinstance(_lowerCamelCase , jnp.ndarray )
def A ( _lowerCamelCase ):
'''simple docstring'''
return False if not is_flax_available() else _is_jax(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
if isinstance(_lowerCamelCase , (dict, UserDict) ):
return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple) ):
return [to_py_obj(_lowerCamelCase ) for o in obj]
elif is_tf_tensor(_lowerCamelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(_lowerCamelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(_lowerCamelCase ):
return np.asarray(_lowerCamelCase ).tolist()
elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def A ( _lowerCamelCase ):
'''simple docstring'''
if isinstance(_lowerCamelCase , (dict, UserDict) ):
return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple) ):
return np.array(_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
return obj.numpy()
elif is_torch_tensor(_lowerCamelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(_lowerCamelCase ):
return np.asarray(_lowerCamelCase )
else:
return obj
class UpperCAmelCase_ ( a):
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Tuple = fields(self)
# Safety and consistency checks
if not len(__a):
raise ValueError(f"{self.__class__.__name__} has no fields.")
if not all(field.default is None for field in class_fields[1:]):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
_lowerCAmelCase : Dict = getattr(self, class_fields[0].name)
_lowerCAmelCase : str = all(getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and not is_tensor(__a):
if isinstance(__a, __a):
_lowerCAmelCase : Tuple = first_field.items()
_lowerCAmelCase : Dict = True
else:
try:
_lowerCAmelCase : Dict = iter(__a)
_lowerCAmelCase : Any = True
except TypeError:
_lowerCAmelCase : Any = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__a):
if (
not isinstance(__a, (list, tuple))
or not len(__a) == 2
or not isinstance(element[0], __a)
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
_lowerCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value).")
break
setattr(self, element[0], element[1])
if element[1] is not None:
_lowerCAmelCase : Any = element[1]
elif first_field is not None:
_lowerCAmelCase : Any = first_field
else:
for field in class_fields:
_lowerCAmelCase : Dict = getattr(self, field.name)
if v is not None:
_lowerCAmelCase : Union[str, Any] = v
def __delitem__( self, *__a, **__a):
'''simple docstring'''
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def snake_case__ ( self, *__a, **__a):
'''simple docstring'''
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def snake_case__ ( self, *__a, **__a):
'''simple docstring'''
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def snake_case__ ( self, *__a, **__a):
'''simple docstring'''
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __getitem__( self, __a):
'''simple docstring'''
if isinstance(__a, __a):
_lowerCAmelCase : Optional[int] = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self, __a, __a):
'''simple docstring'''
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__a, __a)
super().__setattr__(__a, __a)
def __setitem__( self, __a, __a):
'''simple docstring'''
super().__setitem__(__a, __a)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__a, __a)
def snake_case__ ( self):
'''simple docstring'''
return tuple(self[k] for k in self.keys())
class UpperCAmelCase_ ( a , a):
@classmethod
def snake_case__ ( cls, __a):
'''simple docstring'''
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}")
class UpperCAmelCase_ ( a):
lowerCamelCase__ = 'longest'
lowerCamelCase__ = 'max_length'
lowerCamelCase__ = 'do_not_pad'
class UpperCAmelCase_ ( a):
lowerCamelCase__ = 'pt'
lowerCamelCase__ = 'tf'
lowerCamelCase__ = 'np'
lowerCamelCase__ = 'jax'
class UpperCAmelCase_ :
def __init__( self, __a):
'''simple docstring'''
_lowerCAmelCase : Tuple = context_managers
_lowerCAmelCase : Dict = ExitStack()
def __enter__( self):
'''simple docstring'''
for context_manager in self.context_managers:
self.stack.enter_context(__a)
def __exit__( self, *__a, **__a):
'''simple docstring'''
self.stack.__exit__(*__a, **__a)
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : str = infer_framework(_lowerCamelCase )
if framework == "tf":
_lowerCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase : str = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : str = model_class.__name__
_lowerCAmelCase : Optional[Any] = infer_framework(_lowerCamelCase )
if framework == "tf":
_lowerCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def A ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ):
'''simple docstring'''
def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ):
for k, v in d.items():
_lowerCAmelCase : Dict = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k
if v and isinstance(_lowerCamelCase , _lowerCamelCase ):
yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items()
else:
yield key, v
return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) )
@contextmanager
def A ( _lowerCamelCase , _lowerCamelCase = False ):
'''simple docstring'''
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def A ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
if is_numpy_array(_lowerCamelCase ):
return np.transpose(_lowerCamelCase , axes=_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.T if axes is None else array.permute(*_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." )
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if is_numpy_array(_lowerCamelCase ):
return np.reshape(_lowerCamelCase , _lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.reshape(*_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.reshape(_lowerCamelCase , _lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.reshape(_lowerCamelCase , _lowerCamelCase )
else:
raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." )
def A ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
if is_numpy_array(_lowerCamelCase ):
return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." )
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if is_numpy_array(_lowerCamelCase ):
return np.expand_dims(_lowerCamelCase , _lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.unsqueeze(dim=_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." )
def A ( _lowerCamelCase ):
'''simple docstring'''
if is_numpy_array(_lowerCamelCase ):
return np.size(_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.numel()
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.size(_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return array.size
else:
raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." )
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
for key, value in auto_map.items():
if isinstance(_lowerCamelCase , (tuple, list) ):
_lowerCAmelCase : List[Any] = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value]
elif value is not None and "--" not in value:
_lowerCAmelCase : Tuple = F"{repo_id}--{value}"
return auto_map
def A ( _lowerCamelCase ):
'''simple docstring'''
for base_class in inspect.getmro(_lowerCamelCase ):
_lowerCAmelCase : Tuple = base_class.__module__
_lowerCAmelCase : int = base_class.__name__
if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("torch" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(F"Could not infer framework from class {model_class}." )
| 36 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case : Dict = logging.get_logger(__name__)
_snake_case : int = {
'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class _UpperCAmelCase ( __lowercase , __lowercase ):
"""simple docstring"""
a_ = '''nat'''
a_ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : str , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : List[str]=[3, 4, 6, 5] , lowerCAmelCase_ : Optional[Any]=[2, 4, 8, 1_6] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Optional[int]=3.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : Any=1e-5 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[int] , ) -> Union[str, Any]:
super().__init__(**UpperCAmelCase__ )
__lowerCAmelCase = patch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = embed_dim
__lowerCAmelCase = depths
__lowerCAmelCase = len(UpperCAmelCase__ )
__lowerCAmelCase = num_heads
__lowerCAmelCase = kernel_size
__lowerCAmelCase = mlp_ratio
__lowerCAmelCase = qkv_bias
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = drop_path_rate
__lowerCAmelCase = hidden_act
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) )
__lowerCAmelCase = layer_scale_init_value
__lowerCAmelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )]
__lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
| 361 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : List[str] = logging.get_logger(__name__)
def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any]=False ):
__lowerCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'vit.embeddings.cls_token'),
('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : int=False ):
for i in range(config.num_hidden_layers ):
if base_model:
__lowerCAmelCase = ''
else:
__lowerCAmelCase = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
__lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[
: config.hidden_size, :
]
__lowerCAmelCase = in_proj_bias[: config.hidden_size]
__lowerCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowerCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowerCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
__lowerCAmelCase = in_proj_bias[-config.hidden_size :]
def a_ ( lowerCAmelCase_ : Optional[int] ):
__lowerCAmelCase = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ )
def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int] ):
__lowerCAmelCase = dct.pop(lowerCAmelCase_ )
__lowerCAmelCase = val
def a_ ( ):
__lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ):
__lowerCAmelCase = ViTConfig()
__lowerCAmelCase = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
__lowerCAmelCase = True
__lowerCAmelCase = int(vit_name[-12:-10] )
__lowerCAmelCase = int(vit_name[-9:-6] )
else:
__lowerCAmelCase = 1000
__lowerCAmelCase = 'huggingface/label-files'
__lowerCAmelCase = 'imagenet-1k-id2label.json'
__lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
__lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = int(vit_name[-6:-4] )
__lowerCAmelCase = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('tiny' ):
__lowerCAmelCase = 192
__lowerCAmelCase = 768
__lowerCAmelCase = 12
__lowerCAmelCase = 3
elif vit_name[9:].startswith('small' ):
__lowerCAmelCase = 384
__lowerCAmelCase = 1536
__lowerCAmelCase = 12
__lowerCAmelCase = 6
else:
pass
else:
if vit_name[4:].startswith('small' ):
__lowerCAmelCase = 768
__lowerCAmelCase = 2304
__lowerCAmelCase = 8
__lowerCAmelCase = 8
elif vit_name[4:].startswith('base' ):
pass
elif vit_name[4:].startswith('large' ):
__lowerCAmelCase = 1024
__lowerCAmelCase = 4096
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif vit_name[4:].startswith('huge' ):
__lowerCAmelCase = 1280
__lowerCAmelCase = 5120
__lowerCAmelCase = 32
__lowerCAmelCase = 16
# load original model from timm
__lowerCAmelCase = timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__lowerCAmelCase = timm_model.state_dict()
if base_model:
remove_classification_head_(lowerCAmelCase_ )
__lowerCAmelCase = create_rename_keys(lowerCAmelCase_, lowerCAmelCase_ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# load HuggingFace model
if vit_name[-5:] == "in21k":
__lowerCAmelCase = ViTModel(lowerCAmelCase_ ).eval()
else:
__lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval()
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
__lowerCAmelCase = DeiTImageProcessor(size=config.image_size )
else:
__lowerCAmelCase = ViTImageProcessor(size=config.image_size )
__lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' )
__lowerCAmelCase = encoding['pixel_values']
__lowerCAmelCase = model(lowerCAmelCase_ )
if base_model:
__lowerCAmelCase = timm_model.forward_features(lowerCAmelCase_ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(lowerCAmelCase_, outputs.pooler_output, atol=1E-3 )
else:
__lowerCAmelCase = timm_model(lowerCAmelCase_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase_ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_snake_case : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_patch16_224',
type=str,
help='Name of the ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_snake_case : Optional[int] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 207 | 0 |
"""simple docstring"""
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : str ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for part_id in partition_order:
_snake_case : str = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(snake_case__ ):
expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : Optional[Any] = spark.range(1_00 ).repartition(1 )
_snake_case : Tuple = Spark(snake_case__ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : int = spark.range(10 ).repartition(2 )
_snake_case : Tuple = [1, 0]
_snake_case : Dict = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions.
_snake_case : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
_snake_case , _snake_case : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : Any = spark.range(10 ).repartition(1 )
_snake_case : List[str] = SparkExamplesIterable(snake_case__ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case__ ):
assert row_id == F"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : int = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
_snake_case : Tuple = lambda snake_case__ : x.reverse()
_snake_case : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] )
_snake_case : int = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case__ ):
_snake_case , _snake_case : List[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : Dict = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
_snake_case : List[Any] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
_snake_case : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case__ ):
_snake_case , _snake_case : List[str] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
_snake_case : List[str] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
_snake_case : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case__ ):
_snake_case , _snake_case : Any = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_snake_case : Dict = spark.range(1_00 ).repartition(1 )
_snake_case : List[Any] = Spark(snake_case__ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_00
| 64 |
"""simple docstring"""
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: List[str] ):
'''simple docstring'''
_snake_case : int = data
_snake_case : Dict = [0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0]
@staticmethod
def UpperCamelCase_ ( a_: Optional[Any], a_: Dict ):
'''simple docstring'''
return ((n << b) | (n >> (32 - b))) & 0Xffffffff
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64)
_snake_case : Optional[int] = self.data + padding + struct.pack(""">Q""", 8 * len(self.data ) )
return padded_data
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
return [
self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 )
]
def UpperCamelCase_ ( self: Optional[Any], a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = list(struct.unpack(""">16L""", a_ ) ) + [0] * 64
for i in range(16, 80 ):
_snake_case : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 )
return w
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.padding()
_snake_case : str = self.split_blocks()
for block in self.blocks:
_snake_case : Any = self.expand_block(a_ )
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = self.h
for i in range(0, 80 ):
if 0 <= i < 20:
_snake_case : int = (b & c) | ((~b) & d)
_snake_case : str = 0X5a827999
elif 20 <= i < 40:
_snake_case : Optional[int] = b ^ c ^ d
_snake_case : str = 0X6ed9eba1
elif 40 <= i < 60:
_snake_case : List[Any] = (b & c) | (b & d) | (c & d)
_snake_case : List[Any] = 0X8f1bbcdc
elif 60 <= i < 80:
_snake_case : List[Any] = b ^ c ^ d
_snake_case : int = 0Xca62c1d6
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = (
self.rotate(a_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff,
a,
self.rotate(a_, 30 ),
c,
d,
)
_snake_case : Union[str, Any] = (
self.h[0] + a & 0Xffffffff,
self.h[1] + b & 0Xffffffff,
self.h[2] + c & 0Xffffffff,
self.h[3] + d & 0Xffffffff,
self.h[4] + e & 0Xffffffff,
)
return ("{:08x}" * 5).format(*self.h )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Any = B"""Test String"""
assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = argparse.ArgumentParser(description="""Process some strings or files""" )
parser.add_argument(
"""--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
_snake_case : Union[str, Any] = parser.parse_args()
_snake_case : List[Any] = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
_snake_case : str = f.read()
else:
_snake_case : int = bytes(snake_case__ , """utf-8""" )
print(SHAaHash(snake_case__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 64 | 1 |
'''simple docstring'''
lowercase__ : Optional[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a__ ( lowercase : int ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100000]
number //= 100000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
lowercase__ : Union[str, Any] = [None] * 10_00_00_00
lowercase__ : int = True
lowercase__ : List[str] = False
def a__ ( lowercase : int ) -> Optional[int]:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
_UpperCamelCase = chain(next_number(SCREAMING_SNAKE_CASE__ ) )
_UpperCamelCase = number_chain
while number < 10000000:
_UpperCamelCase = number_chain
number *= 10
return number_chain
def a__ ( lowercase : int = 10000000 ) -> Optional[Any]:
"""simple docstring"""
for i in range(1, SCREAMING_SNAKE_CASE__ ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 367 |
'''simple docstring'''
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def a__ ( lowercase : Tuple ) -> Dict:
"""simple docstring"""
_UpperCamelCase = int(lowercase )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = t // 3600, (t // 60) % 60, t % 60
return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}"""
def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Any=300 ) -> Any:
"""simple docstring"""
return F"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def a__ ( lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
_UpperCamelCase = '''<table border="1" class="dataframe">\n'''
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
_UpperCamelCase = F"""{elt:.6f}""" if isinstance(lowercase, lowercase ) else str(lowercase )
html_code += F""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : str = 5
_snake_case : Optional[int] = 0.2
def __init__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase__ : int = 300 , ) -> int:
'''simple docstring'''
_UpperCamelCase = total
_UpperCamelCase = '''''' if prefix is None else prefix
_UpperCamelCase = leave
_UpperCamelCase = parent
_UpperCamelCase = width
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : str = None ) -> Dict:
'''simple docstring'''
_UpperCamelCase = value
if comment is not None:
_UpperCamelCase = comment
if self.last_value is None:
_UpperCamelCase = _UpperCamelCase = time.time()
_UpperCamelCase = _UpperCamelCase = value
_UpperCamelCase = _UpperCamelCase = None
_UpperCamelCase = self.warmup
_UpperCamelCase = 1
self.update_bar(lowerCAmelCase__ )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
_UpperCamelCase = time.time()
_UpperCamelCase = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
_UpperCamelCase = self.elapsed_time / (value - self.start_value)
else:
_UpperCamelCase = None
if value >= self.total:
_UpperCamelCase = self.total
_UpperCamelCase = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
_UpperCamelCase = self.average_time_per_item * (self.total - value)
self.update_bar(lowerCAmelCase__ )
_UpperCamelCase = value
_UpperCamelCase = current_time
if self.average_time_per_item is None:
_UpperCamelCase = 1
else:
_UpperCamelCase = max(int(self.update_every / self.average_time_per_item ) , 1 )
def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=None ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase__ ) )) + str(lowerCAmelCase__ )
if self.elapsed_time is None:
_UpperCamelCase = f"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
_UpperCamelCase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
_UpperCamelCase = (
f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
f""" {format_time(self.predicted_remaining )}"""
)
self.label += f""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]"""
self.display()
def snake_case__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
_UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('''''' ) )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = None if column_names is None else [column_names]
_UpperCamelCase = None
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
_UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int ) -> Union[str, Any]:
'''simple docstring'''
if self.inner_table is None:
_UpperCamelCase = [list(values.keys() ), list(values.values() )]
else:
_UpperCamelCase = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(lowerCAmelCase__ )
_UpperCamelCase = columns
self.inner_table.append([values[c] for c in columns] )
def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=300 ) -> int:
'''simple docstring'''
_UpperCamelCase = NotebookProgressBar(lowerCAmelCase__ , prefix=lowerCAmelCase__ , parent=self , width=lowerCAmelCase__ )
return self.child_bar
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = None
self.display()
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = False
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step'''
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = [self.first_column] + ['''Training Loss''']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('''Validation Loss''' )
_UpperCamelCase = NotebookTrainingTracker(state.max_steps , lowerCAmelCase__ )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Dict ) -> Dict:
'''simple docstring'''
_UpperCamelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
_UpperCamelCase = False
def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Dict ) -> Dict:
'''simple docstring'''
if not has_length(lowerCAmelCase__ ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
_UpperCamelCase = self.training_tracker.add_child(len(lowerCAmelCase__ ) )
else:
_UpperCamelCase = NotebookProgressBar(len(lowerCAmelCase__ ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> Optional[int]:
'''simple docstring'''
if self.prediction_bar is not None:
self.prediction_bar.close()
_UpperCamelCase = None
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] ) -> Tuple:
'''simple docstring'''
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
_UpperCamelCase = {'''Training Loss''': logs['''loss''']}
# First column is necessarily Step sine we're not in epoch eval strategy
_UpperCamelCase = state.global_step
self.training_tracker.write_line(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[str] ) -> List[str]:
'''simple docstring'''
if self.training_tracker is not None:
_UpperCamelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''}
for log in reversed(state.log_history ):
if "loss" in log:
_UpperCamelCase = log['''loss''']
break
if self.first_column == "Epoch":
_UpperCamelCase = int(state.epoch )
else:
_UpperCamelCase = state.global_step
_UpperCamelCase = '''eval'''
for k in metrics:
if k.endswith('''_loss''' ):
_UpperCamelCase = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop('''total_flos''' , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop('''epoch''' , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_runtime""" , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , lowerCAmelCase__ )
_UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , lowerCAmelCase__ )
for k, v in metrics.items():
if k == f"""{metric_key_prefix}_loss""":
_UpperCamelCase = v
else:
_UpperCamelCase = k.split('''_''' )
_UpperCamelCase = ''' '''.join([part.capitalize() for part in splits[1:]] )
_UpperCamelCase = v
self.training_tracker.write_line(lowerCAmelCase__ )
self.training_tracker.remove_child()
_UpperCamelCase = None
# Evaluation takes a long time so we should force the next update.
_UpperCamelCase = True
def snake_case__ ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
self.training_tracker.update(
state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=lowerCAmelCase__ )
_UpperCamelCase = None
| 287 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ : List[str] = {
"""configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""],
"""tokenization_ctrl""": ["""CTRLTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
"""CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CTRLForSequenceClassification""",
"""CTRLLMHeadModel""",
"""CTRLModel""",
"""CTRLPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[Any] = [
"""TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFCTRLForSequenceClassification""",
"""TFCTRLLMHeadModel""",
"""TFCTRLModel""",
"""TFCTRLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
"""simple docstring"""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__)
def _A (__a , __a ) -> Tuple:
"""simple docstring"""
try:
with open(__a , '''rb''' ) as flax_state_f:
SCREAMING_SNAKE_CASE_ : Optional[int] = from_bytes(__a , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__a ) as f:
if f.read().startswith('''version''' ):
raise OSError(
'''You seem to have cloned a repository without having git-lfs installed. Please'''
''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'''
''' folder you cloned.''' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(__a , __a )
def _A (__a , __a ) -> Tuple:
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
SCREAMING_SNAKE_CASE_ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , __a ) ).values()
if any(__a ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.tree_util.tree_map(
lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __a )
SCREAMING_SNAKE_CASE_ : int = ''''''
SCREAMING_SNAKE_CASE_ : str = flatten_dict(__a , sep='''.''' )
SCREAMING_SNAKE_CASE_ : List[Any] = pt_model.state_dict()
# keep track of unexpected & missing keys
SCREAMING_SNAKE_CASE_ : str = []
SCREAMING_SNAKE_CASE_ : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple.split('''.''' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple_array[:-1] + ['''weight''']
SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.transpose(__a , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
SCREAMING_SNAKE_CASE_ : Tuple = flax_key_tuple_array[:-1] + ['''weight''']
SCREAMING_SNAKE_CASE_ : Optional[int] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
SCREAMING_SNAKE_CASE_ : Optional[int] = flax_key_tuple_array[:-1] + ['''weight''']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__a ):
SCREAMING_SNAKE_CASE_ : List[str] = (
flax_key_tuple_string.replace('''_0''' , '''.0''' )
.replace('''_1''' , '''.1''' )
.replace('''_2''' , '''.2''' )
.replace('''_3''' , '''.3''' )
.replace('''_4''' , '''.4''' )
.replace('''_5''' , '''.5''' )
.replace('''_6''' , '''.6''' )
.replace('''_7''' , '''.7''' )
.replace('''_8''' , '''.8''' )
.replace('''_9''' , '''.9''' )
)
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''.'''.join(__a )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(__a ) if not isinstance(__a , np.ndarray ) else flax_tensor
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(__a )
# remove from missing keys
missing_keys.remove(__a )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__a )
pt_model.load_state_dict(__a )
# re-transform missing_keys to list
SCREAMING_SNAKE_CASE_ : int = list(__a )
if len(__a ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
if len(__a ) > 0:
logger.warning(
f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
return pt_model
| 91 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__:Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__:List[str] = """Hello, World!"""
SCREAMING_SNAKE_CASE__:Any = """en_XX"""
def _lowerCamelCase( a , a , a ):
__a = Path("data_bin" )
__a = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__snake_case ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__snake_case ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , )
xmod.eval() # disable dropout
print(__snake_case )
__a = xmod.model.encoder.sentence_encoder
__a = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__a = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our X-MOD config:" , __snake_case )
__a = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case )
model.eval()
# Now let's copy all the weights.
# Embeddings
__a = xmod_sent_encoder.embed_tokens.weight
__a = xmod_sent_encoder.embed_positions.weight
__a = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__a = xmod_sent_encoder.layernorm_embedding.weight
__a = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__a = model.roberta.encoder.layer[i]
__a = xmod_sent_encoder.layers[i]
# self attention
__a = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("Dimensions of self-attention weights do not match." )
__a = xmod_layer.self_attn.q_proj.weight
__a = xmod_layer.self_attn.q_proj.bias
__a = xmod_layer.self_attn.k_proj.weight
__a = xmod_layer.self_attn.k_proj.bias
__a = xmod_layer.self_attn.v_proj.weight
__a = xmod_layer.self_attn.v_proj.bias
# self-attention output
__a = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("Dimensions of self-attention output weights do not match." )
__a = xmod_layer.self_attn.out_proj.weight
__a = xmod_layer.self_attn.out_proj.bias
__a = xmod_layer.self_attn_layer_norm.weight
__a = xmod_layer.self_attn_layer_norm.bias
# intermediate
__a = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of intermediate weights do not match." )
__a = xmod_layer.fca.weight
__a = xmod_layer.fca.bias
# output
__a = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of feed-forward weights do not match." )
__a = xmod_layer.fca.weight
__a = xmod_layer.fca.bias
__a = xmod_layer.final_layer_norm.weight
__a = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__a = xmod_layer.adapter_layer_norm.weight
__a = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("Lists of language adapters do not match." )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__a = bert_output.adapter_modules[lang_code]
__a = xmod_layer.adapter_modules[lang_code]
__a = from_adapter.fca.weight
__a = from_adapter.fca.bias
__a = from_adapter.fca.weight
__a = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__a = xmod_sent_encoder.layer_norm.weight
__a = xmod_sent_encoder.layer_norm.bias
if classification_head:
__a = xmod.model.classification_heads["mnli"].dense.weight
__a = xmod.model.classification_heads["mnli"].dense.bias
__a = xmod.model.classification_heads["mnli"].out_proj.weight
__a = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
__a = xmod.model.encoder.lm_head.dense.weight
__a = xmod.model.encoder.lm_head.dense.bias
__a = xmod.model.encoder.lm_head.layer_norm.weight
__a = xmod.model.encoder.lm_head.layer_norm.bias
__a = xmod.model.encoder.lm_head.weight
__a = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__a = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(__snake_case )
__a = model(__snake_case )[0]
if classification_head:
__a = xmod.model.classification_heads["mnli"](xmod.extract_features(__snake_case ) )
else:
__a = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__a = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7
__a = torch.allclose(__snake_case , __snake_case , atol=1E-3 )
print("Do both models output the same tensors?" , "🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__:List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__:int = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 356 | """simple docstring"""
import math
def _lowerCamelCase( a ):
__a = []
__a = 2
__a = int(math.sqrt(a ) ) # Size of every segment
__a = [True] * (end + 1)
__a = []
while start <= end:
if temp[start] is True:
in_prime.append(a )
for i in range(start * start , end + 1 , a ):
__a = False
start += 1
prime += in_prime
__a = end + 1
__a = min(2 * end , a )
while low <= n:
__a = [True] * (high - low + 1)
for each in in_prime:
__a = math.floor(low / each ) * each
if t < low:
t += each
for j in range(a , high + 1 , a ):
__a = False
for j in range(len(a ) ):
if temp[j] is True:
prime.append(j + low )
__a = high + 1
__a = min(high + end , a )
return prime
print(sieve(10**6))
| 268 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
UpperCamelCase__ = logging.get_logger(__name__)
class A ( UpperCAmelCase_ ):
def __init__(self : List[str] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) -> None:
"""simple docstring"""
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 65 | import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def lowerCAmelCase_ ( __A, __A=False ) -> Any:
'''simple docstring'''
try:
UpperCAmelCase__ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCAmelCase__ = default
else:
# KEY is set, convert it to True or False.
try:
UpperCAmelCase__ = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"""If set, {key} must be yes or no.""" )
return _value
UpperCamelCase__ = parse_flag_from_env('RUN_SLOW', default=False)
UpperCamelCase__ = parse_flag_from_env('RUN_REMOTE', default=False)
UpperCamelCase__ = parse_flag_from_env('RUN_LOCAL', default=True)
UpperCamelCase__ = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
UpperCamelCase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
UpperCamelCase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
UpperCamelCase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
UpperCamelCase__ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
UpperCamelCase__ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
UpperCamelCase__ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
UpperCamelCase__ = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def lowerCAmelCase_ ( __A ) -> Any:
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("test requires faiss" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Optional[Any]:
'''simple docstring'''
try:
import regex # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("test requires regex" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> List[str]:
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("test requires elasticsearch" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> List[Any]:
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("test requires sqlalchemy" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> List[str]:
'''simple docstring'''
if not config.TORCH_AVAILABLE:
UpperCAmelCase__ = unittest.skip("test requires PyTorch" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Union[str, Any]:
'''simple docstring'''
if not config.TF_AVAILABLE:
UpperCAmelCase__ = unittest.skip("test requires TensorFlow" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Any:
'''simple docstring'''
if not config.JAX_AVAILABLE:
UpperCAmelCase__ = unittest.skip("test requires JAX" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> int:
'''simple docstring'''
if not config.PIL_AVAILABLE:
UpperCAmelCase__ = unittest.skip("test requires Pillow" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Tuple:
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(__A )
else:
return test_case
def lowerCAmelCase_ ( __A ) -> Dict:
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(__A )
else:
return test_case
def lowerCAmelCase_ ( __A ) -> Optional[Any]:
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(__A )
else:
return test_case
def lowerCAmelCase_ ( __A ) -> Optional[int]:
'''simple docstring'''
def _require_spacy_model(__A ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("test requires spacy" )(__A )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def lowerCAmelCase_ ( __A ) -> Optional[Any]:
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(__A )
else:
return test_case
def lowerCAmelCase_ ( __A ) -> Tuple:
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(__A )
else:
return test_case
def lowerCAmelCase_ ( __A ) -> Optional[int]:
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
UpperCAmelCase__ = unittest.skip("test is slow" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> List[Any]:
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
UpperCAmelCase__ = unittest.skip("test is local" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Optional[Any]:
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
UpperCAmelCase__ = unittest.skip("test is packaged" )(__A )
return test_case
def lowerCAmelCase_ ( __A ) -> Any:
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
UpperCAmelCase__ = unittest.skip("test requires remote" )(__A )
return test_case
def lowerCAmelCase_ ( *__A ) -> Optional[int]:
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("test" ):
for decorator in decorators:
UpperCAmelCase__ = decorator(__A )
setattr(cls, __A, __A )
return cls
return decorate
class A ( UpperCAmelCase_ ):
pass
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : str = 1
__UpperCAmelCase : int = 2
@contextmanager
def lowerCAmelCase_ ( __A=OfflineSimulationMode.CONNECTION_FAILS, __A=1e-16 ) -> List[str]:
'''simple docstring'''
UpperCAmelCase__ = requests.Session().request
def timeout_request(__A, __A, __A, **__A ):
# Change the url to an invalid url so that the connection hangs
UpperCAmelCase__ = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
UpperCAmelCase__ = timeout
try:
return online_request(__A, __A, **__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
UpperCAmelCase__ = url
UpperCAmelCase__ = e.args[0]
UpperCAmelCase__ = (max_retry_error.args[0].replace("10.255.255.1", f"""OfflineMock[{url}]""" ),)
UpperCAmelCase__ = (max_retry_error,)
raise
def raise_connection_error(__A, __A, **__A ):
raise requests.ConnectionError("Offline mode is enabled.", request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send", __A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request", __A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE", __A ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def lowerCAmelCase_ ( *__A, **__A ) -> str:
'''simple docstring'''
UpperCAmelCase__ = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A, **__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def lowerCAmelCase_ ( ) -> Optional[Any]:
'''simple docstring'''
import gc
gc.collect()
UpperCAmelCase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def lowerCAmelCase_ ( ) -> List[str]:
'''simple docstring'''
import gc
gc.collect()
UpperCAmelCase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def lowerCAmelCase_ ( __A, __A ) -> List[str]:
'''simple docstring'''
return deepcopy(__A ).integers(0, 100, 10 ).tolist() == deepcopy(__A ).integers(0, 100, 10 ).tolist()
def lowerCAmelCase_ ( __A ) -> Optional[int]:
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__A, *__A, **__A ):
try:
return func(*__A, **__A )
except HTTPError as err:
if str(__A ).startswith("500" ) or str(__A ).startswith("502" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper, __A )
class A :
def __init__(self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = returncode
UpperCAmelCase__ = stdout
UpperCAmelCase__ = stderr
async def lowerCAmelCase_ ( __A, __A ) -> Optional[int]:
'''simple docstring'''
while True:
UpperCAmelCase__ = await stream.readline()
if line:
callback(__A )
else:
break
async def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=None, __A=False, __A=False ) -> _RunOutput:
'''simple docstring'''
if echo:
print("\nRunning: ", " ".join(__A ) )
UpperCAmelCase__ = await asyncio.create_subprocess_exec(
cmd[0], *cmd[1:], stdin=__A, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__A, )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCAmelCase__ = []
UpperCAmelCase__ = []
def tee(__A, __A, __A, __A="" ):
UpperCAmelCase__ = line.decode("utf-8" ).rstrip()
sink.append(__A )
if not quiet:
print(__A, __A, file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout, lambda __A : tee(__A, __A, sys.stdout, label="stdout:" ) ),
_read_stream(p.stderr, lambda __A : tee(__A, __A, sys.stderr, label="stderr:" ) ),
], timeout=__A, )
return _RunOutput(await p.wait(), __A, __A )
def lowerCAmelCase_ ( __A, __A=None, __A=None, __A=180, __A=False, __A=True ) -> _RunOutput:
'''simple docstring'''
UpperCAmelCase__ = asyncio.get_event_loop()
UpperCAmelCase__ = loop.run_until_complete(
_stream_subprocess(__A, env=__A, stdin=__A, timeout=__A, quiet=__A, echo=__A ) )
UpperCAmelCase__ = " ".join(__A )
if result.returncode > 0:
UpperCAmelCase__ = "\n".join(result.stderr )
raise RuntimeError(
f"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
f"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"""'{cmd_str}' produced no output.""" )
return result
def lowerCAmelCase_ ( ) -> Tuple:
'''simple docstring'''
UpperCAmelCase__ = os.environ.get("PYTEST_XDIST_WORKER", "gw0" )
UpperCAmelCase__ = re.sub(r"^gw", "", __A, 0, re.M )
return int(__A )
def lowerCAmelCase_ ( ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase__ = 29_500
UpperCAmelCase__ = pytest_xdist_worker_id()
return port + uniq_delta
| 65 | 1 |
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCamelCase : List[Any] = ""
__lowerCamelCase : str = ""
__lowerCamelCase : Optional[int] = ""
__lowerCamelCase : List[Any] = 1 # (0 is vertical, 1 is horizontal)
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ , lowercase_ = get_dataset(a__ , a__ )
print("""Processing...""" )
lowercase_ , lowercase_ , lowercase_ = update_image_and_anno(a__ , a__ , a__ )
for index, image in enumerate(a__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowercase_ = random_chars(32 )
lowercase_ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0]
lowercase_ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(F'''/{file_root}.jpg''' , a__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F'''Success {index+1}/{len(a__ )} with {file_name}''' )
lowercase_ = []
for anno in new_annos[index]:
lowercase_ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(a__ )
with open(F'''/{file_root}.txt''' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict:
'''simple docstring'''
lowercase_ = []
lowercase_ = []
for label_file in glob.glob(os.path.join(a__ , """*.txt""" ) ):
lowercase_ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(a__ ) as in_file:
lowercase_ = in_file.readlines()
lowercase_ = os.path.join(a__ , F'''{label_name}.jpg''' )
lowercase_ = []
for obj_list in obj_lists:
lowercase_ = obj_list.rstrip("""\n""" ).split(""" """ )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(a__ )
labels.append(a__ )
return img_paths, labels
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 ) -> int:
'''simple docstring'''
lowercase_ = []
lowercase_ = []
lowercase_ = []
for idx in range(len(a__ ) ):
lowercase_ = []
lowercase_ = img_list[idx]
path_list.append(a__ )
lowercase_ = anno_list[idx]
lowercase_ = cva.imread(a__ )
if flip_type == 1:
lowercase_ = cva.flip(a__ , a__ )
for bbox in img_annos:
lowercase_ = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
lowercase_ = cva.flip(a__ , a__ )
for bbox in img_annos:
lowercase_ = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(a__ )
new_imgs_list.append(a__ )
return new_imgs_list, new_annos_lists, path_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 32 ) -> Dict:
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
lowercase_ = ascii_lowercase + digits
return "".join(random.choice(a__ ) for _ in range(a__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 371 |
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_)
lowercase_ = tokenizer
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """<pad>"""
lowercase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2)
@require_torch
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = """I was born in 92000, and this is falsé."""
lowercase_ = tokenizer.tokenize(lowerCAmelCase_)
lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self.get_rust_tokenizer()
lowercase_ = tokenizer.encode(lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase_ = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
| 313 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a__ :
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , _a=1_000 , ):
lowercase : Optional[Any] = parent
lowercase : Dict = batch_size
lowercase : str = seq_length
lowercase : List[Any] = is_training
lowercase : Dict = use_input_mask
lowercase : str = use_token_type_ids
lowercase : int = use_labels
lowercase : Union[str, Any] = vocab_size
lowercase : Dict = hidden_size
lowercase : List[str] = num_hidden_layers
lowercase : Optional[int] = num_attention_heads
lowercase : Tuple = intermediate_size
lowercase : List[str] = hidden_act
lowercase : int = hidden_dropout_prob
lowercase : Any = attention_probs_dropout_prob
lowercase : Dict = max_position_embeddings
lowercase : Optional[int] = type_vocab_size
lowercase : Tuple = type_sequence_label_size
lowercase : Optional[int] = initializer_range
lowercase : Dict = num_labels
lowercase : Optional[int] = num_choices
lowercase : List[Any] = scope
lowercase : Dict = range_bbox
def __magic_name__ ( self ):
lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowercase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowercase : Any = bbox[i, j, 3]
lowercase : Optional[Any] = bbox[i, j, 1]
lowercase : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowercase : Dict = bbox[i, j, 2]
lowercase : List[str] = bbox[i, j, 0]
lowercase : List[Any] = t
lowercase : Any = tf.convert_to_tensor(_a )
lowercase : Dict = None
if self.use_input_mask:
lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Optional[int] = None
if self.use_token_type_ids:
lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : Optional[int] = None
lowercase : List[Any] = None
lowercase : Tuple = None
if self.use_labels:
lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
lowercase : int = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
lowercase : str = TFLayoutLMModel(config=_a )
lowercase : Optional[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a )
lowercase : Dict = model(_a , _a , token_type_ids=_a )
lowercase : List[str] = model(_a , _a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
lowercase : List[Any] = TFLayoutLMForMaskedLM(config=_a )
lowercase : Union[str, Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
lowercase : Dict = self.num_labels
lowercase : Any = TFLayoutLMForSequenceClassification(config=_a )
lowercase : List[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
lowercase : int = self.num_labels
lowercase : Dict = TFLayoutLMForTokenClassification(config=_a )
lowercase : Tuple = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ):
lowercase : int = TFLayoutLMForQuestionAnswering(config=_a )
lowercase : Any = model(_a , _a , attention_mask=_a , token_type_ids=_a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __magic_name__ ( self ):
lowercase : Optional[int] = self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : List[Any] = config_and_inputs
lowercase : int = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class a__ ( a_, a_, unittest.TestCase ):
__lowerCAmelCase = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
__lowerCAmelCase = (
{
"""feature-extraction""": TFLayoutLMModel,
"""fill-mask""": TFLayoutLMForMaskedLM,
"""text-classification""": TFLayoutLMForSequenceClassification,
"""token-classification""": TFLayoutLMForTokenClassification,
"""zero-shot""": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = 10
def __magic_name__ ( self ):
lowercase : List[Any] = TFLayoutLMModelTester(self )
lowercase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 )
def __magic_name__ ( self ):
self.config_tester.run_common_tests()
def __magic_name__ ( self ):
lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __magic_name__ ( self ):
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_a )
def __magic_name__ ( self ):
lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_a )
def __magic_name__ ( self ):
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_a )
def __magic_name__ ( self ):
lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_a )
@slow
def __magic_name__ ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : List[str] = TFLayoutLMModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@unittest.skip("Onnx compliancy broke with TF 2.10" )
def __magic_name__ ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowercase : str = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowercase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowercase : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowercase : Optional[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowercase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a__ ( unittest.TestCase ):
@slow
def __magic_name__ ( self ):
lowercase : Dict = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" )
lowercase , lowercase , lowercase , lowercase , lowercase : Union[str, Any] = prepare_layoutlm_batch_inputs()
# forward pass
lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a )
# test the sequence output on [0, :3, :3]
lowercase : Any = tf.convert_to_tensor(
[[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowercase : Optional[Any] = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _a , atol=1E-3 ) )
@slow
def __magic_name__ ( self ):
# initialize model with randomly initialized sequence classification head
lowercase : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
lowercase : Optional[Any] = model(
input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowercase : Union[str, Any] = outputs.loss
lowercase : Union[str, Any] = (2,)
self.assertEqual(loss.shape , _a )
# test the shape of the logits
lowercase : List[str] = outputs.logits
lowercase : Optional[Any] = (2, 2)
self.assertEqual(logits.shape , _a )
@slow
def __magic_name__ ( self ):
# initialize model with randomly initialized token classification head
lowercase : Any = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 )
lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
lowercase : List[Any] = model(
input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a )
# test the shape of the logits
lowercase : int = outputs.logits
lowercase : Optional[Any] = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _a )
@slow
def __magic_name__ ( self ):
# initialize model with randomly initialized token classification head
lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" )
lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = prepare_layoutlm_batch_inputs()
# forward pass
lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a )
# test the shape of the logits
lowercase : Any = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _a )
self.assertEqual(outputs.end_logits.shape , _a )
| 202 |
"""simple docstring"""
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Tuple:
lowercase : Union[str, Any] = OmegaConf.load(__snake_case )
if display:
print(yaml.dump(OmegaConf.to_container(__snake_case ) ) )
return config
def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None ) -> Tuple:
if conf_path is None:
lowercase : List[Any] = "./model_checkpoints/vqgan_only.yaml"
lowercase : Tuple = load_config(__snake_case , display=__snake_case )
lowercase : List[Any] = VQModel(**config.model.params )
if ckpt_path is None:
lowercase : List[str] = "./model_checkpoints/vqgan_only.pt"
lowercase : Optional[int] = torch.load(__snake_case , map_location=__snake_case )
if ".ckpt" in ckpt_path:
lowercase : str = sd["state_dict"]
model.load_state_dict(__snake_case , strict=__snake_case )
model.to(__snake_case )
del sd
return model
def __magic_name__ ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> int:
lowercase , lowercase , lowercase : List[Any] = model.encode(__snake_case )
print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" )
lowercase : str = model.decode(__snake_case )
return xrec
def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[int]=False ) -> int:
lowercase , lowercase : Union[str, Any] = string.rsplit("." , 1 )
if reload:
lowercase : Any = importlib.import_module(__snake_case )
importlib.reload(__snake_case )
return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls )
def __magic_name__ ( __snake_case : str ) -> List[str]:
if "target" not in config:
raise KeyError("Expected key `target` to instantiate." )
return get_obj_from_str(config["target"] )(**config.get("params" , {} ) )
def __magic_name__ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any]=True , __snake_case : Dict=True ) -> str:
lowercase : Optional[int] = instantiate_from_config(__snake_case )
if sd is not None:
model.load_state_dict(__snake_case )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any:
# load the specified checkpoint
if ckpt:
lowercase : Dict = torch.load(__snake_case , map_location="cpu" )
lowercase : List[Any] = pl_sd["global_step"]
print(f"""loaded model from global step {global_step}.""" )
else:
lowercase : int = {"state_dict": None}
lowercase : Optional[Any] = None
lowercase : List[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"]
return model, global_step
| 202 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
__A = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
__A = {
'facebook/nllb-large-en-ro': 1024,
'facebook/nllb-200-distilled-600M': 1024,
}
# fmt: off
__A = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class lowerCamelCase__ ( snake_case_ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = ['''input_ids''', '''attention_mask''']
lowerCamelCase = NllbTokenizer
lowerCamelCase = []
lowerCamelCase = []
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase =legacy_behaviour
super().__init__(
vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =False if not self.vocab_file else True
_lowerCAmelCase =FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
_lowerCAmelCase ={
lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowerCAmelCase =src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase =self.convert_tokens_to_ids(self._src_lang )
_lowerCAmelCase =tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _lowerCAmelCase ( self ) -> str:
return self._src_lang
@src_lang.setter
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
_lowerCAmelCase =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
_lowerCAmelCase =src_lang
_lowerCAmelCase =self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase )
_lowerCAmelCase =tgt_lang_id
return inputs
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "eng_Latn" , __UpperCAmelCase = None , __UpperCAmelCase = "fra_Latn" , **__UpperCAmelCase , ) -> BatchEncoding:
_lowerCAmelCase =src_lang
_lowerCAmelCase =tgt_lang
return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return self.set_src_lang_special_tokens(self.src_lang )
def _lowerCAmelCase ( self ) -> List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
_lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase )
if self.legacy_behaviour:
_lowerCAmelCase =[]
_lowerCAmelCase =[self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase =[self.cur_lang_code]
_lowerCAmelCase =[self.eos_token_id]
_lowerCAmelCase =self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase =self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase =processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
_lowerCAmelCase =self.convert_tokens_to_ids(__UpperCAmelCase )
if self.legacy_behaviour:
_lowerCAmelCase =[]
_lowerCAmelCase =[self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase =[self.cur_lang_code]
_lowerCAmelCase =[self.eos_token_id]
_lowerCAmelCase =self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase =self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase =processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 356 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase = DiTPipeline
__lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__lowerCamelCase = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
__lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__lowerCamelCase = False
def snake_case ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_snake_case , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_snake_case , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def snake_case ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(_snake_case )
else:
_lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
_lowerCAmelCase = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = """cpu"""
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
_lowerCAmelCase = self.get_dummy_inputs(_snake_case )
_lowerCAmelCase = pipe(**_snake_case ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1e-3 )
def snake_case ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=_snake_case , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def snake_case ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class __lowerCAmelCase ( unittest.TestCase ):
def snake_case ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
_lowerCAmelCase = pipe.get_label_ids(_snake_case )
_lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=40 , output_type="""np""" ).images
for word, image in zip(_snake_case , _snake_case ):
_lowerCAmelCase = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1e-2
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella"""]
_lowerCAmelCase = pipe.get_label_ids(_snake_case )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type="""np""" ).images
for word, image in zip(_snake_case , _snake_case ):
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1e-1
| 82 |
def _UpperCAmelCase ( snake_case = 10_00 ):
"""simple docstring"""
_lowerCAmelCase = -1
_lowerCAmelCase = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
_lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a)
_lowerCAmelCase = n - a - b
if c * c == (a * a + b * b):
_lowerCAmelCase = a * b * c
if candidate >= product:
_lowerCAmelCase = candidate
return product
if __name__ == "__main__":
print(f"{solution() = }")
| 82 | 1 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list ) -> float:
if not nums:
raise ValueError('''List is empty''' )
return sum(__lowerCAmelCase ) / len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 1 |
"""simple docstring"""
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 150 | """simple docstring"""
from ...configuration_utils import PretrainedConfig
class lowerCAmelCase_ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase : Tuple = """bert-generation"""
def __init__( self , lowerCAmelCase=5_03_58 , lowerCAmelCase=10_24 , lowerCAmelCase=24 , lowerCAmelCase=16 , lowerCAmelCase=40_96 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ):
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
| 150 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__A : Tuple = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__A : int = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__A : Union[str, Any] = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__A : Dict = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__A : Union[str, Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__A : Dict = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 352 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A : Optional[Any] = logging.getLogger()
def __UpperCamelCase ( _A : Path , _A : list ) ->Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ ="""\n""".join(_A )
Path(_A ).open("""w""" ).writelines(_A )
__A : List[str] = 'patrickvonplaten/t5-tiny-random'
__A : List[Any] = 'sshleifer/bart-tiny-random'
__A : List[str] = 'sshleifer/tiny-mbart'
__A : Union[str, Any] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict:
lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCamelCase_ =input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCamelCase_ =[""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowerCamelCase_ =str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split()
with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ):
run_generate()
assert Path(_SCREAMING_SNAKE_CASE ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self )-> List[Any]:
self.run_eval_tester(_SCREAMING_SNAKE_CASE )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int:
self.run_eval_tester(_SCREAMING_SNAKE_CASE )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]:
lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCamelCase_ =input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCamelCase_ ={
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() )
lowerCamelCase_ =str(tmp_dir / """scores.json""" )
lowerCamelCase_ =str(tmp_dir / """val.target""" )
_dump_articles(_SCREAMING_SNAKE_CASE , text["""en"""] )
_dump_articles(_SCREAMING_SNAKE_CASE , text["""de"""] )
lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {str(_SCREAMING_SNAKE_CASE )}\n {str(_SCREAMING_SNAKE_CASE )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ):
with CaptureStdout() as cs:
run_search()
lowerCamelCase_ =[""" num_beams | length_penalty""", model, """Best score args"""]
lowerCamelCase_ =["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(_SCREAMING_SNAKE_CASE )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(_SCREAMING_SNAKE_CASE ).exists()
os.remove(Path(_SCREAMING_SNAKE_CASE ) )
| 49 | 0 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case ( lowerCAmelCase : Tuple ):
"""simple docstring"""
return EnvironmentCommand()
class a__ ( A__ ):
@staticmethod
def __UpperCamelCase ( _A : ArgumentParser ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = parser.add_parser("env" )
download_parser.set_defaults(func=_A )
def __UpperCamelCase ( self : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = huggingface_hub.__version__
SCREAMING_SNAKE_CASE_ : Optional[int] = "not installed"
SCREAMING_SNAKE_CASE_ : Optional[int] = "NA"
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE_ : int = torch.__version__
SCREAMING_SNAKE_CASE_ : int = torch.cuda.is_available()
SCREAMING_SNAKE_CASE_ : List[Any] = "not installed"
if is_transformers_available():
import transformers
SCREAMING_SNAKE_CASE_ : Optional[int] = transformers.__version__
SCREAMING_SNAKE_CASE_ : str = "not installed"
if is_accelerate_available():
import accelerate
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerate.__version__
SCREAMING_SNAKE_CASE_ : List[str] = "not installed"
if is_xformers_available():
import xformers
SCREAMING_SNAKE_CASE_ : int = xformers.__version__
SCREAMING_SNAKE_CASE_ : str = {
"`diffusers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})',
"Huggingface_hub version": hub_version,
"Transformers version": transformers_version,
"Accelerate version": accelerate_version,
"xFormers version": xformers_version,
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(_A ) )
return info
@staticmethod
def __UpperCamelCase ( _A : int ):
"""simple docstring"""
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 18 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _UpperCamelCase ( lowerCAmelCase ):
UpperCAmelCase_ = 42
UpperCAmelCase_ = 42
def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any:
super().__init__()
self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase )
@torch.no_grad()
def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase__ = self.unet.config.sample_size
UpperCAmelCase__ = (batch_size, 3, img_size, img_size)
UpperCAmelCase__ = self.unet
UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(self.device )
self.scheduler.set_timesteps(lowerCamelCase )
self.scheduler.set_sigmas(lowerCamelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample
UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample
# prediction step
UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample
UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase )
UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean
UpperCAmelCase__ = sample_mean.clamp(0 , 1 )
UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=lowerCamelCase )
| 169 | 0 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
UpperCamelCase__ : Optional[Any] = str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
UpperCamelCase__ : Any = str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCamelCase__ : List[str] = binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
if number >= 0: # Get binary representation of positive number
UpperCamelCase__ : int = "0" + str(bin(__lowerCAmelCase ) ).strip("-" )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCamelCase__ : Union[str, Any] = len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCamelCase__ : List[str] = bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCamelCase__ : Dict = (
"1" + "0" * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 370 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
UpperCamelCase__ : Optional[Any] = 0
UpperCamelCase__ : Any = len(__lowerCAmelCase ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
UpperCamelCase__ : Optional[int] = i + 1
else:
UpperCamelCase__ : Dict = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{two_pointer([2, 7, 11, 15], 9) = }""") | 196 | 0 |
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__lowercase : Dict = '.'
if __name__ == "__main__":
__lowercase : Union[str, Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt')
__lowercase : Any = []
__lowercase : Tuple = []
with open(doctest_file_path) as fp:
for line in fp:
__lowercase : Dict = line.strip()
__lowercase : List[str] = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__lowercase : List[Any] = '\n'.join(non_existent_paths)
raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
| 27 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class __UpperCamelCase ( unittest.TestCase ):
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : List[Any] = inspect.getfile(accelerate.test_utils )
__a : List[str] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
__a : Union[str, Any] = test_metrics
@require_cpu
def __UpperCAmelCase ( self ):
'''simple docstring'''
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def __UpperCAmelCase ( self ):
'''simple docstring'''
debug_launcher(self.test_metrics.main )
@require_single_gpu
def __UpperCAmelCase ( self ):
'''simple docstring'''
self.test_metrics.main()
@require_multi_gpu
def __UpperCAmelCase ( self ):
'''simple docstring'''
print(f"""Found {torch.cuda.device_count()} devices.""" )
__a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__a , env=os.environ.copy() )
| 27 | 1 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> list:
if any(not isinstance(_lowercase , _lowercase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(_lowercase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
lowercase__ : Dict = '''\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'''
lowercase__ : Optional[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
lowercase__ : Optional[Any] = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 338 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
from __future__ import annotations
import math
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list[int]:
"""simple docstring"""
UpperCamelCase_ = str(SCREAMING_SNAKE_CASE_ )
UpperCamelCase_ = [n]
for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> bool:
"""simple docstring"""
if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3:
if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ):
return False
return True
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_1 )-> list[int]:
"""simple docstring"""
UpperCamelCase_ = []
UpperCamelCase_ = 1_3
while len(SCREAMING_SNAKE_CASE_ ) != count:
if validate(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase_ = list_truncated_nums(SCREAMING_SNAKE_CASE_ )
if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ):
list_truncated_primes.append(SCREAMING_SNAKE_CASE_ )
num += 2
return list_truncated_primes
def lowerCAmelCase( )-> int:
"""simple docstring"""
return sum(compute_truncated_primes(1_1 ) )
if __name__ == "__main__":
print(F'''{sum(compute_truncated_primes(11)) = }''')
| 358 |
from ...processing_utils import ProcessorMixin
class __magic_name__ ( snake_case ):
UpperCamelCase_ :str = """SpeechT5FeatureExtractor"""
UpperCamelCase_ :Optional[int] = """SpeechT5Tokenizer"""
def __init__( self , _lowercase , _lowercase )-> Union[str, Any]:
super().__init__(_lowercase , _lowercase )
def __call__( self , *_lowercase , **_lowercase )-> Tuple:
UpperCamelCase_ = kwargs.pop("audio" , _lowercase )
UpperCamelCase_ = kwargs.pop("text" , _lowercase )
UpperCamelCase_ = kwargs.pop("text_target" , _lowercase )
UpperCamelCase_ = kwargs.pop("audio_target" , _lowercase )
UpperCamelCase_ = kwargs.pop("sampling_rate" , _lowercase )
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" )
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." )
if audio is not None:
UpperCamelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
elif text is not None:
UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase )
else:
UpperCamelCase_ = None
if audio_target is not None:
UpperCamelCase_ = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
UpperCamelCase_ = targets["input_values"]
elif text_target is not None:
UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase )
UpperCamelCase_ = targets["input_ids"]
else:
UpperCamelCase_ = None
if inputs is None:
return targets
if targets is not None:
UpperCamelCase_ = labels
UpperCamelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
UpperCamelCase_ = decoder_attention_mask
return inputs
def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Optional[int]:
UpperCamelCase_ = kwargs.pop("input_values" , _lowercase )
UpperCamelCase_ = kwargs.pop("input_ids" , _lowercase )
UpperCamelCase_ = kwargs.pop("labels" , _lowercase )
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs." )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." )
if input_values is not None:
UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase )
elif input_ids is not None:
UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase )
else:
UpperCamelCase_ = None
if labels is not None:
if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]):
UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase )
UpperCamelCase_ = targets["input_ids"]
else:
UpperCamelCase_ = self.feature_extractor.feature_size
UpperCamelCase_ = self.feature_extractor.num_mel_bins
UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase )
UpperCamelCase_ = feature_size_hack
UpperCamelCase_ = targets["input_values"]
else:
UpperCamelCase_ = None
if inputs is None:
return targets
if targets is not None:
UpperCamelCase_ = labels
UpperCamelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
UpperCamelCase_ = decoder_attention_mask
return inputs
def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int:
return self.tokenizer.decode(*_lowercase , **_lowercase )
| 60 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def lowercase_ ( ):
"""simple docstring"""
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 254 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) )
__UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) )
__UpperCAmelCase : Any = 0.01
with locka.acquire():
with pytest.raises(lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = time.time()
locka.acquire(lowerCAmelCase__ )
assert time.time() - _start > timeout
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : str = """a""" * 1000 + """.lock"""
__UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(""".lock""" )
assert not locka._lock_file.endswith(lowerCAmelCase__ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
__UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowerCAmelCase__ ):
locka.acquire(0 )
| 254 | 1 |
"""simple docstring"""
import unittest
from transformers import DonutProcessor
A = '''naver-clova-ix/donut-base'''
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
def _lowerCamelCase ( self ):
__a : str = DonutProcessor.from_pretrained(_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Optional[Any] = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
__a : List[str] = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
__a : List[str] = self.processor.tokenajson(_UpperCAmelCase )
self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase ) | 188 |
"""simple docstring"""
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __A ( a_ :List[Any]=None , a_ :Tuple=None) -> List[Any]:
return field(default_factory=lambda: default , metadata=a_)
@dataclass
class __lowercase :
'''simple docstring'''
__lowerCAmelCase = field(
metadata={'''help''': '''The csv file to plot.'''} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={
'''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.'''
} , )
__lowerCAmelCase = field(
default=_UpperCamelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , )
__lowerCAmelCase = list_field(
default=_UpperCamelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} )
def __A ( a_ :Optional[Any]) -> Any:
try:
int(a_)
return True
except ValueError:
return False
def __A ( a_ :List[Any]) -> Any:
try:
float(a_)
return True
except ValueError:
return False
class __lowercase :
'''simple docstring'''
def __init__( self , _UpperCAmelCase ):
__a : Dict = args
__a : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
__a : int = csv.DictReader(_UpperCAmelCase )
for row in reader:
__a : Union[str, Any] = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
__a : Optional[int] = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
__a : Optional[Any] = float(row['''result'''] )
def _lowerCamelCase ( self ):
__a , __a : Optional[int] = plt.subplots()
__a : str = '''Time usage''' if self.args.is_time else '''Memory usage'''
__a : str = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
__a : str = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
__a : Dict = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
__a : Dict = self.result_dict[model_name]['''result''']
((__a) , (__a)) : List[Any] = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
__a : Any = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
__a : Optional[int] = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , )
else:
__a : Dict = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((__a) , (__a)) : Union[str, Any] = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
__a : Any = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )]
plt.scatter(
_UpperCAmelCase , _UpperCAmelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" )
plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' )
title_str += f""" {label_model_name} vs."""
__a : Optional[Any] = title_str[:-4]
__a : Optional[int] = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(_UpperCAmelCase )
plt.xlabel(_UpperCAmelCase )
plt.ylabel(_UpperCAmelCase )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __A ( ) -> List[str]:
__a : List[str] = HfArgumentParser(a_)
__a : Optional[int] = parser.parse_args_into_dataclasses()[0]
__a : Tuple = Plot(args=a_)
plot.plot()
if __name__ == "__main__":
main() | 188 | 1 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__A : List[Any] = datasets.utils.logging.get_logger(__name__)
__A : List[str] = ["names", "prefix"]
__A : Union[str, Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
__A : int = ["encoding_errors", "on_bad_lines"]
__A : List[Any] = ["date_format"]
@dataclass
class _a ( datasets.BuilderConfig):
"""simple docstring"""
UpperCamelCase__ = ","
UpperCamelCase__ = None
UpperCamelCase__ = "infer"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = False
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = True
UpperCamelCase__ = None
UpperCamelCase__ = "."
UpperCamelCase__ = None
UpperCamelCase__ = '"'
UpperCamelCase__ = 0
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 0
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = None
UpperCamelCase__ = 10_000
UpperCamelCase__ = None
UpperCamelCase__ = "strict"
UpperCamelCase__ = "error"
UpperCamelCase__ = None
def lowercase__ ( self : Optional[int] )->Dict:
if self.delimiter is not None:
_UpperCAmelCase = self.delimiter
if self.column_names is not None:
_UpperCAmelCase = self.column_names
@property
def lowercase__ ( self : Dict )->Union[str, Any]:
_UpperCAmelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _a ( datasets.ArrowBasedBuilder):
"""simple docstring"""
UpperCamelCase__ = CsvConfig
def lowercase__ ( self : str )->Optional[Any]:
return datasets.DatasetInfo(features=self.config.features )
def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] )->Optional[Any]:
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
_UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCamelCase__ , (str, list, tuple) ):
_UpperCAmelCase = data_files
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase = [files]
_UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase = [files]
_UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={'''files''': files} ) )
return splits
def lowercase__ ( self : Tuple , __UpperCamelCase : pa.Table )->pa.Table:
if self.config.features is not None:
_UpperCAmelCase = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCamelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase = table_cast(lowerCamelCase__ , lowerCamelCase__ )
return pa_table
def lowercase__ ( self : Any , __UpperCamelCase : List[Any] )->Dict:
_UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ):
_UpperCAmelCase = pd.read_csv(lowerCamelCase__ , iterator=lowerCamelCase__ , dtype=lowerCamelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCamelCase__ ):
_UpperCAmelCase = pa.Table.from_pandas(lowerCamelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}' )
raise
| 260 |
import math
import unittest
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool:
'''simple docstring'''
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class UpperCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple:
'''simple docstring'''
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
with self.assertRaises(lowerCamelCase__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) ,"""Zero doesn't have any positive factors, primes must have exactly two.""" ,)
self.assertFalse(
is_prime(1 ) ,"""One only has 1 positive factor, primes must have exactly two.""" ,)
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 296 | 0 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
__A : str = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase__)
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
def __init__( self , **_SCREAMING_SNAKE_CASE )-> List[str]:
super().__init__(**_SCREAMING_SNAKE_CASE )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[Any]:
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> Optional[int]:
lowerCamelCase_ ={}
if "candidate_labels" in kwargs:
lowerCamelCase_ =kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
lowerCamelCase_ =kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This is a photo of {}." )-> Union[str, Any]:
lowerCamelCase_ =load_image(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self.image_processor(images=[image] , return_tensors=self.framework )
lowerCamelCase_ =candidate_labels
lowerCamelCase_ =[hypothesis_template.format(_SCREAMING_SNAKE_CASE ) for x in candidate_labels]
lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =[text_inputs]
return inputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[Any]:
lowerCamelCase_ =model_inputs.pop("""candidate_labels""" )
lowerCamelCase_ =model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _SCREAMING_SNAKE_CASE ):
lowerCamelCase_ =text_inputs[0]
else:
# Batching case.
lowerCamelCase_ =text_inputs[0][0]
lowerCamelCase_ =self.model(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
lowerCamelCase_ ={
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]:
lowerCamelCase_ =model_outputs.pop("""candidate_labels""" )
lowerCamelCase_ =model_outputs["""logits"""][0]
if self.framework == "pt":
lowerCamelCase_ =logits.softmax(dim=-1 ).squeeze(-1 )
lowerCamelCase_ =probs.tolist()
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
lowerCamelCase_ =[scores]
elif self.framework == "tf":
lowerCamelCase_ =stable_softmax(_SCREAMING_SNAKE_CASE , axis=-1 )
lowerCamelCase_ =probs.numpy().tolist()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowerCamelCase_ =[
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , key=lambda _SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 49 |
from __future__ import annotations
class _SCREAMING_SNAKE_CASE :
def __init__( self , _SCREAMING_SNAKE_CASE )-> None:
lowerCamelCase_ =data
lowerCamelCase_ =None
lowerCamelCase_ =None
def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree
"""simple docstring"""
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def __UpperCamelCase ( _A : Node | None ) ->int:
"""simple docstring"""
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def __UpperCamelCase ( _A : Node ) ->bool:
"""simple docstring"""
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def __UpperCamelCase ( ) ->None: # Main function for testing.
"""simple docstring"""
lowerCamelCase_ =Node(1 )
lowerCamelCase_ =Node(2 )
lowerCamelCase_ =Node(3 )
lowerCamelCase_ =Node(4 )
lowerCamelCase_ =Node(5 )
lowerCamelCase_ =Node(6 )
lowerCamelCase_ =Node(7 )
lowerCamelCase_ =Node(8 )
lowerCamelCase_ =Node(9 )
print(is_full_binary_tree(_A ) )
print(depth_of_tree(_A ) )
print("""Tree is: """ )
display(_A )
if __name__ == "__main__":
main()
| 49 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
snake_case_ : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias"""))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
)
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
)
)
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias"""))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.encoder.norm.weight', 'encoder.layernorm.weight'),
('transformer.encoder.norm.bias', 'encoder.layernorm.bias'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
]
)
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : Union[str, Any] = state_dict.pop(__A )
_UpperCamelCase : Tuple = val
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase : List[str] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
_UpperCamelCase : List[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' )
_UpperCamelCase : str = value
else:
_UpperCamelCase : int = value
return new_state_dict
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase : Any = ''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_UpperCamelCase : Optional[int] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' )
_UpperCamelCase : int = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase : int = in_proj_weight[:2_5_6, :]
_UpperCamelCase : int = in_proj_bias[:2_5_6]
_UpperCamelCase : Optional[int] = in_proj_weight[2_5_6:5_1_2, :]
_UpperCamelCase : str = in_proj_bias[2_5_6:5_1_2]
_UpperCamelCase : List[str] = in_proj_weight[-2_5_6:, :]
_UpperCamelCase : Tuple = in_proj_bias[-2_5_6:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_UpperCamelCase : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' )
_UpperCamelCase : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase : Optional[Any] = in_proj_weight[:2_5_6, :]
_UpperCamelCase : List[Any] = in_proj_bias[:2_5_6]
_UpperCamelCase : Union[str, Any] = in_proj_weight[2_5_6:5_1_2, :]
_UpperCamelCase : str = in_proj_bias[2_5_6:5_1_2]
_UpperCamelCase : Optional[Any] = in_proj_weight[-2_5_6:, :]
_UpperCamelCase : int = in_proj_bias[-2_5_6:]
# read in weights + bias of input projection layer of cross-attention
_UpperCamelCase : List[Any] = state_dict.pop(
f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' )
_UpperCamelCase : str = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_UpperCamelCase : Union[str, Any] = in_proj_weight_cross_attn[:2_5_6, :]
_UpperCamelCase : Optional[Any] = in_proj_bias_cross_attn[:2_5_6]
_UpperCamelCase : Tuple = in_proj_weight_cross_attn[2_5_6:5_1_2, :]
_UpperCamelCase : Any = in_proj_bias_cross_attn[2_5_6:5_1_2]
_UpperCamelCase : List[Any] = in_proj_weight_cross_attn[-2_5_6:, :]
_UpperCamelCase : Optional[int] = in_proj_bias_cross_attn[-2_5_6:]
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase , _UpperCamelCase : Optional[Any] = image.size
_UpperCamelCase : List[Any] = max(__A , __A )
_UpperCamelCase : Optional[Any] = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0
_UpperCamelCase : str = target_max_size / current_max_size
_UpperCamelCase : Optional[int] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase : Dict = F.to_tensor(__A )
_UpperCamelCase : Optional[int] = F.normalize(__A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
logger.info('Converting model...' )
# load original state dict
_UpperCamelCase : List[str] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' )
# rename keys
for src, dest in rename_keys:
rename_key(__A , __A , __A )
_UpperCamelCase : Optional[Any] = rename_backbone_keys(__A )
# query, key and value matrices need special treatment
read_in_q_k_v(__A )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_UpperCamelCase : Any = 'model.'
for key in state_dict.copy().keys():
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
_UpperCamelCase : Optional[int] = state_dict.pop(__A )
_UpperCamelCase : List[Any] = val
# create HuggingFace model and load state dict
_UpperCamelCase : Any = TableTransformerConfig(
backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
_UpperCamelCase : Tuple = 1_5
_UpperCamelCase : int = 2
_UpperCamelCase : Optional[Any] = {0: 'table', 1: 'table rotated'}
_UpperCamelCase : Tuple = idalabel
_UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()}
else:
_UpperCamelCase : str = 1_2_5
_UpperCamelCase : int = 6
_UpperCamelCase : Tuple = {
0: 'table',
1: 'table column',
2: 'table row',
3: 'table column header',
4: 'table projected row header',
5: 'table spanning cell',
}
_UpperCamelCase : List[str] = idalabel
_UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()}
_UpperCamelCase : Any = DetrImageProcessor(
format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 )
_UpperCamelCase : Dict = TableTransformerForObjectDetection(__A )
model.load_state_dict(__A )
model.eval()
# verify our conversion
_UpperCamelCase : Optional[Any] = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png'
_UpperCamelCase : List[str] = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=__A )
_UpperCamelCase : Union[str, Any] = Image.open(__A ).convert('RGB' )
_UpperCamelCase : Tuple = normalize(resize(__A , __A ) ).unsqueeze(0 )
_UpperCamelCase : Dict = model(__A )
if "detection" in checkpoint_url:
_UpperCamelCase : str = (1, 1_5, 3)
_UpperCamelCase : str = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
_UpperCamelCase : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
_UpperCamelCase : int = (1, 1_2_5, 7)
_UpperCamelCase : Any = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
_UpperCamelCase : int = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(__A ).mkdir(exist_ok=__A )
model.save_pretrained(__A )
image_processor.save_pretrained(__A )
if push_to_hub:
# Push model to HF hub
logger.info('Pushing model to the hub...' )
_UpperCamelCase : List[str] = (
'microsoft/table-transformer-detection'
if 'detection' in checkpoint_url
else 'microsoft/table-transformer-structure-recognition'
)
model.push_to_hub(__A )
image_processor.push_to_hub(__A )
if __name__ == "__main__":
snake_case_ : List[str] = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_url',
default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth',
type=str,
choices=[
'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth',
'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth',
],
help='URL of the Table Transformer checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
snake_case_ : Optional[Any] = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 83 |
'''simple docstring'''
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
a__ : Optional[int] = re.compile(R'\b(a|an|the)\b', re.UNICODE)
a__ : int = None
def _UpperCamelCase ( ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." )
parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." )
parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." )
parser.add_argument(
"--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." )
parser.add_argument(
"--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." )
parser.add_argument(
"--na-prob-thresh" , "-t" , type=__A , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , )
parser.add_argument(
"--out-image-dir" , "-p" , metavar="out_images" , default=__A , help="Save precision-recall curves to directory." )
parser.add_argument("--verbose" , "-v" , action="store_true" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _UpperCamelCase ( __A ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
UpperCamelCase__ = bool(qa["answers"]["text"] )
return qid_to_has_ans
def _UpperCamelCase ( __A ) -> Optional[Any]:
'''simple docstring'''
def remove_articles(__A ):
return ARTICLES_REGEX.sub(" " , __A )
def white_space_fix(__A ):
return " ".join(text.split() )
def remove_punc(__A ):
UpperCamelCase__ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__A ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) )
def _UpperCamelCase ( __A ) -> int:
'''simple docstring'''
if not s:
return []
return normalize_answer(__A ).split()
def _UpperCamelCase ( __A , __A ) -> List[Any]:
'''simple docstring'''
return int(normalize_answer(__A ) == normalize_answer(__A ) )
def _UpperCamelCase ( __A , __A ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ = get_tokens(__A )
UpperCamelCase__ = get_tokens(__A )
UpperCamelCase__ = collections.Counter(__A ) & collections.Counter(__A )
UpperCamelCase__ = sum(common.values() )
if len(__A ) == 0 or len(__A ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
UpperCamelCase__ = 1.0 * num_same / len(__A )
UpperCamelCase__ = 1.0 * num_same / len(__A )
UpperCamelCase__ = (2 * precision * recall) / (precision + recall)
return fa
def _UpperCamelCase ( __A , __A ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ = {}
UpperCamelCase__ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
UpperCamelCase__ = qa["id"]
UpperCamelCase__ = [t for t in qa["answers"]["text"] if normalize_answer(__A )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
UpperCamelCase__ = [""]
if qid not in preds:
print(F'''Missing prediction for {qid}''' )
continue
UpperCamelCase__ = preds[qid]
# Take max over all gold answers
UpperCamelCase__ = max(compute_exact(__A , __A ) for a in gold_answers )
UpperCamelCase__ = max(compute_fa(__A , __A ) for a in gold_answers )
return exact_scores, fa_scores
def _UpperCamelCase ( __A , __A , __A , __A ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ = {}
for qid, s in scores.items():
UpperCamelCase__ = na_probs[qid] > na_prob_thresh
if pred_na:
UpperCamelCase__ = float(not qid_to_has_ans[qid] )
else:
UpperCamelCase__ = s
return new_scores
def _UpperCamelCase ( __A , __A , __A=None ) -> List[Any]:
'''simple docstring'''
if not qid_list:
UpperCamelCase__ = len(__A )
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores.values() ) / total),
("f1", 100.0 * sum(fa_scores.values() ) / total),
("total", total),
] )
else:
UpperCamelCase__ = len(__A )
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("total", total),
] )
def _UpperCamelCase ( __A , __A , __A ) -> Optional[int]:
'''simple docstring'''
for k in new_eval:
UpperCamelCase__ = new_eval[k]
def _UpperCamelCase ( __A , __A , __A , __A ) -> Optional[int]:
'''simple docstring'''
plt.step(__A , __A , color="b" , alpha=0.2 , where="post" )
plt.fill_between(__A , __A , step="post" , alpha=0.2 , color="b" )
plt.xlabel("Recall" )
plt.ylabel("Precision" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(__A )
plt.savefig(__A )
plt.clf()
def _UpperCamelCase ( __A , __A , __A , __A , __A=None , __A=None ) -> Any:
'''simple docstring'''
UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] )
UpperCamelCase__ = 0.0
UpperCamelCase__ = 1.0
UpperCamelCase__ = 0.0
UpperCamelCase__ = [1.0]
UpperCamelCase__ = [0.0]
UpperCamelCase__ = 0.0
for i, qid in enumerate(__A ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
UpperCamelCase__ = true_pos / float(i + 1 )
UpperCamelCase__ = true_pos / float(__A )
if i == len(__A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(__A )
recalls.append(__A )
if out_image:
plot_pr_curve(__A , __A , __A , __A )
return {"ap": 100.0 * avg_prec}
def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> List[str]:
'''simple docstring'''
if out_image_dir and not os.path.exists(__A ):
os.makedirs(__A )
UpperCamelCase__ = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
UpperCamelCase__ = make_precision_recall_eval(
__A , __A , __A , __A , out_image=os.path.join(__A , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , )
UpperCamelCase__ = make_precision_recall_eval(
__A , __A , __A , __A , out_image=os.path.join(__A , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , )
UpperCamelCase__ = {k: float(__A ) for k, v in qid_to_has_ans.items()}
UpperCamelCase__ = make_precision_recall_eval(
__A , __A , __A , __A , out_image=os.path.join(__A , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , )
merge_eval(__A , __A , "pr_exact" )
merge_eval(__A , __A , "pr_f1" )
merge_eval(__A , __A , "pr_oracle" )
def _UpperCamelCase ( __A , __A , __A , __A ) -> List[str]:
'''simple docstring'''
if not qid_list:
return
UpperCamelCase__ = [na_probs[k] for k in qid_list]
UpperCamelCase__ = np.ones_like(__A ) / float(len(__A ) )
plt.hist(__A , weights=__A , bins=20 , range=(0.0, 1.0) )
plt.xlabel("Model probability of no-answer" )
plt.ylabel("Proportion of dataset" )
plt.title(F'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(__A , F'''na_prob_hist_{name}.png''' ) )
plt.clf()
def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
UpperCamelCase__ = num_no_ans
UpperCamelCase__ = cur_score
UpperCamelCase__ = 0.0
UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] )
for i, qid in enumerate(__A ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
UpperCamelCase__ = scores[qid]
else:
if preds[qid]:
UpperCamelCase__ = -1
else:
UpperCamelCase__ = 0
cur_score += diff
if cur_score > best_score:
UpperCamelCase__ = cur_score
UpperCamelCase__ = na_probs[qid]
return 100.0 * best_score / len(__A ), best_thresh
def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> Dict:
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A )
UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A )
UpperCamelCase__ = best_exact
UpperCamelCase__ = exact_thresh
UpperCamelCase__ = best_fa
UpperCamelCase__ = fa_thresh
def _UpperCamelCase ( ) -> Any:
'''simple docstring'''
with open(OPTS.data_file ) as f:
UpperCamelCase__ = json.load(__A )
UpperCamelCase__ = dataset_json["data"]
with open(OPTS.pred_file ) as f:
UpperCamelCase__ = json.load(__A )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
UpperCamelCase__ = json.load(__A )
else:
UpperCamelCase__ = {k: 0.0 for k in preds}
UpperCamelCase__ = make_qid_to_has_ans(__A ) # maps qid to True/False
UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if v]
UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if not v]
UpperCamelCase__ , UpperCamelCase__ = get_raw_scores(__A , __A )
UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh )
UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh )
UpperCamelCase__ = make_eval_dict(__A , __A )
if has_ans_qids:
UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A )
merge_eval(__A , __A , "HasAns" )
if no_ans_qids:
UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A )
merge_eval(__A , __A , "NoAns" )
if OPTS.na_prob_file:
find_all_best_thresh(__A , __A , __A , __A , __A , __A )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(__A , __A , __A , __A , __A , OPTS.out_image_dir )
histogram_na_prob(__A , __A , OPTS.out_image_dir , "hasAns" )
histogram_na_prob(__A , __A , OPTS.out_image_dir , "noAns" )
if OPTS.out_file:
with open(OPTS.out_file , "w" ) as f:
json.dump(__A , __A )
else:
print(json.dumps(__A , indent=2 ) )
if __name__ == "__main__":
a__ : Optional[int] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 80 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings''']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 361 |
"""simple docstring"""
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
lowerCAmelCase__ = ''''''
if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''):
class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ):
"""simple docstring"""
def __init__( self , snake_case__ = " " ):
"""simple docstring"""
lowerCAmelCase : List[Any] = sentence_delimiter
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
return list(snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Any = []
for sent_idx, sentence in enumerate(snake_case__ ):
chars.extend(self.process_string(snake_case__ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1:
chars.append(self.sentence_delimiter )
return chars
lowerCAmelCase__ = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
lowerCAmelCase__ = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
lowerCAmelCase__ = '''\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
'''
lowerCAmelCase__ = '''\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
'''
lowerCAmelCase__ = '''
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> cer = datasets.load_metric("cer")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
"https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates",
] , )
def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ):
"""simple docstring"""
if concatenate_texts:
return jiwer.compute_measures(
snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"]
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Optional[Any] = 0
for prediction, reference in zip(snake_case__ , snake_case__ ):
lowerCAmelCase : Optional[int] = jiwer.compute_measures(
snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 133 | 0 |
import cva
import numpy as np
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self , A_ , A_ ) -> Optional[Any]:
if k in (0.04, 0.06):
__UpperCamelCase =k
__UpperCamelCase =window_size
else:
raise ValueError('invalid k value' )
def __str__( self ) -> str:
return str(self.k )
def _a ( self , A_ ) -> tuple[cva.Mat, list[list[int]]]:
__UpperCamelCase =cva.imread(A_ , 0 )
__UpperCamelCase , __UpperCamelCase =img.shape
__UpperCamelCase =[]
__UpperCamelCase =img.copy()
__UpperCamelCase =cva.cvtColor(A_ , cva.COLOR_GRAY2RGB )
__UpperCamelCase , __UpperCamelCase =np.gradient(A_ )
__UpperCamelCase =dx**2
__UpperCamelCase =dy**2
__UpperCamelCase =dx * dy
__UpperCamelCase =0.04
__UpperCamelCase =self.window_size // 2
for y in range(A_ , h - offset ):
for x in range(A_ , w - offset ):
__UpperCamelCase =ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__UpperCamelCase =(wxx * wyy) - (wxy**2)
__UpperCamelCase =wxx + wyy
__UpperCamelCase =det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_A = HarrisCorner(0.04, 3)
_A , _A = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img)
| 62 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_A = logging.get_logger(__name__)
if is_vision_available():
import PIL
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = ["pixel_values"]
def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , ) -> None:
super().__init__(**A_ )
__UpperCamelCase =size if size is not None else {'shortest_edge': 224}
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ )
__UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' )
__UpperCamelCase =do_resize
__UpperCamelCase =size
__UpperCamelCase =resample
__UpperCamelCase =do_center_crop
__UpperCamelCase =crop_size
__UpperCamelCase =do_rescale
__UpperCamelCase =rescale_factor
__UpperCamelCase =do_normalize
__UpperCamelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCamelCase =image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCamelCase =do_convert_rgb
def _a ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray:
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
__UpperCamelCase =get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ )
return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
__UpperCamelCase =get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]:
return rescale(A_ , scale=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image:
__UpperCamelCase =do_resize if do_resize is not None else self.do_resize
__UpperCamelCase =size if size is not None else self.size
__UpperCamelCase =get_size_dict(A_ , param_name='size' , default_to_square=A_ )
__UpperCamelCase =resample if resample is not None else self.resample
__UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase =crop_size if crop_size is not None else self.crop_size
__UpperCamelCase =get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ )
__UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase =image_mean if image_mean is not None else self.image_mean
__UpperCamelCase =image_std if image_std is not None else self.image_std
__UpperCamelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCamelCase =make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCamelCase =[convert_to_rgb(A_ ) for image in images]
# All transformations expect numpy arrays.
__UpperCamelCase =[to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase =[self.resize(image=A_ , size=A_ , resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase =[self.center_crop(image=A_ , size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase =[self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images]
__UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images]
__UpperCamelCase ={'pixel_values': images}
return BatchFeature(data=A_ , tensor_type=A_ )
| 62 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Any = ["""LlamaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Dict = ["""LlamaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[int] = [
"""LlamaForCausalLM""",
"""LlamaModel""",
"""LlamaPreTrainedModel""",
"""LlamaForSequenceClassification""",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 157 |
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
_SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
# General docstring
_SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig"""
# Base docstring
_SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50"""
_SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7]
# Image classification docstring
_SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50"""
_SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat"""
_SCREAMING_SNAKE_CASE : Optional[Any] = [
"""microsoft/resnet-50""",
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ):
super().__init__()
UpperCamelCase__ : Optional[Any] =nn.Convad(
lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ )
UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ )
UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity()
def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ):
UpperCamelCase__ : List[Any] =self.convolution(lowercase_ )
UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ )
UpperCamelCase__ : Optional[int] =self.activation(lowercase_ )
return hidden_state
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , lowercase_ : ResNetConfig ):
super().__init__()
UpperCamelCase__ : Any =ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
UpperCamelCase__ : Any =config.num_channels
def _lowerCAmelCase ( self : str , lowercase_ : Tensor ):
UpperCamelCase__ : Optional[Any] =pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
UpperCamelCase__ : Dict =self.embedder(lowercase_ )
UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ )
return embedding
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ):
super().__init__()
UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ )
UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ )
def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ):
UpperCamelCase__ : Dict =self.convolution(lowercase_ )
UpperCamelCase__ : Dict =self.normalization(lowercase_ )
return hidden_state
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ):
super().__init__()
UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1
UpperCamelCase__ : str =(
ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity()
)
UpperCamelCase__ : List[str] =nn.Sequential(
ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , )
UpperCamelCase__ : Any =ACTaFN[activation]
def _lowerCAmelCase ( self : str , lowercase_ : Tuple ):
UpperCamelCase__ : Any =hidden_state
UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ )
UpperCamelCase__ : str =self.shortcut(lowercase_ )
hidden_state += residual
UpperCamelCase__ : str =self.activation(lowercase_ )
return hidden_state
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ):
super().__init__()
UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1
UpperCamelCase__ : Union[str, Any] =out_channels // reduction
UpperCamelCase__ : str =(
ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity()
)
UpperCamelCase__ : int =nn.Sequential(
ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , )
UpperCamelCase__ : List[Any] =ACTaFN[activation]
def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ):
UpperCamelCase__ : Dict =hidden_state
UpperCamelCase__ : str =self.layer(lowercase_ )
UpperCamelCase__ : Tuple =self.shortcut(lowercase_ )
hidden_state += residual
UpperCamelCase__ : Optional[int] =self.activation(lowercase_ )
return hidden_state
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ):
super().__init__()
UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
UpperCamelCase__ : Union[str, Any] =nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ):
UpperCamelCase__ : Optional[Any] =input
for layer in self.layers:
UpperCamelCase__ : Tuple =layer(lowercase_ )
return hidden_state
class __a ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowercase_ : ResNetConfig ):
super().__init__()
UpperCamelCase__ : Optional[Any] =nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ):
self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) )
def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ):
UpperCamelCase__ : int =() if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,)
UpperCamelCase__ : List[str] =stage_module(lowercase_ )
if output_hidden_states:
UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowercase_ , hidden_states=lowercase_ , )
class __a ( snake_case__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = ResNetConfig
SCREAMING_SNAKE_CASE_ = 'resnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
SCREAMING_SNAKE_CASE_ = True
def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ):
if isinstance(lowercase_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ):
if isinstance(lowercase_ , lowercase_ ):
UpperCamelCase__ : str =value
_SCREAMING_SNAKE_CASE : int = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
_SCREAMING_SNAKE_CASE : Optional[int] = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, )
class __a ( snake_case__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowercase_ : List[Any] ):
super().__init__(lowercase_ )
UpperCamelCase__ : Dict =config
UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ )
UpperCamelCase__ : str =ResNetEncoder(lowercase_ )
UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ):
UpperCamelCase__ : Union[str, Any] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ )
UpperCamelCase__ : Union[str, Any] =self.encoder(
lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ )
UpperCamelCase__ : int =encoder_outputs[0]
UpperCamelCase__ : List[Any] =self.pooler(lowercase_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, )
class __a ( snake_case__ ):
"""simple docstring"""
def __init__( self : Dict , lowercase_ : Union[str, Any] ):
super().__init__(lowercase_ )
UpperCamelCase__ : Any =config.num_labels
UpperCamelCase__ : Dict =ResNetModel(lowercase_ )
# classification head
UpperCamelCase__ : Any =nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ):
UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ )
UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ )
UpperCamelCase__ : int =None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCamelCase__ : List[str] ='''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCamelCase__ : Dict ='''single_label_classification'''
else:
UpperCamelCase__ : str ='''multi_label_classification'''
if self.config.problem_type == "regression":
UpperCamelCase__ : Union[str, Any] =MSELoss()
if self.num_labels == 1:
UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ )
elif self.config.problem_type == "single_label_classification":
UpperCamelCase__ : List[Any] =CrossEntropyLoss()
UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss()
UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ )
if not return_dict:
UpperCamelCase__ : Tuple =(logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, )
class __a ( snake_case__, snake_case__ ):
"""simple docstring"""
def __init__( self : str , lowercase_ : List[Any] ):
super().__init__(lowercase_ )
super()._init_backbone(lowercase_ )
UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes
UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ )
UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_ )
@replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC )
def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ):
UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase__ : Union[str, Any] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase__ : Any =self.embedder(lowercase_ )
UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ )
UpperCamelCase__ : str =outputs.hidden_states
UpperCamelCase__ : Optional[int] =()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
UpperCamelCase__ : int =(feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
| 157 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( a , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase__ = DebertaTokenizer
lowerCAmelCase__ = True
lowerCAmelCase__ = DebertaTokenizerFast
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__SCREAMING_SNAKE_CASE = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""[UNK]""",
]
__SCREAMING_SNAKE_CASE = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__SCREAMING_SNAKE_CASE = {"""unk_token""": """[UNK]"""}
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_lowerCAmelCase ) )
def UpperCAmelCase__ ( self : str , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """lower newer"""
__SCREAMING_SNAKE_CASE = """lower newer"""
return input_text, output_text
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = """lower newer"""
__SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token]
__SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer("""Hello""" , """World""" )
__SCREAMING_SNAKE_CASE = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["""token_type_ids"""] , _lowerCAmelCase )
@slow
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
__SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.encode(
"""sequence builders""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
__SCREAMING_SNAKE_CASE = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
__SCREAMING_SNAKE_CASE = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = [tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) for seq in encoding["""input_ids"""]]
# fmt: off
__SCREAMING_SNAKE_CASE = {
"""input_ids""": [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
"""token_type_ids""": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__SCREAMING_SNAKE_CASE = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
self.assertDictEqual(encoding.data , _lowerCAmelCase )
for expected, decoded in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
| 267 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE :Union[str, Any] = namedtuple('''covid_data''', '''cases deaths recovered''')
def _lowerCAmelCase ( lowerCAmelCase_ :str = "https://www.worldometers.info/coronavirus/" )->covid_data:
'''simple docstring'''
snake_case_ = "//div[@class = \"maincounter-number\"]/span/text()"
return covid_data(*html.fromstring(requests.get(lowerCAmelCase_ ).content ).xpath(lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE :str = '''Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}'''
print(fmt.format(*covid_stats()))
| 159 | 0 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
_a = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
_a = {'facebook/blenderbot_small-90M': 5_12}
def _A ( UpperCamelCase_ : Optional[int]) -> Optional[int]:
'''simple docstring'''
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
__lowercase = char
__lowercase = set(UpperCamelCase_)
return pairs
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
__UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str="__start__", UpperCAmelCase__ : str="__end__", UpperCAmelCase__ : Optional[Any]="__unk__", UpperCAmelCase__ : Dict="__null__", **UpperCAmelCase__ : Tuple, ):
super().__init__(unk_token=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, **UpperCAmelCase__ )
with open(UpperCAmelCase__, encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(UpperCAmelCase__ )
__lowercase = {v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase__, encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in merges]
__lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) )
__lowercase = {}
@property
def _lowercase ( self : Any ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder, **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ):
if token in self.cache:
return self.cache[token]
__lowercase = re.sub("([.,!?()])", r" \1", UpperCAmelCase__ )
__lowercase = re.sub("(')", r" \1 ", UpperCAmelCase__ )
__lowercase = re.sub(r"\s{2,}", " ", UpperCAmelCase__ )
if "\n" in token:
__lowercase = token.replace("\n", " __newln__" )
__lowercase = token.split(" " )
__lowercase = []
for token in tokens:
if not len(UpperCAmelCase__ ):
continue
__lowercase = token.lower()
__lowercase = tuple(UpperCAmelCase__ )
__lowercase = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
__lowercase = get_pairs(UpperCAmelCase__ )
if not pairs:
words.append(UpperCAmelCase__ )
continue
while True:
__lowercase = min(UpperCAmelCase__, key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__, float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase ,__lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(UpperCAmelCase__ ):
try:
__lowercase = word.index(UpperCAmelCase__, UpperCAmelCase__ )
new_word.extend(word[i:j] )
__lowercase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(UpperCAmelCase__ )
__lowercase = new_word
if len(UpperCAmelCase__ ) == 1:
break
else:
__lowercase = get_pairs(UpperCAmelCase__ )
__lowercase = "@@ ".join(UpperCAmelCase__ )
__lowercase = word[:-4]
__lowercase = word
words.append(UpperCAmelCase__ )
return " ".join(UpperCAmelCase__ )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ):
__lowercase = []
__lowercase = re.findall(r"\S+\n?", UpperCAmelCase__ )
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase__ ).split(" " ) ) )
return split_tokens
def _lowercase ( self : str, UpperCAmelCase__ : str ):
__lowercase = token.lower()
return self.encoder.get(UpperCAmelCase__, self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : int ):
return self.decoder.get(UpperCAmelCase__, self.unk_token )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str] ):
__lowercase = " ".join(UpperCAmelCase__ ).replace("@@ ", "" ).strip()
return out_string
def _lowercase ( self : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ):
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCAmelCase__, "w", encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=UpperCAmelCase__, ensure_ascii=UpperCAmelCase__ ) + "\n" )
__lowercase = 0
with open(UpperCAmelCase__, "w", encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda UpperCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(UpperCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
| 358 |
"""simple docstring"""
_a = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 144 | 0 |
def _a ( UpperCamelCase_ : Optional[int] ) -> List[str]:
"""simple docstring"""
assert (
isinstance(A__ , A__ ) and number_of_steps > 0
), F"number_of_steps needs to be positive integer, your input {number_of_steps}"
if number_of_steps == 1:
return 1
lowerCAmelCase__ , lowerCAmelCase__ = 1, 1
for _ in range(number_of_steps - 1 ):
lowerCAmelCase__ , lowerCAmelCase__ = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer']
SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor'
SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ):
__lowercase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,lowercase__ ,)
__lowercase = kwargs.pop('''feature_extractor''' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase__ ,lowercase__ )
def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
if images is not None:
__lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
if text is not None and images is not None:
__lowercase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ):
return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ):
return self.tokenizer.decode(*lowercase__ ,**lowercase__ )
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.tokenizer.model_input_names
__lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,)
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,)
return self.image_processor
| 104 | 0 |
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
lowerCamelCase_ : List[Any] = logging.getLogger(__name__)
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCamelCase : Tuple = 42
__UpperCamelCase : str = 42
__UpperCamelCase : Optional[Any] = 42
@dataclass
class _UpperCamelCase :
'''simple docstring'''
__UpperCamelCase : Optional[int] = 42
__UpperCamelCase : Dict = 42
__UpperCamelCase : Tuple = None
__UpperCamelCase : Optional[Any] = None
class _UpperCamelCase ( A_ ):
'''simple docstring'''
__UpperCamelCase : int = """train"""
__UpperCamelCase : List[Any] = """dev"""
__UpperCamelCase : Union[str, Any] = """test"""
class _UpperCamelCase :
'''simple docstring'''
@staticmethod
def lowerCAmelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Union[Split, str] ):
raise NotImplementedError
@staticmethod
def lowerCAmelCase__ ( snake_case_ : str ):
raise NotImplementedError
@staticmethod
def lowerCAmelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , snake_case_ : str=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Optional[int]=1 , snake_case_ : List[str]="[SEP]" , snake_case_ : int=False , snake_case_ : List[Any]=False , snake_case_ : List[Any]=0 , snake_case_ : Dict=0 , snake_case_ : List[str]=-100 , snake_case_ : Optional[Any]=0 , snake_case_ : Any=True , ):
UpperCamelCase_: Dict = {label: i for i, label in enumerate(_lowerCamelCase )}
UpperCamelCase_: Union[str, Any] = []
for ex_index, example in enumerate(_lowerCamelCase ):
if ex_index % 1_0000 == 0:
logger.info("""Writing example %d of %d""" , _lowerCamelCase , len(_lowerCamelCase ) )
UpperCamelCase_: int = []
UpperCamelCase_: Optional[int] = []
for word, label in zip(example.words , example.labels ):
UpperCamelCase_: Dict = tokenizer.tokenize(_lowerCamelCase )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(_lowerCamelCase ) > 0:
tokens.extend(_lowerCamelCase )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowerCamelCase ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
UpperCamelCase_: Union[str, Any] = tokenizer.num_special_tokens_to_add()
if len(_lowerCamelCase ) > max_seq_length - special_tokens_count:
UpperCamelCase_: List[Any] = tokens[: (max_seq_length - special_tokens_count)]
UpperCamelCase_: Dict = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
UpperCamelCase_: Optional[Any] = [sequence_a_segment_id] * len(_lowerCamelCase )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
UpperCamelCase_: Union[str, Any] = [cls_token] + tokens
UpperCamelCase_: List[Any] = [pad_token_label_id] + label_ids
UpperCamelCase_: Optional[Any] = [cls_token_segment_id] + segment_ids
UpperCamelCase_: Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
UpperCamelCase_: Any = [1 if mask_padding_with_zero else 0] * len(_lowerCamelCase )
# Zero-pad up to the sequence length.
UpperCamelCase_: Union[str, Any] = max_seq_length - len(_lowerCamelCase )
if pad_on_left:
UpperCamelCase_: Any = ([pad_token] * padding_length) + input_ids
UpperCamelCase_: Dict = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
UpperCamelCase_: List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids
UpperCamelCase_: Optional[int] = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(_lowerCamelCase ) == max_seq_length
assert len(_lowerCamelCase ) == max_seq_length
assert len(_lowerCamelCase ) == max_seq_length
assert len(_lowerCamelCase ) == max_seq_length
if ex_index < 5:
logger.info("""*** Example ***""" )
logger.info("""guid: %s""" , example.guid )
logger.info("""tokens: %s""" , """ """.join([str(_lowerCamelCase ) for x in tokens] ) )
logger.info("""input_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_ids] ) )
logger.info("""input_mask: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_mask] ) )
logger.info("""segment_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in segment_ids] ) )
logger.info("""label_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
UpperCamelCase_: List[str] = None
features.append(
InputFeatures(
input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , label_ids=_lowerCamelCase ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class _UpperCamelCase ( A_ ):
'''simple docstring'''
__UpperCamelCase : int = 42
__UpperCamelCase : Any = nn.CrossEntropyLoss().ignore_index
def __init__( self : Tuple , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Tuple=False , snake_case_ : Split = Split.train , ):
# Load data features from cache or dataset file
UpperCamelCase_: Dict = os.path.join(
_lowerCamelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(_lowerCamelCase ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase_: Any = cached_features_file + """.lock"""
with FileLock(_lowerCamelCase ):
if os.path.exists(_lowerCamelCase ) and not overwrite_cache:
logger.info(f'''Loading features from cached file {cached_features_file}''' )
UpperCamelCase_: List[str] = torch.load(_lowerCamelCase )
else:
logger.info(f'''Creating features from dataset file at {data_dir}''' )
UpperCamelCase_: Dict = token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase )
# TODO clean up all this to leverage built-in features of tokenizers
UpperCamelCase_: Optional[Any] = token_classification_task.convert_examples_to_features(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(f'''Saving features into cached file {cached_features_file}''' )
torch.save(self.features , _lowerCamelCase )
def __len__( self : Any ):
return len(self.features )
def __getitem__( self : List[Any] , snake_case_ : List[Any] ):
return self.features[i]
if is_tf_available():
import tensorflow as tf
class _UpperCamelCase :
'''simple docstring'''
__UpperCamelCase : List[str] = 42
__UpperCamelCase : Any = -100
def __init__( self : str , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Union[str, Any]=False , snake_case_ : Split = Split.train , ):
UpperCamelCase_: Any = token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase )
# TODO clean up all this to leverage built-in features of tokenizers
UpperCamelCase_: int = token_classification_task.convert_examples_to_features(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
UpperCamelCase_: Optional[int] = tf.data.Dataset.from_generator(
_lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , (
{"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
UpperCamelCase_: int = tf.data.Dataset.from_generator(
_lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , (
{
"""input_ids""": tf.TensorShape([None] ),
"""attention_mask""": tf.TensorShape([None] ),
"""token_type_ids""": tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def lowerCAmelCase__ ( self : Optional[int] ):
UpperCamelCase_: Any = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self : Any ):
return len(self.features )
def __getitem__( self : List[Any] , snake_case_ : Tuple ):
return self.features[i]
| 368 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def A__ ( ) -> Union[str, Any]:
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCamelCase_: Optional[int] = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def A__ ( ) -> Union[str, Any]:
assert _test_patching.open is open
UpperCamelCase_: List[Any] = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , lowerCamelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def A__ ( ) -> Optional[Any]:
# pandas.read_csv is not present in _test_patching
UpperCamelCase_: Optional[Any] = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , lowerCamelCase ):
pass
def A__ ( ) -> Any:
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
UpperCamelCase_: List[Any] = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , lowerCamelCase ) is None
with patch_submodule(_test_patching , """len""" , lowerCamelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def A__ ( ) -> Any:
UpperCamelCase_: Dict = """__test_patch_submodule_start_and_stop_mock__"""
UpperCamelCase_: List[str] = patch_submodule(_test_patching , """open""" , lowerCamelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def A__ ( ) -> List[str]:
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCamelCase_: Optional[Any] = """__test_patch_submodule_successive_join__"""
UpperCamelCase_: Any = """__test_patch_submodule_successive_dirname__"""
UpperCamelCase_: Dict = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ):
with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase ):
with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , lowerCamelCase ):
with patch_submodule(_test_patching , """os.path.join""" , lowerCamelCase ):
with patch_submodule(_test_patching , """os.path.dirname""" , lowerCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def A__ ( ) -> Union[str, Any]:
UpperCamelCase_: Dict = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , lowerCamelCase ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , lowerCamelCase ):
pass
| 223 | 0 |
from __future__ import annotations
def snake_case( __magic_name__ = 4 ) -> list[list[int]]:
'''simple docstring'''
lowercase : Tuple = abs(__magic_name__ ) or 4
return [[1 + x + y * row_size for x in range(__magic_name__ )] for y in range(__magic_name__ )]
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(transpose(__magic_name__ ) )
# OR.. transpose(reverse_column(matrix))
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(reverse_column(__magic_name__ ) )
# OR.. reverse_column(reverse_row(matrix))
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
return reverse_column(transpose(__magic_name__ ) )
# OR.. transpose(reverse_row(matrix))
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
lowercase : Optional[Any] = [list(__magic_name__ ) for x in zip(*__magic_name__ )]
return matrix
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
lowercase : Any = matrix[::-1]
return matrix
def snake_case( __magic_name__ ) -> list[list[int]]:
'''simple docstring'''
lowercase : List[str] = [x[::-1] for x in matrix]
return matrix
def snake_case( __magic_name__ ) -> None:
'''simple docstring'''
for i in matrix:
print(*__magic_name__ )
if __name__ == "__main__":
lowerCAmelCase_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
lowerCAmelCase_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
lowerCAmelCase_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix)) | 308 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase_ = logging.get_logger(__name__)
class _A ( enum.Enum ):
_UpperCamelCase : Union[str, Any] = 0
_UpperCamelCase : Any = 1
@add_end_docstrings(_lowerCamelCase )
class _A ( _lowerCamelCase ):
_UpperCamelCase : List[Any] = '''generated'''
def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase : str = {}
if truncation is not None:
lowercase : Tuple = truncation
lowercase : Tuple = generate_kwargs
lowercase : Optional[Any] = {}
if return_tensors is not None and return_type is None:
lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowercase : Dict = return_type
if clean_up_tokenization_spaces is not None:
lowercase : Dict = clean_up_tokenization_spaces
if stop_sequence is not None:
lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
lowercase : List[str] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]:
"""simple docstring"""
return True
def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict:
"""simple docstring"""
lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else ''''''
if isinstance(args[0] , _A ):
if self.tokenizer.pad_token_id is None:
raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' )
lowercase : List[Any] = ([prefix + arg for arg in args[0]],)
lowercase : Dict = True
elif isinstance(args[0] , _A ):
lowercase : Optional[int] = (prefix + args[0],)
lowercase : Union[str, Any] = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Any = super().__call__(*_A , **_A )
if (
isinstance(args[0] , _A )
and all(isinstance(_A , _A ) for el in args[0] )
and all(len(_A ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A )
return inputs
def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any:
"""simple docstring"""
if self.framework == "pt":
lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape
elif self.framework == "tf":
lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy()
lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length )
lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length )
self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] )
lowercase : int = self.model.generate(**_A , **_A )
lowercase : int = output_ids.shape[0]
if self.framework == "pt":
lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple:
"""simple docstring"""
lowercase : Any = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
lowercase : Dict = {
f"""{self.return_name}_text""": self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
}
records.append(_A )
return records
@add_end_docstrings(_lowerCamelCase )
class _A ( _lowerCamelCase ):
_UpperCamelCase : List[str] = '''summary'''
def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return super().__call__(*_A , **_A )
def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool:
"""simple docstring"""
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'''a summarization task, where outputs shorter than the input are typically wanted, you might '''
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(_lowerCamelCase )
class _A ( _lowerCamelCase ):
_UpperCamelCase : List[str] = '''translation'''
def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]:
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' )
return True
def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict:
"""simple docstring"""
if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ):
return self.tokenizer._build_translation_inputs(
*_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A )
else:
return super()._parse_and_tokenize(*_A , truncation=_A )
def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]:
"""simple docstring"""
lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A )
if src_lang is not None:
lowercase : Optional[Any] = src_lang
if tgt_lang is not None:
lowercase : Dict = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowercase : Dict = kwargs.get('''task''' , self.task )
lowercase : List[str] = task.split('''_''' )
if task and len(_A ) == 4:
# translation, XX, to YY
lowercase : Any = items[1]
lowercase : List[str] = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]:
"""simple docstring"""
return super().__call__(*_A , **_A ) | 308 | 1 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_A = 16
_A = 32
def a__( lowerCAmelCase , lowerCAmelCase = 16 , lowerCAmelCase = "bert-base-cased" ) -> Dict:
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase__ : List[Any] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(lowerCAmelCase ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase__ : Optional[int] = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase__ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCAmelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
UpperCAmelCase__ : Union[str, Any] = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
UpperCAmelCase__ : Any = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def a__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]:
model.eval()
UpperCAmelCase__ : List[str] = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase__ : Any = model(**lowerCAmelCase__ )
UpperCAmelCase__ : int = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase__ : int = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
UpperCAmelCase__ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
UpperCAmelCase__ : Union[str, Any] = metric.compute()
return eval_metric["accuracy"]
def a__( lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]:
UpperCAmelCase__ : List[str] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase__ : str = config["""lr"""]
UpperCAmelCase__ : Union[str, Any] = int(config["""num_epochs"""] )
UpperCAmelCase__ : List[str] = int(config["""seed"""] )
UpperCAmelCase__ : Union[str, Any] = int(config["""batch_size"""] )
UpperCAmelCase__ : Union[str, Any] = args.model_name_or_path
set_seed(lowerCAmelCase__ )
UpperCAmelCase__ : Optional[Any] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase__ : Any = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
UpperCAmelCase__ : Any = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase__ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase__ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
UpperCAmelCase__ : Optional[int] = 1
UpperCAmelCase__ : Tuple = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase__ : List[str] = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
UpperCAmelCase__ : int = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase__ : int = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase__ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase__ : Union[str, Any] = 0
UpperCAmelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" )
UpperCAmelCase__ : Tuple = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase__ : Optional[int] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase__ : Tuple = args.resume_from_checkpoint.split("""epoch_""" )[1]
UpperCAmelCase__ : str = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase__ : List[Any] = int(lowerCAmelCase__ ) + 1
UpperCAmelCase__ : Any = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.print("""resumed checkpoint performance:""" , lowerCAmelCase__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , """r""" ) as f:
UpperCAmelCase__ : Any = json.load(lowerCAmelCase__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase__ : List[str] = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
UpperCAmelCase__ : List[Any] = model(**lowerCAmelCase__ )
UpperCAmelCase__ : int = outputs.loss
UpperCAmelCase__ : Optional[Any] = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase__ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase__ : int = os.path.join(args.output_dir , lowerCAmelCase__ )
accelerator.save_state(lowerCAmelCase__ )
UpperCAmelCase__ : str = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase__ : Any = accuracy
UpperCAmelCase__ : Dict = lr_scheduler.get_lr()[0]
UpperCAmelCase__ : Dict = optimizer.param_groups[0]["""lr"""]
UpperCAmelCase__ : Tuple = epoch
UpperCAmelCase__ : Optional[Any] = overall_step
accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , """w""" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def a__( ) -> Optional[Any]:
UpperCAmelCase__ : Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=lowerCAmelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase__ , )
parser.add_argument(
"""--output_dir""" , type=lowerCAmelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=2 , help="""Number of train epochs.""" , )
UpperCAmelCase__ : Tuple = parser.parse_args()
UpperCAmelCase__ : List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 366 |
"""simple docstring"""
from math import factorial, radians
def a__ ( lowerCAmelCase , lowerCAmelCase = 18 , lowerCAmelCase = 10 ) -> float:
UpperCAmelCase__ : List[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
UpperCAmelCase__ : Any = radians(lowerCAmelCase )
UpperCAmelCase__ : Optional[int] = angle_in_radians
UpperCAmelCase__ : Tuple = 3
UpperCAmelCase__ : str = -1
for _ in range(lowerCAmelCase ):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase )
UpperCAmelCase__ : int = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase , lowerCAmelCase )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 166 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def snake_case__ ( _A: List[Any] ) -> List[str]:
'''simple docstring'''
if "model" in orig_key:
lowerCAmelCase = orig_key.replace("""model.""" , """""" )
if "norm1" in orig_key:
lowerCAmelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" )
if "norm2" in orig_key:
lowerCAmelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" )
if "norm" in orig_key:
lowerCAmelCase = orig_key.replace("""norm""" , """LayerNorm""" )
if "transformer" in orig_key:
lowerCAmelCase = orig_key.split(""".""" )[0].split("""_""" )[-1]
lowerCAmelCase = orig_key.replace(f"transformer_{layer_num}" , f"encoder.layer.{layer_num}" )
if "mha.attn" in orig_key:
lowerCAmelCase = orig_key.replace("""mha.attn""" , """attention.self""" )
if "mha" in orig_key:
lowerCAmelCase = orig_key.replace("""mha""" , """attention""" )
if "W_q" in orig_key:
lowerCAmelCase = orig_key.replace("""W_q""" , """self.query""" )
if "W_k" in orig_key:
lowerCAmelCase = orig_key.replace("""W_k""" , """self.key""" )
if "W_v" in orig_key:
lowerCAmelCase = orig_key.replace("""W_v""" , """self.value""" )
if "ff1" in orig_key:
lowerCAmelCase = orig_key.replace("""ff1""" , """intermediate.dense""" )
if "ff2" in orig_key:
lowerCAmelCase = orig_key.replace("""ff2""" , """output.dense""" )
if "ff" in orig_key:
lowerCAmelCase = orig_key.replace("""ff""" , """output.dense""" )
if "mlm_class" in orig_key:
lowerCAmelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" )
if "mlm" in orig_key:
lowerCAmelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" )
if "cls" not in orig_key:
lowerCAmelCase = """yoso.""" + orig_key
return orig_key
def snake_case__ ( _A: List[str] , _A: Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_A )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
lowerCAmelCase = val
lowerCAmelCase = orig_state_dict["""cls.predictions.decoder.bias"""]
lowerCAmelCase = torch.arange(_A ).expand((1, -1) ) + 2
return orig_state_dict
def snake_case__ ( _A: int , _A: Any , _A: Dict ) -> Tuple:
'''simple docstring'''
lowerCAmelCase = torch.load(_A , map_location="""cpu""" )["""model_state_dict"""]
lowerCAmelCase = YosoConfig.from_json_file(_A )
lowerCAmelCase = YosoForMaskedLM(_A )
lowerCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , _A )
print(model.load_state_dict(_A ) )
model.eval()
model.save_pretrained(_A )
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__lowercase = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 272 | '''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class a__( lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase_ : Tuple = XLMRobertaTokenizer
UpperCAmelCase_ : int = XLMRobertaTokenizerFast
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : Optional[int] = True
def a_ ( self):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = """<pad>"""
lowerCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase)
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(__lowerCAmelCase) , 1002)
def a_ ( self):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1002)
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase)
lowerCAmelCase = tokenizer.tokenize("""This is a test""")
self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""")
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase)
self.assertListEqual(
__lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase)
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def a_ ( self):
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files))
lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f)
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase)
# Checks everything loads correctly in the same way
lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase))
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__lowerCAmelCase)
# Save tokenizer rust, legacy_format=True
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase)
# Checks it save with the same files
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase)
# Checks everything loads correctly in the same way
lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase))
shutil.rmtree(__lowerCAmelCase)
# Save tokenizer rust, legacy_format=False
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase)
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase)
lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase))
shutil.rmtree(__lowerCAmelCase)
@cached_property
def a_ ( self):
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""")
def a_ ( self):
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__lowerCAmelCase , f.name)
lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase)
lowerCAmelCase = pickle.dumps(__lowerCAmelCase)
pickle.loads(__lowerCAmelCase)
def a_ ( self):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = """I was born in 92000, and this is falsé."""
lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase)
lowerCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase)
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase)
lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase)
lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase)
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase)
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = tokenizer.encode(__lowerCAmelCase)
lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase)
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase)
@slow
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = """Hello World!"""
lowerCAmelCase = [0, 35378, 6661, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase))
@slow
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
lowerCAmelCase = [
0,
3293,
83,
10,
4552,
4989,
7986,
678,
10,
5915,
111,
179459,
124850,
4,
6044,
237,
12,
6,
5,
6,
4,
6780,
705,
15,
1388,
44,
378,
10114,
711,
152,
20,
6,
5,
22376,
642,
1221,
15190,
34153,
450,
5608,
959,
1119,
57702,
136,
186,
47,
1098,
29367,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
6044,
237,
6284,
50901,
528,
31,
90,
34,
927,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase))
@slow
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
| 272 | 1 |
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )):
raise ValueError("""longest_common_substring() takes two strings for inputs""" )
SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
SCREAMING_SNAKE_CASE = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
SCREAMING_SNAKE_CASE = i
SCREAMING_SNAKE_CASE = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 193 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE_ = {
"""configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""],
"""tokenization_mvp""": ["""MvpTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
"""MVP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MvpForCausalLM""",
"""MvpForConditionalGeneration""",
"""MvpForQuestionAnswering""",
"""MvpForSequenceClassification""",
"""MvpModel""",
"""MvpPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 193 | 1 |
'''simple docstring'''
import os
def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "input.txt" ) -> int:
with open(os.path.join(os.path.dirname(UpperCamelCase ) , UpperCamelCase ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(UpperCamelCase ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
lowerCamelCase__ : Any = len(UpperCamelCase )
lowerCamelCase__ : int = len(matrix[0] )
lowerCamelCase__ : Optional[Any] = [[-1 for _ in range(UpperCamelCase )] for _ in range(UpperCamelCase )]
for i in range(UpperCamelCase ):
lowerCamelCase__ : int = matrix[i][0]
for j in range(1 , UpperCamelCase ):
for i in range(UpperCamelCase ):
lowerCamelCase__ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , UpperCamelCase ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : int = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F'{solution() = }')
| 41 |
'''simple docstring'''
from __future__ import annotations
_A : Any ={
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
class _lowercase :
def __init__( self: Tuple , UpperCamelCase__: dict[str, list[str]] , UpperCamelCase__: str ):
lowerCamelCase__ : str = graph
# mapping node to its parent in resulting breadth first tree
lowerCamelCase__ : dict[str, str | None] = {}
lowerCamelCase__ : Any = source_vertex
def lowerCamelCase_ ( self: List[str] ):
lowerCamelCase__ : List[str] = {self.source_vertex}
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : Tuple = [self.source_vertex] # first in first out queue
while queue:
lowerCamelCase__ : Tuple = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(UpperCamelCase__ )
lowerCamelCase__ : List[str] = vertex
queue.append(UpperCamelCase__ )
def lowerCamelCase_ ( self: str , UpperCamelCase__: str ):
if target_vertex == self.source_vertex:
return self.source_vertex
lowerCamelCase__ : Tuple = self.parent.get(UpperCamelCase__ )
if target_vertex_parent is None:
lowerCamelCase__ : int = (
F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(UpperCamelCase__ )
return self.shortest_path(UpperCamelCase__ ) + F'''->{target_vertex}'''
if __name__ == "__main__":
_A : int =Graph(graph, '''G''')
g.breath_first_search()
print(g.shortest_path('''D'''))
print(g.shortest_path('''G'''))
print(g.shortest_path('''Foo'''))
| 41 | 1 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def __UpperCamelCase ( ) ->Dict:
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
lowerCamelCase_ ="""__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , _A ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def __UpperCamelCase ( ) ->Optional[int]:
"""simple docstring"""
assert _test_patching.open is open
lowerCamelCase_ ="""__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , _A ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def __UpperCamelCase ( ) ->List[str]:
"""simple docstring"""
lowerCamelCase_ ="""__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , _A ):
pass
def __UpperCamelCase ( ) ->Optional[int]:
"""simple docstring"""
lowerCamelCase_ ="""__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , _A ) is None
with patch_submodule(_test_patching , """len""" , _A ):
assert _test_patching.len is mock
assert _test_patching.len is len
def __UpperCamelCase ( ) ->Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ="""__test_patch_submodule_start_and_stop_mock__"""
lowerCamelCase_ =patch_submodule(_test_patching , """open""" , _A )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def __UpperCamelCase ( ) ->Dict:
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
lowerCamelCase_ ="""__test_patch_submodule_successive_join__"""
lowerCamelCase_ ="""__test_patch_submodule_successive_dirname__"""
lowerCamelCase_ ="""__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , _A ):
with patch_submodule(_test_patching , """os.rename""" , _A ):
with patch_submodule(_test_patching , """os.path.dirname""" , _A ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , _A ):
with patch_submodule(_test_patching , """os.path.join""" , _A ):
with patch_submodule(_test_patching , """os.path.dirname""" , _A ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def __UpperCamelCase ( ) ->Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ ="""__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _A ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _A ):
pass
| 354 |
from __future__ import annotations
class _SCREAMING_SNAKE_CASE :
def __init__( self , _SCREAMING_SNAKE_CASE )-> None:
lowerCamelCase_ =data
lowerCamelCase_ =None
lowerCamelCase_ =None
def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree
"""simple docstring"""
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def __UpperCamelCase ( _A : Node | None ) ->int:
"""simple docstring"""
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def __UpperCamelCase ( _A : Node ) ->bool:
"""simple docstring"""
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def __UpperCamelCase ( ) ->None: # Main function for testing.
"""simple docstring"""
lowerCamelCase_ =Node(1 )
lowerCamelCase_ =Node(2 )
lowerCamelCase_ =Node(3 )
lowerCamelCase_ =Node(4 )
lowerCamelCase_ =Node(5 )
lowerCamelCase_ =Node(6 )
lowerCamelCase_ =Node(7 )
lowerCamelCase_ =Node(8 )
lowerCamelCase_ =Node(9 )
print(is_full_binary_tree(_A ) )
print(depth_of_tree(_A ) )
print("""Tree is: """ )
display(_A )
if __name__ == "__main__":
main()
| 49 | 0 |
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = (boundary[1] - boundary[0]) / steps
__a = boundary[0]
__a = boundary[1]
__a = make_points(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__a = 0.0
y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE )
for i in x_i:
# print(i)
y += h * f(_SCREAMING_SNAKE_CASE )
y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE )
return y
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ):
"""simple docstring"""
__a = a + h
while x < (b - h):
yield x
__a = x + h
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): # enter your function here
"""simple docstring"""
__a = (x - 0) * (x - 0)
return y
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = 0.0 # Lower bound of integration
__a = 1.0 # Upper bound of integration
__a = 10.0 # define number of steps or resolution
__a = [a, b] # define boundary of integration
__a = method_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"y = {y}" )
if __name__ == "__main__":
main()
| 302 |
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 361 |
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1
if __name__ == "__main__":
print('Raise base to the power of exponent using recursion...')
lowerCAmelCase = int(input('Enter the base: ').strip())
lowerCAmelCase = int(input('Enter the exponent: ').strip())
lowerCAmelCase = power(base, abs(exponent))
if exponent < 0: # power() does not properly deal w/ negative exponents
lowerCAmelCase = 1 / result
print(f"""{base} to the power of {exponent} is {result}""")
| 93 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {"vocab_file": "sentencepiece.bpe.model"}
__A = {
"vocab_file": {
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez-orangesum-title": (
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
),
},
}
__A = {
"moussaKam/mbarthez": 1_024,
"moussaKam/barthez": 1_024,
"moussaKam/barthez-orangesum-title": 1_024,
}
__A = "▁"
class A ( __UpperCAmelCase ):
lowerCamelCase : str = VOCAB_FILES_NAMES
lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None:
'''simple docstring'''
lowercase__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token
lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , )
lowercase__ = vocab_file
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCamelCase__ ) )
lowercase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
lowercase__ = len(self.sp_model ) - 1
lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase__ = [self.cls_token_id]
lowercase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1]
return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1]
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.sp_model )
def A__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A__ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ )
def A__ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase__ = self.sp_model.PieceToId(lowerCamelCase__ )
return spm_id if spm_id else self.unk_token_id
def A__ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(lowerCamelCase__ )
def A__ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
lowercase__ = []
lowercase__ = """"""
lowercase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCamelCase__ ) + token
lowercase__ = True
lowercase__ = []
else:
current_sub_tokens.append(lowerCamelCase__ )
lowercase__ = False
out_string += self.sp_model.decode(lowerCamelCase__ )
return out_string.strip()
def __getstate__( self ) -> int:
'''simple docstring'''
lowercase__ = self.__dict__.copy()
lowercase__ = None
return state
def __setstate__( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
lowercase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowercase__ = {}
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCamelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase__ , """wb""" ) as fi:
lowercase__ = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase__ )
return (out_vocab_file,)
| 164 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class A ( __UpperCAmelCase ):
lowerCamelCase : Union[str, Any] = """MCTCTFeatureExtractor"""
lowerCamelCase : Dict = """AutoTokenizer"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
lowercase__ = self.feature_extractor
lowercase__ = False
def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
lowercase__ = kwargs.pop("""raw_speech""" )
else:
lowercase__ = kwargs.pop("""audio""" , lowerCamelCase__ )
lowercase__ = kwargs.pop("""sampling_rate""" , lowerCamelCase__ )
lowercase__ = kwargs.pop("""text""" , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
lowercase__ = args[0]
lowercase__ = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
lowercase__ = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ )
if text is not None:
lowercase__ = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowercase__ = encodings["""input_ids"""]
return inputs
def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ )
lowercase__ = kwargs.pop("""input_features""" , lowerCamelCase__ )
lowercase__ = kwargs.pop("""labels""" , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
lowercase__ = args[0]
lowercase__ = args[1:]
if input_features is not None:
lowercase__ = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ )
if labels is not None:
lowercase__ = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
lowercase__ = labels["""input_ids"""]
return input_features
def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@contextmanager
def A__ ( self ) -> Any:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
lowercase__ = True
lowercase__ = self.tokenizer
yield
lowercase__ = self.feature_extractor
lowercase__ = False
| 164 | 1 |
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
snake_case_ : Optional[int] = logging.get_logger(__name__)
snake_case_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
snake_case_ : Dict = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
snake_case_ : Any = {
"allenai/led-base-16384": 16384,
}
class __snake_case ( a ):
UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Any = LEDTokenizer
UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask''']
def __init__( self : str , _snake_case : Optional[int]=None , _snake_case : int=None , _snake_case : str=None , _snake_case : Optional[Any]="replace" , _snake_case : Dict="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : Dict="</s>" , _snake_case : List[str]="<s>" , _snake_case : Union[str, Any]="<unk>" , _snake_case : Dict="<pad>" , _snake_case : Tuple="<mask>" , _snake_case : str=False , _snake_case : List[Any]=True , **_snake_case : Tuple , ):
"""simple docstring"""
super().__init__(
_snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , )
UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('''add_prefix_space''' , _snake_case) != add_prefix_space:
UpperCAmelCase_ = getattr(_snake_case , pre_tok_state.pop('''type'''))
UpperCAmelCase_ = add_prefix_space
UpperCAmelCase_ = pre_tok_class(**_snake_case)
UpperCAmelCase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
UpperCAmelCase_ = '''post_processor'''
UpperCAmelCase_ = getattr(self.backend_tokenizer , _snake_case , _snake_case)
if tokenizer_component_instance:
UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCAmelCase_ = tuple(state['''sep'''])
if "cls" in state:
UpperCAmelCase_ = tuple(state['''cls'''])
UpperCAmelCase_ = False
if state.get('''add_prefix_space''' , _snake_case) != add_prefix_space:
UpperCAmelCase_ = add_prefix_space
UpperCAmelCase_ = True
if state.get('''trim_offsets''' , _snake_case) != trim_offsets:
UpperCAmelCase_ = trim_offsets
UpperCAmelCase_ = True
if changes_to_apply:
UpperCAmelCase_ = getattr(_snake_case , state.pop('''type'''))
UpperCAmelCase_ = component_class(**_snake_case)
setattr(self.backend_tokenizer , _snake_case , _snake_case)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def lowerCamelCase ( self : str):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''')
return None
return str(self._mask_token)
@mask_token.setter
def lowerCamelCase ( self : Dict , _snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else value
UpperCAmelCase_ = value
def lowerCamelCase ( self : Union[str, Any] , *_snake_case : str , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._batch_encode_plus(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : int , **_snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._encode_plus(*_snake_case , **_snake_case)
def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
UpperCAmelCase_ = self._tokenizer.model.save(_snake_case , name=_snake_case)
return tuple(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : List[str] , _snake_case : List[str]=None):
"""simple docstring"""
UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowerCamelCase ( self : str , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def lowerCamelCase ( self : Dict , _snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , _snake_case : Optional[int] = None , _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , ):
"""simple docstring"""
UpperCAmelCase_ = super()._pad(
encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , )
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ = len(encoded_inputs['''global_attention_mask''']) != len(_snake_case)
if needs_to_be_padded:
UpperCAmelCase_ = len(_snake_case) - len(encoded_inputs['''global_attention_mask'''])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side))
return encoded_inputs
| 355 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = 10
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4]
UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
UpperCAmelCase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = ['''It was the best of times.''']
self.assertEqual(_snake_case , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy())
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy())
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy())
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 101
UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case)
np.testing.assert_array_equal(_snake_case , _snake_case)
| 7 | 0 |
from collections.abc import Sequence
def UpperCAmelCase_( a__ , a__ = False ):
"""simple docstring"""
if not arr:
return 0
SCREAMING_SNAKE_CASE : Optional[Any] = 0 if allow_empty_subarrays else float('''-inf''' )
SCREAMING_SNAKE_CASE : List[Any] = 0.0
for num in arr:
SCREAMING_SNAKE_CASE : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num )
SCREAMING_SNAKE_CASE : Optional[int] = max(a__ , a__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
a__ : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 313 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
a__ : Optional[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCAmelCase_( a__ ):
"""simple docstring"""
for pegasus_name, hf_name in PATTERNS:
SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ )
return k
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy()
cfg_kwargs.update(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ )
SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ )
SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict()
SCREAMING_SNAKE_CASE : List[str] = {}
for k, v in tf_weights.items():
SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ )
if new_k not in sd:
raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" )
if "dense" in k or "proj" in new_k:
SCREAMING_SNAKE_CASE : Dict = v.T
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}"""
# make sure embedding.padding_idx is respected
SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] )
SCREAMING_SNAKE_CASE : int = mapping['''shared.weight''']
SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight''']
SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping}
mapping.update(**a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = [
k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight''']
]
assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], F"""no matches found for the following tf keys {extra}"""
return torch_model
def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : str = {}
SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step''']
for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Any = array
return tf_weights
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name
SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings''']
SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(a__ )
# convert model
SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ )
SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""]
if dataset == "large":
SCREAMING_SNAKE_CASE : int = task_specific_params
SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ )
torch_model.save_pretrained(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict()
sd.pop('''model.decoder.embed_positions.weight''' )
sd.pop('''model.encoder.embed_positions.weight''' )
torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' )
if __name__ == "__main__":
a__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
a__ : List[str] = parser.parse_args()
if args.save_dir is None:
a__ : Any = Path(args.tf_ckpt_path).parent.name
a__ : int = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> List[str]:
UpperCamelCase__ : List[str] = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class lowercase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
a : Optional[int] = StableDiffusionLatentUpscalePipeline
a : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
a : Optional[Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
a : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
a : Dict = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a : Union[str, Any] = frozenset([] )
a : Tuple = True
@property
def UpperCamelCase__ ( self ) -> int:
"""simple docstring"""
UpperCamelCase__ : List[Any] = 1
UpperCamelCase__ : Tuple = 4
UpperCamelCase__ : Optional[Any] = (16, 16)
UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(__magic_name__ )
return image
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase__ : str = UNetaDConditionModel(
act_fn='''gelu''', attention_head_dim=8, norm_num_groups=__magic_name__, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
), in_channels=8, mid_block_type=__magic_name__, only_cross_attention=__magic_name__, out_channels=5, resnet_time_scale_shift='''scale_shift''', time_embedding_type='''fourier''', timestep_post_act='''gelu''', up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D'''), )
UpperCamelCase__ : Tuple = AutoencoderKL(
block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, )
UpperCamelCase__ : Tuple = EulerDiscreteScheduler(prediction_type='''sample''' )
UpperCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='''quick_gelu''', projection_dim=512, )
UpperCamelCase__ : List[Any] = CLIPTextModel(__magic_name__ )
UpperCamelCase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCamelCase__ : int = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> Dict:
"""simple docstring"""
if str(__magic_name__ ).startswith('''mps''' ):
UpperCamelCase__ : Tuple = torch.manual_seed(__magic_name__ )
else:
UpperCamelCase__ : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
UpperCamelCase__ : Tuple = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : Any = '''cpu'''
UpperCamelCase__ : Any = self.get_dummy_components()
UpperCamelCase__ : Optional[Any] = self.pipeline_class(**__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCamelCase__ : List[str] = self.get_dummy_inputs(__magic_name__ )
UpperCamelCase__ : Tuple = pipe(**__magic_name__ ).images
UpperCamelCase__ : Dict = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 256, 256, 3) )
UpperCamelCase__ : Optional[int] = np.array(
[0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] )
UpperCamelCase__ : int = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__magic_name__, 1E-3 )
def UpperCamelCase__ ( self ) -> str:
"""simple docstring"""
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def UpperCamelCase__ ( self ) -> str:
"""simple docstring"""
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ) -> List[str]:
"""simple docstring"""
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ) -> Dict:
"""simple docstring"""
super().test_save_load_local(expected_max_difference=3E-3 )
def UpperCamelCase__ ( self ) -> List[Any]:
"""simple docstring"""
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : Any = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
UpperCamelCase__ : List[str] = self.get_dummy_components()
UpperCamelCase__ : Union[str, Any] = self.pipeline_class(**__magic_name__ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCamelCase__ : int = self.get_dummy_inputs(__magic_name__ )
UpperCamelCase__ : List[Any] = 2
UpperCamelCase__ : Union[str, Any] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
UpperCamelCase__ : Tuple = getattr(__magic_name__, scheduler_enum.name )
UpperCamelCase__ : List[Any] = scheduler_cls.from_config(pipe.scheduler.config )
UpperCamelCase__ : List[str] = pipe(**__magic_name__ )[0]
outputs.append(__magic_name__ )
assert check_same_shape(__magic_name__ )
@require_torch_gpu
@slow
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
UpperCamelCase__ : Tuple = torch.manual_seed(33 )
UpperCamelCase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''', torch_dtype=torch.floataa )
pipe.to('''cuda''' )
UpperCamelCase__ : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
UpperCamelCase__ : Any = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
UpperCamelCase__ : str = pipe(__magic_name__, generator=__magic_name__, output_type='''latent''' ).images
UpperCamelCase__ : Any = upscaler(
prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0]
UpperCamelCase__ : List[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5E-2
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : Any = torch.manual_seed(33 )
UpperCamelCase__ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
UpperCamelCase__ : List[Any] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
UpperCamelCase__ : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
UpperCamelCase__ : Any = upscaler(
prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0]
UpperCamelCase__ : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5E-2
| 355 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
UpperCAmelCase_ = '\nHuman: <<task>>\n\nAssistant: '
UpperCAmelCase_ = 'huggingface-tools/default-prompts'
UpperCAmelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'}
def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[Any]="run" ) -> int:
if prompt_or_repo_id is None:
UpperCamelCase__ : List[Any] = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search('''\\s''' , __UpperCAmelCase ) is not None:
return prompt_or_repo_id
UpperCamelCase__ : Any = cached_file(
__UpperCAmelCase , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} )
with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f:
return f.read()
| 247 | 0 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __lowercase ( _A , _A , _A ) -> Union[str, Any]:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _A )
SCREAMING_SNAKE_CASE : Any = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
SCREAMING_SNAKE_CASE : Any = dataset_size < in_memory_max_size
else:
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Union[str, Any] = is_small_dataset(_A )
assert result == expected
| 245 |
import os
import pytest
from attr import dataclass
UpperCAmelCase__ : Optional[int] = """us-east-1""" # defaults region
@dataclass
class a__ :
"""simple docstring"""
UpperCAmelCase__ : str
UpperCAmelCase__ : Union[str, Any] ="""arn:aws:iam::558105141721:role/sagemaker_execution_role"""
UpperCAmelCase__ : Tuple ={
"""task_name""": """mnli""",
"""per_device_train_batch_size""": 1_6,
"""per_device_eval_batch_size""": 1_6,
"""do_train""": True,
"""do_eval""": True,
"""do_predict""": True,
"""output_dir""": """/opt/ml/model""",
"""overwrite_output_dir""": True,
"""max_steps""": 5_0_0,
"""save_steps""": 5_5_0_0,
}
UpperCAmelCase__ : Optional[int] ={**hyperparameters, """max_steps""": 1_0_0_0}
@property
def _lowercase ( self : List[str] ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def _lowercase ( self : Any ) ->str:
"""simple docstring"""
return f"{self.framework}-transfromers-test"
@property
def _lowercase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
return f"./tests/sagemaker/scripts/{self.framework}"
@property
def _lowercase ( self : Dict ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope="""class""" )
def __lowercase ( _A ) -> Tuple:
SCREAMING_SNAKE_CASE : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
| 245 | 1 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
UpperCAmelCase = 10
def lowercase ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int:
for i in range(a__ , a__ ):
if array[i] == target:
return i
return -1
def lowercase ( a__ : list[int] , a__ : int ) -> int:
_UpperCamelCase = 0
_UpperCamelCase = len(a__ )
while left <= right:
if right - left < precision:
return lin_search(a__ , a__ , a__ , a__ )
_UpperCamelCase = (left + right) // 3 + 1
_UpperCamelCase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_UpperCamelCase = one_third - 1
elif array[two_third] < target:
_UpperCamelCase = two_third + 1
else:
_UpperCamelCase = one_third + 1
_UpperCamelCase = two_third - 1
else:
return -1
def lowercase ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(a__ , a__ , a__ , a__ )
_UpperCamelCase = (left + right) // 3 + 1
_UpperCamelCase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(a__ , one_third - 1 , a__ , a__ )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , a__ , a__ , a__ )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase = input("""Enter numbers separated by comma:\n""").strip()
UpperCAmelCase = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
UpperCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip())
UpperCAmelCase = ite_ternary_search(collection, target)
UpperCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 54 | """simple docstring"""
import numpy as np
def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict:
_UpperCamelCase = int(np.ceil((x_end - xa) / h ) )
_UpperCamelCase = np.zeros((n + 1,) )
_UpperCamelCase = ya
_UpperCamelCase = xa
for k in range(a__ ):
_UpperCamelCase = f(a__ , y[k] )
_UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
_UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
_UpperCamelCase = f(x + h , y[k] + h * ka )
_UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( _snake_case : int = 4 ) ->list[list[int]]:
"""simple docstring"""
__snake_case : str = abs(_snake_case ) or 4
return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )]
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
return reverse_row(transpose(_snake_case ) )
# OR.. transpose(reverse_column(matrix))
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
return reverse_row(reverse_column(_snake_case ) )
# OR.. reverse_column(reverse_row(matrix))
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
return reverse_column(transpose(_snake_case ) )
# OR.. transpose(reverse_row(matrix))
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
__snake_case : List[Any] = [list(_snake_case ) for x in zip(*_snake_case )]
return matrix
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
__snake_case : List[Any] = matrix[::-1]
return matrix
def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]:
"""simple docstring"""
__snake_case : str = [x[::-1] for x in matrix]
return matrix
def lowercase ( _snake_case : list[list[int]] ) ->None:
"""simple docstring"""
for i in matrix:
print(*_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Any = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 90 counterclockwise:\n""")
print_matrix(rotate_aa(matrix))
SCREAMING_SNAKE_CASE : List[str] = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 180:\n""")
print_matrix(rotate_aaa(matrix))
SCREAMING_SNAKE_CASE : Optional[int] = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 270 counterclockwise:\n""")
print_matrix(rotate_aaa(matrix))
| 102 |
import math
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float:
if (
not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * power_factor
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> float:
if (
not isinstance(_SCREAMING_SNAKE_CASE ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class lowercase :
"""simple docstring"""
UpperCAmelCase = PegasusConfig
UpperCAmelCase = {}
UpperCAmelCase = """gelu"""
def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=False ,a_=99 ,a_=32 ,a_=2 ,a_=4 ,a_=37 ,a_=0.1 ,a_=0.1 ,a_=40 ,a_=2 ,a_=1 ,a_=0 ,) -> Dict:
_UpperCAmelCase : Dict = parent
_UpperCAmelCase : Optional[int] = batch_size
_UpperCAmelCase : Any = seq_length
_UpperCAmelCase : Tuple = is_training
_UpperCAmelCase : Dict = use_labels
_UpperCAmelCase : Optional[Any] = vocab_size
_UpperCAmelCase : str = hidden_size
_UpperCAmelCase : Any = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : int = intermediate_size
_UpperCAmelCase : Dict = hidden_dropout_prob
_UpperCAmelCase : List[Any] = attention_probs_dropout_prob
_UpperCAmelCase : str = max_position_embeddings
_UpperCAmelCase : str = eos_token_id
_UpperCAmelCase : Union[str, Any] = pad_token_id
_UpperCAmelCase : List[Any] = bos_token_id
def _snake_case ( self ) -> List[Any]:
_UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size )
_UpperCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 )
_UpperCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] ,axis=1 )
_UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
_UpperCAmelCase : int = self.config_cls(
vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,)
_UpperCAmelCase : int = prepare_pegasus_inputs_dict(a_ ,a_ ,a_ )
return config, inputs_dict
def _snake_case ( self ,a_ ,a_ ) -> Dict:
_UpperCAmelCase : Optional[int] = TFPegasusModel(config=a_ ).get_decoder()
_UpperCAmelCase : Dict = inputs_dict["""input_ids"""]
_UpperCAmelCase : Any = input_ids[:1, :]
_UpperCAmelCase : Optional[int] = inputs_dict["""attention_mask"""][:1, :]
_UpperCAmelCase : Dict = inputs_dict["""head_mask"""]
_UpperCAmelCase : Tuple = 1
# first forward pass
_UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ ,head_mask=a_ ,use_cache=a_ )
_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
_UpperCAmelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta )
# append to next input_ids and
_UpperCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 )
_UpperCAmelCase : Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 )
_UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ )[0]
_UpperCAmelCase : str = model(a_ ,attention_mask=a_ ,past_key_values=a_ )[0]
self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] )
# select random slice
_UpperCAmelCase : Union[str, Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) )
_UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCAmelCase : int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a_ ,a_ ,rtol=1E-3 )
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , )-> Union[str, Any]:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_UpperCAmelCase : Any = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_UpperCAmelCase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
UpperCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
UpperCAmelCase = (
{
"""conversational""": TFPegasusForConditionalGeneration,
"""feature-extraction""": TFPegasusModel,
"""summarization""": TFPegasusForConditionalGeneration,
"""text2text-generation""": TFPegasusForConditionalGeneration,
"""translation""": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
def _snake_case ( self ) -> Union[str, Any]:
_UpperCAmelCase : Tuple = TFPegasusModelTester(self )
_UpperCAmelCase : str = ConfigTester(self ,config_class=a_ )
def _snake_case ( self ) -> Dict:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> Union[str, Any]:
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a_ )
@require_sentencepiece
@require_tokenizers
@require_tf
class lowercase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
UpperCAmelCase = [
"""California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"""
""" reduce the risk of wildfires.""",
"""N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
UpperCAmelCase = """google/pegasus-xsum"""
@cached_property
def _snake_case ( self ) -> Union[str, Any]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _snake_case ( self ) -> List[Any]:
_UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _snake_case ( self ,**a_ ) -> Optional[int]:
_UpperCAmelCase : List[str] = self.translate_src_text(**a_ )
assert self.expected_text == generated_words
def _snake_case ( self ,**a_ ) -> Optional[int]:
_UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text ,**a_ ,padding=a_ ,return_tensors="""tf""" )
_UpperCAmelCase : Dict = self.model.generate(
model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=a_ ,)
_UpperCAmelCase : Any = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=a_ )
return generated_words
@slow
def _snake_case ( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 349 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : List[Any] = logging.get_logger(__name__)
A_ : Union[str, Any] = {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"""
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowercase ( _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase = """roformer"""
def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple:
super().__init__(pad_token_id=a_ ,**a_ )
_UpperCAmelCase : List[Any] = vocab_size
_UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size
_UpperCAmelCase : List[Any] = hidden_size
_UpperCAmelCase : str = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Optional[Any] = hidden_act
_UpperCAmelCase : str = intermediate_size
_UpperCAmelCase : Optional[Any] = hidden_dropout_prob
_UpperCAmelCase : Any = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = max_position_embeddings
_UpperCAmelCase : Any = type_vocab_size
_UpperCAmelCase : Tuple = initializer_range
_UpperCAmelCase : Dict = layer_norm_eps
_UpperCAmelCase : Optional[int] = rotary_value
_UpperCAmelCase : Any = use_cache
class lowercase ( _lowerCamelCase ):
"""simple docstring"""
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""}
_UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 1 |
'''simple docstring'''
def _A ( A__ = 3 , A__ = 7 , A__ = 1000000 ):
"""simple docstring"""
__lowercase = 0
__lowercase = 1
for current_denominator in range(1 , limit + 1 ):
__lowercase = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__lowercase = current_numerator
__lowercase = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=100_0000))
| 104 | import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert isinstance(lowerCAmelCase , lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read()
_check_text_dataset(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"}
SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE_ : List[str] = (
Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read()
_check_text_dataset(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"}
SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read()
_check_text_dataset(lowerCAmelCase , lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
if issubclass(lowerCAmelCase , lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path
elif issubclass(lowerCAmelCase , lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path]
SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"}
SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read()
_check_text_dataset(lowerCAmelCase , lowerCAmelCase )
def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ):
"""simple docstring"""
assert isinstance(lowerCAmelCase , lowerCAmelCase )
for split in splits:
SCREAMING_SNAKE_CASE_ : int = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read()
_check_text_datasetdict(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache"
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"}
SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE_ : Dict = (
Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read()
_check_text_datasetdict(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ):
"""simple docstring"""
if split:
SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path}
else:
SCREAMING_SNAKE_CASE_ : List[Any] = "train"
SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path}
SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache"
SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"}
SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read()
_check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 18 | 0 |
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCamelCase ( __snake_case ):
def lowerCAmelCase_ ( self ) -> Any:
snake_case_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCamelCase , """embed_dim""" ) )
self.parent.assertTrue(hasattr(lowerCamelCase , """num_heads""" ) )
class __lowerCamelCase :
def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=64 , lowerCamelCase=3 , lowerCamelCase=[16, 48, 96] , lowerCamelCase=[1, 3, 6] , lowerCamelCase=[1, 2, 10] , lowerCamelCase=[7, 3, 3] , lowerCamelCase=[4, 2, 2] , lowerCamelCase=[2, 1, 1] , lowerCamelCase=[2, 2, 2] , lowerCamelCase=[False, False, True] , lowerCamelCase=[0.0, 0.0, 0.0] , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=2 , ) -> Tuple:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_sizes
snake_case_ = patch_stride
snake_case_ = patch_padding
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = num_labels
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = num_heads
snake_case_ = stride_kv
snake_case_ = depth
snake_case_ = cls_token
snake_case_ = attention_drop_rate
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
def lowerCAmelCase_ ( self ) -> List[str]:
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any:
snake_case_ = CvtModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
snake_case_ = model(lowerCamelCase )
snake_case_ = (self.image_size, self.image_size)
snake_case_ , snake_case_ = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
snake_case_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
snake_case_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple:
snake_case_ = self.num_labels
snake_case_ = CvtForImageClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
snake_case_ = model(lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self ) -> Dict:
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ):
lowerCamelCase_ : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
lowerCamelCase_ : List[Any] = (
{'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase_ : Union[str, Any] = False
lowerCamelCase_ : Optional[Any] = False
lowerCamelCase_ : str = False
lowerCamelCase_ : Optional[Any] = False
lowerCamelCase_ : Any = False
def lowerCAmelCase_ ( self ) -> Optional[Any]:
snake_case_ = CvtModelTester(self )
snake_case_ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 )
def lowerCAmelCase_ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase_ ( self ) -> Dict:
return
@unittest.skip(reason="""Cvt does not output attentions""" )
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def lowerCAmelCase_ ( self ) -> Dict:
pass
def lowerCAmelCase_ ( self ) -> Dict:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(lowerCamelCase )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase )
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def lowerCAmelCase_ ( self ) -> List[Any]:
def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ):
snake_case_ = model_class(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) )
snake_case_ = outputs.hidden_states
snake_case_ = len(self.model_tester.depth )
self.assertEqual(len(lowerCamelCase ) , lowerCamelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def lowerCAmelCase_ ( self ) -> str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCAmelCase_ ( self ) -> List[str]:
pass
@slow
def lowerCAmelCase_ ( self ) -> List[str]:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = CvtModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def UpperCamelCase( ) -> List[Any]:
'''simple docstring'''
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def lowerCAmelCase_ ( self ) -> List[str]:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def lowerCAmelCase_ ( self ) -> List[Any]:
snake_case_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase )
# forward pass
with torch.no_grad():
snake_case_ = model(**lowerCamelCase )
# verify the logits
snake_case_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase )
snake_case_ = torch.tensor([0.9285, 0.9015, -0.3150] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) | 34 |
def UpperCamelCase( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
return "\n".join(
f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10)) | 34 | 1 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class lowercase__ ( unittest.TestCase , _UpperCAmelCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : str = load_tool('''text-to-speech''' )
self.tool.setup()
def UpperCamelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase__ : List[str] = self.tool('''hey''' )
UpperCamelCase__ : Dict = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3], torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ), ) )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase__ : Optional[int] = self.tool('''hey''' )
UpperCamelCase__ : Tuple = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3], torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ), ) )
| 201 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
'''simple docstring'''
lowerCamelCase = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
__lowercase =set()
# keep track of all the paths to be checked
__lowercase =[[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
__lowercase =queue.pop(0 )
# get the last node from the path
__lowercase =path[-1]
if node not in explored:
__lowercase =graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
__lowercase =list(lowerCamelCase__ )
new_path.append(lowerCamelCase__ )
queue.append(lowerCamelCase__ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(lowerCamelCase__ )
# in case there's no path between the 2 nodes
return []
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
__lowercase =[start]
__lowercase =set(lowerCamelCase__ )
# Keep tab on distances from `start` node.
__lowercase ={start: 0, target: -1}
while queue:
__lowercase =queue.pop(0 )
if node == target:
__lowercase =(
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(lowerCamelCase__ )
queue.append(lowerCamelCase__ )
__lowercase =dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
| 354 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCamelCase = {
"""cola""": 2,
"""mnli""": 3,
"""mrpc""": 2,
"""sst-2""": 2,
"""sts-b""": 1,
"""qqp""": 2,
"""qnli""": 2,
"""rte""": 2,
"""wnli""": 2,
}
logging.set_verbosity_info()
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
"""simple docstring"""
__lowercase =XLNetConfig.from_json_file(_lowerCAmelCase )
__lowercase =finetuning_task.lower() if finetuning_task is not None else ''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
__lowercase =finetuning_task
__lowercase =GLUE_TASKS_NUM_LABELS[finetuning_task]
__lowercase =XLNetForSequenceClassification(_lowerCAmelCase )
elif "squad" in finetuning_task:
__lowercase =finetuning_task
__lowercase =XLNetForQuestionAnswering(_lowerCAmelCase )
else:
__lowercase =XLNetLMHeadModel(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model
__lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase )
__lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase )
print(f"""Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}""" )
torch.save(model.state_dict() , _lowerCAmelCase )
print(f"""Save configuration file to {os.path.abspath(_lowerCAmelCase )}""" )
with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--xlnet_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained XLNet model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the folder to store the PyTorch model or dataset/vocab.""",
)
parser.add_argument(
"""--finetuning_task""",
default=None,
type=str,
help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""",
)
lowerCamelCase = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 48 | 0 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
UpperCAmelCase : Optional[Any] = {
"vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"},
"merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"},
}
UpperCAmelCase : Union[str, Any] = {
"ctrl": 2_56,
}
UpperCAmelCase : List[str] = {
"Pregnancy": 16_86_29,
"Christianity": 76_75,
"Explain": 10_64_23,
"Fitness": 6_34_40,
"Saving": 6_31_63,
"Ask": 2_71_71,
"Ass": 9_59_85,
"Joke": 16_35_09,
"Questions": 4_56_22,
"Thoughts": 4_96_05,
"Retail": 5_23_42,
"Feminism": 16_43_38,
"Writing": 1_19_92,
"Atheism": 19_22_63,
"Netflix": 4_86_16,
"Computing": 3_96_39,
"Opinion": 4_32_13,
"Alone": 4_49_67,
"Funny": 5_89_17,
"Gaming": 4_03_58,
"Human": 40_88,
"India": 13_31,
"Joker": 7_71_38,
"Diet": 3_62_06,
"Legal": 1_18_59,
"Norman": 49_39,
"Tip": 7_26_89,
"Weight": 5_23_43,
"Movies": 4_62_73,
"Running": 2_34_25,
"Science": 20_90,
"Horror": 3_77_93,
"Confession": 6_05_72,
"Finance": 1_22_50,
"Politics": 1_63_60,
"Scary": 19_19_85,
"Support": 1_26_54,
"Technologies": 3_25_16,
"Teenage": 6_61_60,
"Event": 3_27_69,
"Learned": 6_74_60,
"Notion": 18_27_70,
"Wikipedia": 3_75_83,
"Books": 66_65,
"Extract": 7_60_50,
"Confessions": 10_27_01,
"Conspiracy": 7_59_32,
"Links": 6_36_74,
"Narcissus": 15_04_25,
"Relationship": 5_47_66,
"Relationships": 13_47_96,
"Reviews": 4_16_71,
"News": 42_56,
"Translation": 2_68_20,
"multilingual": 12_84_06,
}
def __lowerCamelCase ( lowerCamelCase__ : Any ):
'''simple docstring'''
lowerCamelCase = set()
lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase = char
lowerCamelCase = set(lowerCamelCase__ )
return pairs
class __lowercase ( a_ ):
"""simple docstring"""
UpperCamelCase : Any = VOCAB_FILES_NAMES
UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Optional[int] = CONTROL_CODES
def __init__( self , A , A , A="<unk>" , **A ) -> int:
'''simple docstring'''
super().__init__(unk_token=A , **A )
with open(A , encoding="""utf-8""" ) as vocab_handle:
lowerCamelCase = json.load(A )
lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(A , encoding="""utf-8""" ) as merges_handle:
lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1]
lowerCamelCase = [tuple(merge.split() ) for merge in merges]
lowerCamelCase = dict(zip(A , range(len(A ) ) ) )
lowerCamelCase = {}
@property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def __A ( self ) -> List[str]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , A ) -> str:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase = tuple(A )
lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
lowerCamelCase = get_pairs(A )
if not pairs:
return token
while True:
lowerCamelCase = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase , lowerCamelCase = bigram
lowerCamelCase = []
lowerCamelCase = 0
while i < len(A ):
try:
lowerCamelCase = word.index(A , A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase = j
if word[i] == first and i < len(A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase = tuple(A )
lowerCamelCase = new_word
if len(A ) == 1:
break
else:
lowerCamelCase = get_pairs(A )
lowerCamelCase = """@@ """.join(A )
lowerCamelCase = word[:-4]
lowerCamelCase = word
return word
def __A ( self , A ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase = []
lowerCamelCase = re.findall(r"""\S+\n?""" , A )
for token in words:
split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) )
return split_tokens
def __A ( self , A ) -> int:
'''simple docstring'''
return self.encoder.get(A , self.encoder.get(self.unk_token ) )
def __A ( self , A ) -> Any:
'''simple docstring'''
return self.decoder.get(A , self.unk_token )
def __A ( self , A ) -> str:
'''simple docstring'''
lowerCamelCase = """ """.join(A ).replace("""@@ """ , """""" ).strip()
return out_string
def __A ( self , A , A = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCamelCase = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(A , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" )
lowerCamelCase = 0
with open(A , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
lowerCamelCase = token_index
writer.write(""" """.join(A ) + """\n""" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 252 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : List[str] = {
"configuration_x_clip": [
"XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XCLIPConfig",
"XCLIPTextConfig",
"XCLIPVisionConfig",
],
"processing_x_clip": ["XCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
"XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"XCLIPModel",
"XCLIPPreTrainedModel",
"XCLIPTextModel",
"XCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 252 | 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase : Dict = 1_6
lowercase : List[Any] = 3_2
def A_ ( A__ , A__ = 16 , A__ = "bert-base-cased" ) -> Dict:
a__ : List[str] = AutoTokenizer.from_pretrained(A__ )
a__ : Union[str, Any] = load_dataset('glue' , 'mrpc' )
def tokenize_function(A__ ):
# max_length=None => use the model max length (it's actually the default)
a__ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
a__ : List[str] = datasets.map(
A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a__ : List[str] = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(A__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
a__ : Dict = DataLoader(
tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
a__ : Tuple = DataLoader(
tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def A_ ( A__ , A__ ) -> List[str]:
# Initialize accelerator
a__ : Any = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a__ : List[Any] = config['lr']
a__ : int = int(config['num_epochs'] )
a__ : Optional[Any] = int(config['seed'] )
a__ : Optional[int] = int(config['batch_size'] )
a__ : Optional[int] = args.model_name_or_path
set_seed(A__ )
a__ : str = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a__ : Tuple = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
a__ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
a__ : int = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
a__ : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
a__ : Dict = 1
a__ : Optional[int] = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
a__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
a__ : List[str] = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a__ : Union[str, Any] = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
a__ : Dict = 0
# We also need to keep track of the stating epoch so files are named properly
a__ : Optional[Any] = 0
# Now we train the model
a__ : List[Any] = evaluate.load('glue' , 'mrpc' )
a__ : Optional[int] = 0
a__ : Any = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
a__ : Union[str, Any] = model(**A__ )
a__ : List[Any] = outputs.loss
a__ : Dict = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
a__ : int = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a__ : Union[str, Any] = model(**A__ )
a__ : Dict = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
a__ : str = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
a__ : int = predictions[: len(eval_dataloader.dataset ) - samples_seen]
a__ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
a__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , A__ )
a__ : Optional[int] = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
a__ : Any = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(A__ , A__ )
def A_ ( ) -> Tuple:
a__ : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , )
parser.add_argument(
'--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=A__ , default=A__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=A__ , default=3 , help='Number of train epochs.' , )
a__ : Optional[Any] = parser.parse_args()
a__ : List[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 358 |
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ) -> Tuple:
'''simple docstring'''
a__ : str = parent
a__ : Optional[Any] = batch_size
a__ : str = seq_length
a__ : int = is_training
a__ : str = use_attention_mask
a__ : List[str] = use_token_type_ids
a__ : Optional[Any] = use_labels
a__ : List[Any] = vocab_size
a__ : Tuple = hidden_size
a__ : Dict = num_hidden_layers
a__ : List[str] = num_attention_heads
a__ : int = intermediate_size
a__ : Any = hidden_act
a__ : Optional[int] = hidden_dropout_prob
a__ : Tuple = attention_probs_dropout_prob
a__ : Tuple = max_position_embeddings
a__ : Optional[int] = type_vocab_size
a__ : List[Any] = type_sequence_label_size
a__ : Union[str, Any] = initializer_range
a__ : str = num_choices
def __lowercase ( self) -> Optional[Any]:
'''simple docstring'''
a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
a__ : Dict = None
if self.use_attention_mask:
a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length])
a__ : Dict = None
if self.use_token_type_ids:
a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
a__ : Dict = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __lowercase ( self) -> Optional[Any]:
'''simple docstring'''
a__ : Tuple = self.prepare_config_and_inputs()
a__ , a__ , a__ , a__ : Optional[int] = config_and_inputs
a__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def __lowercase ( self) -> Optional[int]:
'''simple docstring'''
a__ : Union[str, Any] = self.prepare_config_and_inputs()
a__ , a__ , a__ , a__ : int = config_and_inputs
a__ : str = True
a__ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A__ ( __UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
__A : Optional[Any] = True
__A : Tuple = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __lowercase ( self) -> Tuple:
'''simple docstring'''
a__ : Optional[Any] = FlaxBertModelTester(self)
@slow
def __lowercase ( self) -> Optional[Any]:
'''simple docstring'''
a__ : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased')
a__ : Optional[Any] = model(np.ones((1, 1)))
self.assertIsNotNone(lowercase)
| 225 | 0 |
'''simple docstring'''
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def __lowerCamelCase ( lowerCAmelCase_ = True , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict:
if not is_tqdm_available():
raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' )
_a : Tuple = False
if main_process_only:
_a : str = PartialState().local_process_index == 0
return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
| 89 |
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
__snake_case : int =logging.get_logger(__name__)
enable_full_determinism()
class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
snake_case_ =UNetaDModel
snake_case_ ="""sample"""
@property
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[str] = 4
lowerCAmelCase__ : List[str] = 3
lowerCAmelCase__ : Any = (32, 32)
lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase )
return {"sample": noise, "timestep": time_step}
@property
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : str = {
'''block_out_channels''': (32, 64),
'''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''),
'''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''),
'''attention_head_dim''': 3,
'''out_channels''': 3,
'''in_channels''': 3,
'''layers_per_block''': 2,
'''sample_size''': 32,
}
lowerCAmelCase__ : List[str] = self.dummy_input
return init_dict, inputs_dict
class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
snake_case_ =UNetaDModel
snake_case_ ="""sample"""
@property
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : str = 4
lowerCAmelCase__ : Optional[int] = 4
lowerCAmelCase__ : Optional[Any] = (32, 32)
lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase )
return {"sample": noise, "timestep": time_step}
@property
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
return (4, 32, 32)
@property
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
return (4, 32, 32)
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Tuple = {
'''sample_size''': 32,
'''in_channels''': 4,
'''out_channels''': 4,
'''layers_per_block''': 2,
'''block_out_channels''': (32, 64),
'''attention_head_dim''': 32,
'''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''),
'''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''),
}
lowerCAmelCase__ : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 )
model.to(__lowerCamelCase )
lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' )
def lowerCAmelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase )
model.to(__lowerCamelCase )
lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' )
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase )
model_accelerate.to(__lowerCamelCase )
model_accelerate.eval()
lowerCAmelCase__ : Union[str, Any] = torch.randn(
1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,)
lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase )
lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase )
lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample''']
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained(
'''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase )
model_normal_load.to(__lowerCamelCase )
model_normal_load.eval()
lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample''']
assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 )
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' )
model.eval()
model.to(__lowerCamelCase )
lowerCAmelCase__ : Union[str, Any] = torch.randn(
1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,)
lowerCAmelCase__ : str = noise.to(__lowerCamelCase )
lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase )
with torch.no_grad():
lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample
lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] )
# fmt: on
self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) )
class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
snake_case_ =UNetaDModel
snake_case_ ="""sample"""
@property
def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : str = 4
lowerCAmelCase__ : Optional[int] = 3
lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase )
return {"sample": noise, "timestep": time_step}
@property
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : Tuple = {
'''block_out_channels''': [32, 64, 64, 64],
'''in_channels''': 3,
'''layers_per_block''': 1,
'''out_channels''': 3,
'''time_embedding_type''': '''fourier''',
'''norm_eps''': 1e-6,
'''mid_block_scale_factor''': math.sqrt(2.0 ),
'''norm_num_groups''': None,
'''down_block_types''': [
'''SkipDownBlock2D''',
'''AttnSkipDownBlock2D''',
'''SkipDownBlock2D''',
'''SkipDownBlock2D''',
],
'''up_block_types''': [
'''SkipUpBlock2D''',
'''SkipUpBlock2D''',
'''AttnSkipUpBlock2D''',
'''SkipUpBlock2D''',
],
}
lowerCAmelCase__ : Tuple = self.dummy_input
return init_dict, inputs_dict
@slow
def lowerCAmelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 )
model.to(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = self.dummy_input
lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase )
lowerCAmelCase__ : Union[str, Any] = noise
lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase )
assert image is not None, "Make sure output is not None"
@slow
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' )
model.to(__lowerCamelCase )
lowerCAmelCase__ : Dict = 4
lowerCAmelCase__ : Optional[Any] = 3
lowerCAmelCase__ : List[Any] = (2_56, 2_56)
lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase )
with torch.no_grad():
lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample
lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] )
# fmt: on
self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) )
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' )
model.to(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = 4
lowerCAmelCase__ : Dict = 3
lowerCAmelCase__ : str = (32, 32)
lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase )
with torch.no_grad():
lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample
lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] )
# fmt: on
self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) )
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
pass
| 129 | 0 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
lowerCAmelCase__ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int , *lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , **lowercase__ : Optional[int]):
'''simple docstring'''
super().__init__(*lowercase__ , **lowercase__)
lowerCAmelCase__ = eval_examples
lowerCAmelCase__ = post_process_function
lowerCAmelCase__ = quant_trainer_args
lowerCAmelCase__ = 128 # default number of calibration samples
def __snake_case ( self : Tuple , lowercase__ : Any=None):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
lowerCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset
lowerCAmelCase__ = self._remove_unused_columns(lowercase__ , description='Calibration')
return DataLoader(
lowercase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase__ , )
def __snake_case ( self : List[Any] , lowercase__ : Union[str, Any]=None):
'''simple docstring'''
lowerCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset
lowerCAmelCase__ = self.get_calib_dataloader(lowercase__)
lowerCAmelCase__ = self.model
quant_trainer.configure_model(lowercase__ , self.quant_trainer_args , calib=lowercase__)
model.eval()
quant_trainer.enable_calibration(lowercase__)
logger.info('***** Running calibration *****')
logger.info(F""" Num examples = {self.calib_num}""")
logger.info(F""" Batch size = {calib_dataloader.batch_size}""")
for step, inputs in enumerate(lowercase__):
# Prediction step
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prediction_step(lowercase__ , lowercase__ , prediction_loss_only=lowercase__)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(lowercase__ , self.quant_trainer_args)
lowerCAmelCase__ = model
def __snake_case ( self : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : str = "eval"):
'''simple docstring'''
lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCAmelCase__ = self.get_eval_dataloader(lowercase__)
lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase__ = self.compute_metrics
lowerCAmelCase__ = None
lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase__ = eval_loop(
lowercase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , )
finally:
lowerCAmelCase__ = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions)
lowerCAmelCase__ = self.compute_metrics(lowercase__)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"""{metric_key_prefix}_"""):
lowerCAmelCase__ = metrics.pop(lowercase__)
self.log(lowercase__)
else:
lowerCAmelCase__ = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__)
return metrics
def __snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Any , lowercase__ : List[str]=None , lowercase__ : str = "test"):
'''simple docstring'''
lowerCAmelCase__ = self.get_test_dataloader(lowercase__)
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase__ = self.compute_metrics
lowerCAmelCase__ = None
lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase__ = eval_loop(
lowercase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , )
finally:
lowerCAmelCase__ = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions , 'predict')
lowerCAmelCase__ = self.compute_metrics(lowercase__)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"""{metric_key_prefix}_"""):
lowerCAmelCase__ = metrics.pop(lowercase__)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__)
def __snake_case ( self : List[str] , lowercase__ : List[str]="./"):
'''simple docstring'''
lowerCAmelCase__ = self.eval_dataset
lowerCAmelCase__ = self.get_eval_dataloader(lowercase__)
lowerCAmelCase__ = next(iter(lowercase__))
# saving device - to make it consistent
lowerCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
lowerCAmelCase__ = tuple(v.to(lowercase__) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
lowerCAmelCase__ = True
lowerCAmelCase__ = self.model.to(lowercase__)
model.eval()
model.float()
lowerCAmelCase__ = model.module if hasattr(lowercase__ , 'module') else model
quant_trainer.configure_model(lowercase__ , self.quant_trainer_args)
lowerCAmelCase__ = os.path.join(lowercase__ , 'model.onnx')
logger.info(F"""exporting model to {output_model_file}""")
lowerCAmelCase__ = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
lowercase__ , lowercase__ , lowercase__ , export_params=lowercase__ , opset_version=13 , do_constant_folding=lowercase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=lowercase__ , )
logger.info('onnx export finished')
| 119 | import argparse
from collections import defaultdict
import yaml
lowerCAmelCase__ = 'docs/source/en/_toctree.yml'
def __lowerCamelCase ( lowerCAmelCase__ ):
lowerCAmelCase__ = defaultdict(lowerCAmelCase__ )
for doc in model_doc:
counts[doc["local"]] += 1
lowerCAmelCase__ = [key for key, value in counts.items() if value > 1]
lowerCAmelCase__ = []
for duplicate_key in duplicates:
lowerCAmelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(lowerCAmelCase__ ) > 1:
raise ValueError(
F"""{duplicate_key} is present several times in the documentation table of content at """
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() )
def __lowerCamelCase ( lowerCAmelCase__=False ):
with open(lowerCAmelCase__ , encoding='utf-8' ) as f:
lowerCAmelCase__ = yaml.safe_load(f.read() )
# Get to the API doc
lowerCAmelCase__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowerCAmelCase__ = content[api_idx]['sections']
# Then to the model doc
lowerCAmelCase__ = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
lowerCAmelCase__ = api_doc[model_idx]['sections']
lowerCAmelCase__ = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if 'sections' in section]
lowerCAmelCase__ = False
for idx, modality_doc in modalities_docs:
lowerCAmelCase__ = modality_doc['sections']
lowerCAmelCase__ = clean_model_doc_toc(lowerCAmelCase__ )
if old_modality_doc != new_modality_doc:
lowerCAmelCase__ = True
if overwrite:
lowerCAmelCase__ = new_modality_doc
if diff:
if overwrite:
lowerCAmelCase__ = model_doc
lowerCAmelCase__ = api_doc
with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowerCAmelCase__ = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 119 | 1 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__UpperCAmelCase =datasets.load_iris()
__UpperCAmelCase =np.array(data["data"])
__UpperCAmelCase =np.array(data["target"])
__UpperCAmelCase =data["target_names"]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =train_test_split(X, y)
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=5 ) -> int:
__lowerCamelCase = zip(UpperCamelCase__ , UpperCamelCase__ )
# List of distances of all points from the point to be classified
__lowerCamelCase = []
for data_point in data:
__lowerCamelCase = euclidean_distance(data_point[0] , UpperCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__lowerCamelCase = [i[1] for i in sorted(UpperCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCamelCase = Counter(UpperCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 67 | import logging
from transformers import PretrainedConfig
_UpperCAmelCase = logging.getLogger(__name__)
_UpperCAmelCase = {
"""bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""",
}
class UpperCAmelCase ( __A ):
'''simple docstring'''
lowerCamelCase_ = '''bertabs'''
def __init__( self , lowercase=3_0_5_2_2 , lowercase=5_1_2 , lowercase=6 , lowercase=5_1_2 , lowercase=8 , lowercase=5_1_2 , lowercase=0.2 , lowercase=6 , lowercase=7_6_8 , lowercase=8 , lowercase=2_0_4_8 , lowercase=0.2 , **lowercase , ):
"""simple docstring"""
super().__init__(**lowercase )
A_ : Optional[int] = vocab_size
A_ : Union[str, Any] = max_pos
A_ : List[str] = enc_layers
A_ : Tuple = enc_hidden_size
A_ : List[Any] = enc_heads
A_ : str = enc_ff_size
A_ : Optional[Any] = enc_dropout
A_ : Dict = dec_layers
A_ : Optional[Any] = dec_hidden_size
A_ : int = dec_heads
A_ : Any = dec_ff_size
A_ : List[str] = dec_dropout
| 140 | 0 |
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "M-CLIP"
def __init__( self : List[Any] , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : List[str]=7_6_8 , **lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = transformerDimSize
lowercase_ = imageDimSize
super().__init__(**lowerCAmelCase_)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = MCLIPConfig
def __init__( self : List[str] , lowerCAmelCase_ : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple):
"""simple docstring"""
super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = XLMRobertaModel(lowerCAmelCase_)
lowercase_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims)
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = self.transformer(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)[0]
lowercase_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
return self.LinearTransformation(lowerCAmelCase_), embs
| 359 |
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313 | 0 |
import math
from numpy import inf
from scipy.integrate import quad
def _a ( SCREAMING_SNAKE_CASE : float ) -> float:
"""simple docstring"""
if num <= 0:
raise ValueError('math domain error' )
return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0]
def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
"""simple docstring"""
return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 322 |
from __future__ import annotations
def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]:
"""simple docstring"""
__lowerCAmelCase: int = 0
__lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
__lowerCAmelCase: Tuple = i + 1
else:
__lowerCAmelCase: List[str] = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
| 322 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 273 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
__A = get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( enum.Enum ):
'''simple docstring'''
lowercase_ = "all_checks"
lowercase_ = "basic_checks"
lowercase_ = "no_checks"
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowerCAmelCase_ ( __a , __a , __a=None ) -> Optional[int]:
"""simple docstring"""
if expected_checksums is None:
logger.info("Unable to verify checksums." )
return
if len(set(__a ) - set(__a ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(__a ) - set(__a ) ) )
if len(set(__a ) - set(__a ) ) > 0:
raise UnexpectedDownloadedFile(str(set(__a ) - set(__a ) ) )
lowerCamelCase__: List[Any] =[url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
lowerCamelCase__: Union[str, Any] =" for " + verification_name if verification_name is not None else ""
if len(__a ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
"Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" )
logger.info("All the checksums matched successfully" + for_verification_name )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
if expected_splits is None:
logger.info("Unable to verify splits sizes." )
return
if len(set(__a ) - set(__a ) ) > 0:
raise ExpectedMoreSplits(str(set(__a ) - set(__a ) ) )
if len(set(__a ) - set(__a ) ) > 0:
raise UnexpectedSplits(str(set(__a ) - set(__a ) ) )
lowerCamelCase__: Optional[int] =[
{"expected": expected_splits[name], "recorded": recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(__a ) > 0:
raise NonMatchingSplitsSizesError(str(__a ) )
logger.info("All the splits matched successfully." )
def lowerCAmelCase_ ( __a , __a = True ) -> dict:
"""simple docstring"""
if record_checksum:
lowerCamelCase__: str =shaaaa()
with open(__a , "rb" ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b"" ):
m.update(__a )
lowerCamelCase__: Dict =m.hexdigest()
else:
lowerCamelCase__: List[str] =None
return {"num_bytes": os.path.getsize(__a ), "checksum": checksum}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 273 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
UpperCamelCase__ = 3
def a__ ( lowerCAmelCase__ ) -> int:
print('''Generating primitive root of p''' )
while True:
UpperCAmelCase__ : List[str] = random.randrange(3 , lowerCAmelCase__ )
if pow(lowerCAmelCase__ , 2 , lowerCAmelCase__ ) == 1:
continue
if pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) == 1:
continue
return g
def a__ ( lowerCAmelCase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('''Generating prime p...''' )
UpperCAmelCase__ : Union[str, Any] = rabin_miller.generate_large_prime(lowerCAmelCase__ ) # select large prime number.
UpperCAmelCase__ : List[Any] = primitive_root(lowerCAmelCase__ ) # one primitive root on modulo p.
UpperCAmelCase__ : int = random.randrange(3 , lowerCAmelCase__ ) # private_key -> have to be greater than 2 for safety.
UpperCAmelCase__ : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
UpperCAmelCase__ : Union[str, Any] = (key_size, e_a, e_a, p)
UpperCAmelCase__ : Tuple = (key_size, d)
return public_key, private_key
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print('''\nWARNING:''' )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = generate_key(lowerCAmelCase__ )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , '''w''' ) as fo:
fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , '''w''' ) as fo:
fo.write(F"""{private_key[0]},{private_key[1]}""" )
def a__ ( ) -> None:
print('''Making key files...''' )
make_key_files('''elgamal''' , 20_48 )
print('''Key files generation successful''' )
if __name__ == "__main__":
main()
| 181 |
'''simple docstring'''
import pprint
import requests
UpperCamelCase__ = '''https://zenquotes.io/api'''
def a__ ( ) -> list:
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def a__ ( ) -> list:
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
UpperCamelCase__ = random_quotes()
pprint.pprint(response)
| 181 | 1 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self :str ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase )
lowercase__ = -1
lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
lowercase__ = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowercase__ = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowercase__ = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def UpperCAmelCase ( self :Optional[Any] ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase )
lowercase__ = -1
lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
lowercase__ = tokenizer.decode(greedy_ids[0] )
lowercase__ = TextIteratorStreamer(_lowercase )
lowercase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
lowercase__ = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
lowercase__ = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def UpperCAmelCase ( self :List[str] ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase )
lowercase__ = -1
lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
lowercase__ = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
lowercase__ = greedy_ids[:, input_ids.shape[1] :]
lowercase__ = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowercase__ = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowercase__ = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def UpperCAmelCase ( self :Tuple ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("distilgpt2" )
lowercase__ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowercase )
lowercase__ = -1
lowercase__ = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowercase__ = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowercase__ = cs.out[:-1] # Remove the final "\n"
lowercase__ = tokenizer(_lowercase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def UpperCAmelCase ( self :str ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowercase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowercase )
lowercase__ = -1
lowercase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
lowercase__ = TextIteratorStreamer(_lowercase , timeout=0.001 )
lowercase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
lowercase__ = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
lowercase__ = ""
for new_text in streamer:
streamer_text += new_text
| 201 |
from __future__ import annotations
from collections import deque
class lowerCAmelCase :
def __init__( self :List[Any] , _lowercase :list[str] ):
'''simple docstring'''
lowercase__ = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(_lowercase )
self.set_fail_transitions()
def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ):
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def UpperCAmelCase ( self :List[str] , _lowercase :str ):
'''simple docstring'''
lowercase__ = 0
for character in keyword:
lowercase__ = self.find_next_state(_lowercase , _lowercase )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
lowercase__ = len(self.adlist ) - 1
else:
lowercase__ = next_state
self.adlist[current_state]["output"].append(_lowercase )
def UpperCAmelCase ( self :int ):
'''simple docstring'''
lowercase__ = deque()
for node in self.adlist[0]["next_states"]:
q.append(_lowercase )
lowercase__ = 0
while q:
lowercase__ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(_lowercase )
lowercase__ = self.adlist[r]["fail_state"]
while (
self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None
and state != 0
):
lowercase__ = self.adlist[state]["fail_state"]
lowercase__ = self.find_next_state(
_lowercase , self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
lowercase__ = 0
lowercase__ = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ):
'''simple docstring'''
lowercase__ = {} # returns a dict with keywords and list of its occurrences
lowercase__ = 0
for i in range(len(_lowercase ) ):
while (
self.find_next_state(_lowercase , string[i] ) is None
and current_state != 0
):
lowercase__ = self.adlist[current_state]["fail_state"]
lowercase__ = self.find_next_state(_lowercase , string[i] )
if next_state is None:
lowercase__ = 0
else:
lowercase__ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
lowercase__ = []
result[key].append(i - len(_lowercase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 201 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : Any = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 52 |
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
_UpperCamelCase: str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
_UpperCamelCase: Tuple = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
_UpperCamelCase: Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
def lowercase ( self : Optional[Any] ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'], )
def lowercase ( self : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : List[str]=False ) -> int:
if return_pvalue:
lowercase : Optional[int] = pearsonr(lowerCAmelCase, lowerCAmelCase )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowerCAmelCase, lowerCAmelCase )[0] )}
| 255 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __magic_name__ ( snake_case , snake_case , unittest.TestCase ):
UpperCamelCase_ :Tuple = CycleDiffusionPipeline
UpperCamelCase_ :int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
UpperCamelCase_ :str = PipelineTesterMixin.required_optional_params - {"latents"}
UpperCamelCase_ :Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} )
UpperCamelCase_ :List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ :Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase_ ( self )-> int:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_000 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
UpperCamelCase_ = CLIPTextModel(_lowercase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCamelCase_ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Optional[Any]:
UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
UpperCamelCase_ = image / 2 + 0.5
if str(_lowercase ).startswith("mps" ):
UpperCamelCase_ = torch.manual_seed(_lowercase )
else:
UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
UpperCamelCase_ = {
"prompt": "An astronaut riding an elephant",
"source_prompt": "An astronaut riding a horse",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"eta": 0.1,
"strength": 0.8,
"guidance_scale": 3,
"source_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase_ ( self )-> Optional[Any]:
UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = CycleDiffusionPipeline(**_lowercase )
UpperCamelCase_ = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCamelCase_ = self.get_dummy_inputs(_lowercase )
UpperCamelCase_ = pipe(**_lowercase )
UpperCamelCase_ = output.images
UpperCamelCase_ = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
UpperCamelCase_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
UpperCamelCase_ = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , "half" ):
UpperCamelCase_ = module.half()
UpperCamelCase_ = CycleDiffusionPipeline(**_lowercase )
UpperCamelCase_ = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCamelCase_ = self.get_dummy_inputs(_lowercase )
UpperCamelCase_ = pipe(**_lowercase )
UpperCamelCase_ = output.images
UpperCamelCase_ = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
UpperCamelCase_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCAmelCase_ ( self )-> Union[str, Any]:
return super().test_save_load_local()
@unittest.skip("non-deterministic pipeline" )
def UpperCAmelCase_ ( self )-> Tuple:
return super().test_inference_batch_single_identical()
@skip_mps
def UpperCAmelCase_ ( self )-> int:
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def UpperCAmelCase_ ( self )-> Union[str, Any]:
return super().test_save_load_optional_components()
@skip_mps
def UpperCAmelCase_ ( self )-> Any:
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def UpperCAmelCase_ ( self )-> Optional[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self )-> List[str]:
UpperCamelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png" )
UpperCamelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" )
UpperCamelCase_ = init_image.resize((512, 512) )
UpperCamelCase_ = "CompVis/stable-diffusion-v1-4"
UpperCamelCase_ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" )
UpperCamelCase_ = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision="fp16" )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
UpperCamelCase_ = "A black colored car"
UpperCamelCase_ = "A blue colored car"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , )
UpperCamelCase_ = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5e-1
def UpperCAmelCase_ ( self )-> List[str]:
UpperCamelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png" )
UpperCamelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" )
UpperCamelCase_ = init_image.resize((512, 512) )
UpperCamelCase_ = "CompVis/stable-diffusion-v1-4"
UpperCamelCase_ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" )
UpperCamelCase_ = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
UpperCamelCase_ = "A black colored car"
UpperCamelCase_ = "A blue colored car"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , )
UpperCamelCase_ = output.images
assert np.abs(image - expected_image ).max() < 2e-2
| 352 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
SCREAMING_SNAKE_CASE :int = """platform"""
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __magic_name__ :
UpperCamelCase_ :str = PegasusConfig
UpperCamelCase_ :List[str] = {}
UpperCamelCase_ :str = """gelu"""
def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , )-> Tuple:
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = eos_token_id
UpperCamelCase_ = pad_token_id
UpperCamelCase_ = bos_token_id
def UpperCAmelCase_ ( self )-> List[str]:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase )
return config, inputs_dict
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]:
UpperCamelCase_ = 20
UpperCamelCase_ = model_class_name(_lowercase )
UpperCamelCase_ = model.encode(inputs_dict["input_ids"] )
UpperCamelCase_ , UpperCamelCase_ = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase )
UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
UpperCamelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , )
UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , )
UpperCamelCase_ = model.decode(_lowercase , _lowercase )
UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" )
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple:
UpperCamelCase_ = 20
UpperCamelCase_ = model_class_name(_lowercase )
UpperCamelCase_ = model.encode(inputs_dict["input_ids"] )
UpperCamelCase_ , UpperCamelCase_ = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
UpperCamelCase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase )
UpperCamelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , )
UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
UpperCamelCase_ = model.decode(
decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , )
UpperCamelCase_ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase )
UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" )
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Tuple:
"""simple docstring"""
if attention_mask is None:
UpperCamelCase_ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
UpperCamelCase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __magic_name__ ( snake_case , unittest.TestCase ):
UpperCamelCase_ :Dict = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
UpperCamelCase_ :Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
UpperCamelCase_ :List[str] = True
UpperCamelCase_ :Any = False
UpperCamelCase_ :Union[str, Any] = False
UpperCamelCase_ :Tuple = False
def UpperCAmelCase_ ( self )-> List[str]:
UpperCamelCase_ = FlaxPegasusModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_lowercase )
def UpperCAmelCase_ ( self )-> Optional[int]:
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self )-> int:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase )
def UpperCAmelCase_ ( self )-> Any:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase )
def UpperCAmelCase_ ( self )-> int:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase )
UpperCamelCase_ = model_class(_lowercase )
@jax.jit
def encode_jitted(_lowercase , _lowercase=None , **_lowercase ):
return model.encode(input_ids=_lowercase , attention_mask=_lowercase )
with self.subTest("JIT Enabled" ):
UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for jitted_output, output in zip(_lowercase , _lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase_ ( self )-> Optional[Any]:
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ = model_class(_lowercase )
UpperCamelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
UpperCamelCase_ = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(_lowercase , _lowercase , _lowercase ):
return model.decode(
decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , )
with self.subTest("JIT Enabled" ):
UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for jitted_output, output in zip(_lowercase , _lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def UpperCAmelCase_ ( self )-> int:
for model_class_name in self.all_model_classes:
UpperCamelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase )
UpperCamelCase_ = np.ones((1, 1) )
UpperCamelCase_ = model(_lowercase )
self.assertIsNotNone(_lowercase )
@slow
def UpperCAmelCase_ ( self )-> str:
UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
UpperCamelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
UpperCamelCase_ = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
UpperCamelCase_ = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
UpperCamelCase_ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=512 , padding=_lowercase )
UpperCamelCase_ = model.generate(**_lowercase , num_beams=2 ).sequences
UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase )
assert tgt_text == decoded
| 60 | 0 |
from __future__ import annotations
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase):
UpperCamelCase_ = []
UpperCamelCase_ = []
UpperCamelCase_ = 0
UpperCamelCase_ = sum(SCREAMING_SNAKE_CASE_)
create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return result
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if sum(SCREAMING_SNAKE_CASE_) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE_)) < max_sum:
return
if sum(SCREAMING_SNAKE_CASE_) == max_sum:
result.append(SCREAMING_SNAKE_CASE_)
return
for index in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_)):
create_state_space_tree(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE_ , remaining_nums_sum - nums[index] , )
UpperCAmelCase : Union[str, Any] =[3, 34, 4, 12, 5, 2]
UpperCAmelCase : Union[str, Any] =9
UpperCAmelCase : str =generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 128 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Any:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = rotary_dim
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = initializer_range
_lowerCAmelCase = None
_lowerCAmelCase = vocab_size - 1
_lowerCAmelCase = vocab_size - 1
_lowerCAmelCase = vocab_size - 1
def _snake_case ( self ) -> str:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = 20
_lowerCAmelCase = model_class_name(_lowerCAmelCase )
_lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase )
_lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" )
_lowerCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
_lowerCAmelCase = model(
input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , )
_lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
_lowerCAmelCase = model(
input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = 20
_lowerCAmelCase = model_class_name(_lowerCAmelCase )
_lowerCAmelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
_lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase )
_lowerCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
_lowerCAmelCase = model(
input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , )
_lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
_lowerCAmelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
_lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = FlaxGPTJModelTester(self )
def _snake_case ( self ) -> List[str]:
for model_class_name in self.all_model_classes:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> int:
for model_class_name in self.all_model_classes:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
@tooslow
def _snake_case ( self ) -> Any:
_lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" )
_lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )
_lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" )
_lowerCAmelCase = False
_lowerCAmelCase = model.config.eos_token_id
_lowerCAmelCase = jax.jit(model.generate )
_lowerCAmelCase = jit_generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = [
"Hello this is a long string of text.\n\nI'm trying to get the text of the",
"Hey, I'm a little late to the party. I'm going to",
]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
@is_pt_flax_cross_test
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
_lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape
_lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_lowerCAmelCase ):
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval()
_lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa )
_lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase )
_lowerCAmelCase = fx_state
with torch.no_grad():
_lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple()
_lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase )
_lowerCAmelCase = fx_model_loaded(**_lowerCAmelCase ).to_tuple()
self.assertEqual(
len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" )
for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def _snake_case ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
_lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval()
_lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa )
_lowerCAmelCase = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params )
_lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape
_lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_lowerCAmelCase ):
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 0
_lowerCAmelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
_lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple()
_lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = pt_model_loaded(**_lowerCAmelCase ).to_tuple()
self.assertEqual(
len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def _snake_case ( self ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
_lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" )
_lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 158 | 0 |
'''simple docstring'''
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowerCamelCase__ = datasets.utils.logging.get_logger(__name__)
@dataclass
class lowerCAmelCase__ ( datasets.BuilderConfig ):
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : str = "utf-8"
lowerCAmelCase : List[Any] = None
lowerCAmelCase : int = None
lowerCAmelCase : int = True # deprecated
lowerCAmelCase : List[Any] = None # deprecated
lowerCAmelCase : int = 10 << 20 # 10MB
lowerCAmelCase : Any = None
class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ):
lowerCAmelCase : Tuple = JsonConfig
def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" )
_UpperCAmelCase : List[str] = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." )
if self.config.newlines_in_values is not None:
raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple ) ->List[str]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCamelCase__ , (str, list, tuple) ):
_UpperCAmelCase : Dict = data_files
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : List[str] = [files]
_UpperCAmelCase : str = [dl_manager.iter_files(lowerCamelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Dict = []
for split_name, files in data_files.items():
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : List[Any] = [files]
_UpperCAmelCase : Dict = [dl_manager.iter_files(lowerCamelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"files": files} ) )
return splits
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : pa.Table ) ->Optional[int]:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
_UpperCAmelCase : List[Any] = self.config.features.arrow_schema.field(lowerCamelCase__ ).type
_UpperCAmelCase : Optional[int] = pa_table.append_column(lowerCamelCase__ , pa.array([None] * len(lowerCamelCase__ ) , type=lowerCamelCase__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
_UpperCAmelCase : List[str] = table_cast(lowerCamelCase__ , self.config.features.arrow_schema )
return pa_table
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] ) ->Any:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_UpperCAmelCase : str = json.load(lowerCamelCase__ )
# We keep only the field we are interested in
_UpperCAmelCase : Optional[Any] = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(lowerCamelCase__ , (list, tuple) ):
_UpperCAmelCase : int = set().union(*[row.keys() for row in dataset] )
_UpperCAmelCase : List[Any] = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys}
else:
_UpperCAmelCase : Dict = dataset
_UpperCAmelCase : Tuple = pa.Table.from_pydict(lowerCamelCase__ )
yield file_idx, self._cast_table(lowerCamelCase__ )
# If the file has one json object per line
else:
with open(lowerCamelCase__ , "rb" ) as f:
_UpperCAmelCase : Dict = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
_UpperCAmelCase : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 )
_UpperCAmelCase : List[Any] = (
self.config.encoding_errors if self.config.encoding_errors is not None else "strict"
)
while True:
_UpperCAmelCase : str = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(lowerCamelCase__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
_UpperCAmelCase : Optional[int] = batch.decode(self.config.encoding , errors=lowerCamelCase__ ).encode("utf-8" )
try:
while True:
try:
_UpperCAmelCase : Tuple = paj.read_json(
io.BytesIO(lowerCamelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(lowerCamelCase__ , pa.ArrowInvalid )
and "straddling" not in str(lowerCamelCase__ )
or block_size > len(lowerCamelCase__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(lowerCamelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_UpperCAmelCase : Any = json.load(lowerCamelCase__ )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # list is the only sequence type supported in JSON
try:
_UpperCAmelCase : Optional[int] = set().union(*[row.keys() for row in dataset] )
_UpperCAmelCase : Dict = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys}
_UpperCAmelCase : List[str] = pa.Table.from_pydict(lowerCamelCase__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(lowerCamelCase__ )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ )
batch_idx += 1
| 354 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
lowerCamelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str:
'''simple docstring'''
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()]
return labels
def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0:
raise ValueError("You must include at least one label and at least one sequence." )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. "
"Make sure the passed template includes formatting syntax such as {{}} where the label should go."
).format(lowerCamelCase__ ) )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Optional[Any] = [sequences]
_UpperCAmelCase : int = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(UpperCAmelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = args_parser
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
if self.entailment_id == -1:
logger.warning(
"Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
"-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." )
@property
def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]:
'''simple docstring'''
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("entail" ):
return ind
return -1
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : int = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"Tokenizer was not supporting padding necessary for zero-shot, attempting to use "
" `pad_token=eos_token`" )
_UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token
try:
_UpperCAmelCase : List[str] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )
except Exception as e:
if "too short" in str(lowerCamelCase__ ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
_UpperCAmelCase : List[Any] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple:
'''simple docstring'''
if kwargs.get("multi_class" , lowerCamelCase__ ) is not None:
_UpperCAmelCase : int = kwargs["multi_class"]
logger.warning(
"The `multi_class` argument has been deprecated and renamed to `multi_label`. "
"`multi_class` will be removed in a future version of Transformers." )
_UpperCAmelCase : Dict = {}
if "candidate_labels" in kwargs:
_UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] )
if "hypothesis_template" in kwargs:
_UpperCAmelCase : Dict = kwargs["hypothesis_template"]
_UpperCAmelCase : List[str] = {}
if "multi_label" in kwargs:
_UpperCAmelCase : Optional[Any] = kwargs["multi_label"]
return preprocess_params, {}, postprocess_params
def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0:
pass
elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs:
_UpperCAmelCase : int = args[0]
else:
raise ValueError(F"""Unable to understand extra arguments {args}""" )
return super().__call__(lowerCamelCase__ , **lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ):
_UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(lowerCamelCase__ ) - 1,
**model_input,
}
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int:
'''simple docstring'''
_UpperCAmelCase : Dict = inputs["candidate_label"]
_UpperCAmelCase : Optional[int] = inputs["sequence"]
_UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names}
_UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = {
"candidate_label": candidate_label,
"sequence": sequence,
"is_last": inputs["is_last"],
**outputs,
}
return model_outputs
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs]
_UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs]
_UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] )
_UpperCAmelCase : Optional[Any] = logits.shape[0]
_UpperCAmelCase : Any = len(lowerCamelCase__ )
_UpperCAmelCase : str = N // n
_UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) )
if multi_label or len(lowerCamelCase__ ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
_UpperCAmelCase : int = self.entailment_id
_UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0
_UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : str = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
_UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 322 | 0 |
"""simple docstring"""
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_a = None
_a = '<' if sys.byteorder == 'little' else '>'
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_a = [
np.dtype('|b1'),
np.dtype('|u1'),
np.dtype('<u2'),
np.dtype('>u2'),
np.dtype('<i2'),
np.dtype('>i2'),
np.dtype('<u4'),
np.dtype('>u4'),
np.dtype('<i4'),
np.dtype('>i4'),
np.dtype('<f4'),
np.dtype('>f4'),
np.dtype('<f8'),
np.dtype('>f8'),
]
@dataclass
class A_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Tuple = None
# Automatically constructed
SCREAMING_SNAKE_CASE__ : str = """PIL.Image.Image"""
SCREAMING_SNAKE_CASE__ : int = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
SCREAMING_SNAKE_CASE__ : str = field(default="""Image""" ,init=lowerCAmelCase__ ,repr=lowerCAmelCase__ )
def __call__( self ):
"""simple docstring"""
return self.pa_type
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCAmelCase_ : List[Any] = np.array(_lowerCamelCase )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCamelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCamelCase )
elif isinstance(_lowerCamelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCamelCase )
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ):
"""simple docstring"""
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support decoding images, please install 'Pillow'." )
if token_per_repo_id is None:
UpperCAmelCase_ : Dict = {}
UpperCAmelCase_ : Dict = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" )
else:
if is_local_path(_lowerCamelCase ):
UpperCAmelCase_ : List[str] = PIL.Image.open(_lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = path.split("::" )[-1]
try:
UpperCAmelCase_ : int = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""]
UpperCAmelCase_ : str = token_per_repo_id.get(_lowerCamelCase )
except ValueError:
UpperCAmelCase_ : int = None
with xopen(_lowerCamelCase , "rb" , use_auth_token=_lowerCamelCase ) as f:
UpperCAmelCase_ : Union[str, Any] = BytesIO(f.read() )
UpperCAmelCase_ : Dict = PIL.Image.open(bytes_ )
else:
UpperCAmelCase_ : Dict = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def UpperCamelCase__ ( self ):
"""simple docstring"""
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("binary" ),
"path": Value("string" ),
}
)
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if pa.types.is_string(storage.type ):
UpperCAmelCase_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() )
UpperCAmelCase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase_ : int = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() )
UpperCAmelCase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
UpperCAmelCase_ : Optional[Any] = storage.field("bytes" )
else:
UpperCAmelCase_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
UpperCAmelCase_ : List[Any] = storage.field("path" )
else:
UpperCAmelCase_ : Optional[int] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() )
UpperCAmelCase_ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
UpperCAmelCase_ : Dict = pa.array(
[encode_np_array(np.array(_lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
UpperCAmelCase_ : str = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() )
UpperCAmelCase_ : Optional[int] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(_lowerCamelCase , self.pa_type )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(lowercase_ ):
with xopen(_lowerCamelCase , "rb" ) as f:
UpperCAmelCase_ : int = f.read()
return bytes_
UpperCAmelCase_ : Tuple = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCAmelCase_ : Tuple = pa.array(
[os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(_lowerCamelCase , self.pa_type )
def __a ( ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
UpperCAmelCase_ : Tuple = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Any = BytesIO()
if image.format in list_image_compression_formats():
UpperCAmelCase_ : Optional[Any] = image.format
else:
UpperCAmelCase_ : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__lowerCamelCase, format=__lowerCamelCase )
return buffer.getvalue()
def __a ( __lowerCamelCase ):
if hasattr(__lowerCamelCase, "filename" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )}
def __a ( __lowerCamelCase ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
UpperCAmelCase_ : int = array.dtype
UpperCAmelCase_ : Any = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
UpperCAmelCase_ : Any = dtype.kind
UpperCAmelCase_ : List[Any] = dtype.itemsize
UpperCAmelCase_ : Optional[int] = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
UpperCAmelCase_ : Any = np.dtype("|u1" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" )
if dtype is not dest_dtype:
warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
UpperCAmelCase_ : str = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = np.dtype(__lowerCamelCase )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" )
UpperCAmelCase_ : Dict = PIL.Image.fromarray(array.astype(__lowerCamelCase ) )
return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )}
def __a ( __lowerCamelCase ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if objs:
UpperCAmelCase_ : str = first_non_null_value(__lowerCamelCase )
if isinstance(__lowerCamelCase, __lowerCamelCase ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__lowerCamelCase, np.ndarray ):
UpperCAmelCase_ : Tuple = no_op_if_value_is_null(__lowerCamelCase )
return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs]
elif isinstance(__lowerCamelCase, PIL.Image.Image ):
UpperCAmelCase_ : str = no_op_if_value_is_null(__lowerCamelCase )
return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs]
else:
return objs
else:
return objs
| 61 |
"""simple docstring"""
import numpy as np
def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1E-12 , lowerCAmelCase = 1_00 , ) -> tuple[float, np.ndarray]:
assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1]
# Ensure proper dimensionality.
assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase )
UpperCAmelCase__ : Optional[Any] = np.iscomplexobj(lowerCAmelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCAmelCase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : Tuple = 0
UpperCAmelCase__ : Optional[int] = 1E12
while not convergence:
# Multiple matrix by the vector.
UpperCAmelCase__ : int = np.dot(lowerCAmelCase , lowerCAmelCase )
# Normalize the resulting output vector.
UpperCAmelCase__ : Optional[Any] = w / np.linalg.norm(lowerCAmelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
UpperCAmelCase__ : List[Any] = vector.conj().T if is_complex else vector.T
UpperCAmelCase__ : Optional[Any] = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) )
# Check convergence.
UpperCAmelCase__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
UpperCAmelCase__ : Optional[int] = True
UpperCAmelCase__ : List[Any] = lambda_
if is_complex:
UpperCAmelCase__ : Any = np.real(lambda_ )
return lambda_, vector
def a__ ( ) -> None:
UpperCAmelCase__ : Tuple = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
UpperCAmelCase__ : int = np.array([41, 4, 20] )
UpperCAmelCase__ : str = real_input_matrix.astype(np.complexaaa )
UpperCAmelCase__ : Any = np.triu(1j * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
UpperCAmelCase__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
UpperCAmelCase__ : List[str] = real_input_matrix
UpperCAmelCase__ : Any = real_vector
elif problem_type == "complex":
UpperCAmelCase__ : List[Any] = complex_input_matrix
UpperCAmelCase__ : int = complex_vector
# Our implementation.
UpperCAmelCase__ , UpperCAmelCase__ : int = power_iteration(lowerCAmelCase , lowerCAmelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = np.linalg.eigh(lowerCAmelCase )
# Last eigenvalue is the maximum one.
UpperCAmelCase__ : str = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
UpperCAmelCase__ : List[Any] = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 171 | 0 |
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
snake_case : Dict = "Usage of script: script_name <size_of_canvas:int>"
snake_case : List[Any] = [0] * 100 + [1] * 10
random.shuffle(choice)
def lowerCAmelCase_ ( _snake_case : int ) -> list[list[bool]]:
'''simple docstring'''
__magic_name__ : int = [[False for i in range(_snake_case )] for j in range(_snake_case )]
return canvas
def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> None:
'''simple docstring'''
for i, row in enumerate(_snake_case ):
for j, _ in enumerate(_snake_case ):
__magic_name__ : Optional[int] = bool(random.getrandbits(1 ) )
def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> list[list[bool]]:
'''simple docstring'''
__magic_name__ : List[Any] = np.array(_snake_case )
__magic_name__ : Tuple = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(_snake_case ):
for c, pt in enumerate(_snake_case ):
__magic_name__ : Any = __judge_point(
_snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__magic_name__ : Tuple = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__magic_name__ : list[list[bool]] = current_canvas.tolist()
return return_canvas
def lowerCAmelCase_ ( _snake_case : bool , _snake_case : list[list[bool]] ) -> bool:
'''simple docstring'''
__magic_name__ : List[Any] = 0
__magic_name__ : Optional[int] = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__magic_name__ : Union[str, Any] = pt
if pt:
if alive < 2:
__magic_name__ : Optional[Any] = False
elif alive == 2 or alive == 3:
__magic_name__ : Optional[int] = True
elif alive > 3:
__magic_name__ : Dict = False
else:
if alive == 3:
__magic_name__ : List[str] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
snake_case : List[Any] = int(sys.argv[1])
# main working structure of this module.
snake_case : int = create_canvas(canvas_size)
seed(c)
snake_case ,snake_case : Union[str, Any] = plt.subplots()
fig.show()
snake_case : List[Any] = ListedColormap(["w", "k"])
try:
while True:
snake_case : Tuple = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 41 |
from __future__ import annotations
snake_case : Optional[int] = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class _snake_case :
def __init__( self , _a , _a ):
__magic_name__ : Any = graph
# mapping node to its parent in resulting breadth first tree
__magic_name__ : dict[str, str | None] = {}
__magic_name__ : List[str] = source_vertex
def SCREAMING_SNAKE_CASE ( self ):
__magic_name__ : List[str] = {self.source_vertex}
__magic_name__ : Optional[int] = None
__magic_name__ : int = [self.source_vertex] # first in first out queue
while queue:
__magic_name__ : Optional[Any] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(_a )
__magic_name__ : Dict = vertex
queue.append(_a )
def SCREAMING_SNAKE_CASE ( self , _a ):
if target_vertex == self.source_vertex:
return self.source_vertex
__magic_name__ : str = self.parent.get(_a )
if target_vertex_parent is None:
__magic_name__ : Union[str, Any] = (
f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(_a )
return self.shortest_path(_a ) + f'''->{target_vertex}'''
if __name__ == "__main__":
snake_case : int = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 41 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]:
_snake_case = [0] * len(__A )
_snake_case = []
_snake_case = [1] * len(__A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__A ) ):
if indegree[i] == 0:
queue.append(__A )
while queue:
_snake_case = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
_snake_case = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__A )
print(max(__A ) )
# Adjacency list of Graph
lowercase : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 42 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A__ ( _snake_case , unittest.TestCase ):
lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def snake_case_ ( self , UpperCamelCase__=0 ) -> Tuple:
'''simple docstring'''
A_ = np.random.RandomState(UpperCamelCase__ )
A_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs["""prompt"""]]
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs.pop("""prompt""" )]
A_ = pipe.tokenizer(
UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , )
A_ = text_inputs["""input_ids"""]
A_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
A_ = prompt_embeds
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = 3 * ["""this is a negative prompt"""]
A_ = negative_prompt
A_ = 3 * [inputs["""prompt"""]]
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs.pop("""prompt""" )]
A_ = []
for p in [prompt, negative_prompt]:
A_ = pipe.tokenizer(
UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , )
A_ = text_inputs["""input_ids"""]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
A_ , A_ = embeds
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class A__ ( unittest.TestCase ):
@property
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
A_ = ort.SessionOptions()
A_ = False
return options
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
# using the PNDM scheduler by default
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """A painting of a squirrel eating a burger"""
np.random.seed(0 )
A_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Any:
'''simple docstring'''
A_ = DDIMScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """open neural network exchange"""
A_ = np.random.RandomState(0 )
A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
A_ = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """open neural network exchange"""
A_ = np.random.RandomState(0 )
A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = 0
def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None:
A_ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
A_ = latents[0, -3:, -3:, -1]
A_ = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
A_ = latents[0, -3:, -3:, -1]
A_ = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
A_ = False
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """Andromeda galaxy in a bottle"""
A_ = np.random.RandomState(0 )
pipe(
prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def snake_case_ ( self ) -> Tuple:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
assert pipe.safety_checker is None
A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCamelCase__ )
A_ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
| 162 | 0 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase__ = 16
UpperCAmelCase__ = 32
def _a ( a :Dict ) -> Dict:
return int(x / 2**20 )
class lowercase_ :
'''simple docstring'''
def __enter__( self : List[str] ) ->Optional[int]:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
a = torch.cuda.memory_allocated()
return self
def __exit__( self : Optional[Any] , *__UpperCAmelCase : str ) ->int:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
a = torch.cuda.memory_allocated()
a = torch.cuda.max_memory_allocated()
a = bamb(self.end - self.begin )
a = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def _a ( a :Accelerator , a :int = 16 , a :str = "bert-base-cased" , a :int = 320 , a :int = 160 , ) -> Optional[int]:
a = AutoTokenizer.from_pretrained(a )
a = load_dataset(
'''glue''' , '''mrpc''' , split={'''train''': F"""train[:{n_train}]""", '''validation''': F"""validation[:{n_val}]"""} )
def tokenize_function(a :int ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a , max_length=a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
a = datasets.map(
a , batched=a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=a )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(a :str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(a , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''] , shuffle=a , collate_fn=a , batch_size=a )
a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=a , collate_fn=a , batch_size=a )
return train_dataloader, eval_dataloader
def _a ( a :Any , a :str ) -> int:
# Initialize accelerator
a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = args.model_name_or_path
set_seed(a )
a , a = get_dataloaders(a , a , a , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained(a , return_dict=a )
# Instantiate optimizer
a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
a = optimizer_cls(params=model.parameters() , lr=a )
if accelerator.state.deepspeed_plugin is not None:
a = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
a = 1
a = (len(a ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
a = get_linear_schedule_with_warmup(
optimizer=a , num_warmup_steps=0 , num_training_steps=a , )
else:
a = DummyScheduler(a , total_num_steps=a , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
a , a , a , a , a )
# We need to keep track of how many total steps we have iterated over
a = 0
# We also need to keep track of the stating epoch so files are named properly
a = 0
# Now we train the model
a = {}
for epoch in range(a , a ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(a ):
a = model(**a )
a = outputs.loss
a = loss / gradient_accumulation_steps
accelerator.backward(a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) )
accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) )
accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) )
accelerator.print(
'''Total Peak Memory consumed during the train (max): {}'''.format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
a = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f:
json.dump(a , a )
def _a ( ) -> List[Any]:
a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a , )
parser.add_argument(
'''--output_dir''' , type=a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--peak_memory_upper_bound''' , type=a , default=a , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , )
parser.add_argument(
'''--n_train''' , type=a , default=320 , help='''Number of training examples to use.''' , )
parser.add_argument(
'''--n_val''' , type=a , default=160 , help='''Number of validation examples to use.''' , )
parser.add_argument(
'''--num_epochs''' , type=a , default=1 , help='''Number of train epochs.''' , )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(a , a )
if __name__ == "__main__":
main()
| 26 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ = 10
UpperCAmelCase__ = 256
def _a ( a :List[str] ) -> Optional[MinHash]:
if len(a ) < MIN_NUM_TOKENS:
return None
a = MinHash(num_perm=a )
for token in set(a ):
min_hash.update(token.encode() )
return min_hash
def _a ( a :str ) -> Set[str]:
return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0}
class lowercase_ :
'''simple docstring'''
def __init__( self : Any , *,
__UpperCAmelCase : float = 0.85 , ) ->Dict:
"""simple docstring"""
a = duplication_jaccard_threshold
a = NUM_PERM
a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
a = defaultdict(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None:
"""simple docstring"""
a = self._index.query(__UpperCAmelCase )
if code_key in self._index.keys:
print(F"""Duplicate key {code_key}""" )
return
self._index.insert(__UpperCAmelCase , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]:
"""simple docstring"""
a = []
for base, duplicates in self._duplicate_clusters.items():
a = [base] + list(__UpperCAmelCase )
# reformat the cluster to be a list of dict
a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(__UpperCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None:
"""simple docstring"""
a = self.get_duplicate_clusters()
with open(__UpperCAmelCase , '''w''' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _a ( a :List[Any] ) -> List[Any]:
a , a = element
a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _a ( a :Type[Dataset] ) -> List[Any]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ):
if data is not None:
yield data
def _a ( a :Type[Dataset] , a :float ) -> str:
a = DuplicationIndex(duplication_jaccard_threshold=a )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ):
di.add(a , a )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _a ( a :str , a :str ) -> float:
a = get_tokens(a )
a = get_tokens(a )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ = None
def _a ( a :Tuple , a :Tuple ) -> Any:
a = []
for elementa in cluster:
a = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
a = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(a , a ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
a = 1
extremes.append(a )
return extremes
def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]:
global _shared_dataset
a = dataset
a = []
a = partial(_find_cluster_extremes_shared , jaccard_threshold=a )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a , a , ) , total=len(a ) , ):
extremes_list.append(a )
return extremes_list
def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
a = make_duplicate_clusters(a , a )
a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
a = {}
a = find_extremes(a , a , a )
for extremes in extremes_clusters:
for element in extremes:
a = element
a = duplicate_indices - set(extreme_dict.keys() )
a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
a = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
a = extreme_dict[element['''base_index''']]['''copies''']
print(F"""Original dataset size: {len(a )}""" )
print(F"""Number of duplicate clusters: {len(a )}""" )
print(F"""Files in duplicate cluster: {len(a )}""" )
print(F"""Unique files in duplicate cluster: {len(a )}""" )
print(F"""Filtered dataset size: {len(a )}""" )
return ds_filter, duplicate_clusters
| 26 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _snake_case ( _a ):
def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,**SCREAMING_SNAKE_CASE__ : str ):
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE:Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" )
SCREAMING_SNAKE_CASE:Any = truncation
SCREAMING_SNAKE_CASE:Union[str, Any] = tokenize_kwargs
SCREAMING_SNAKE_CASE:int = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE:Optional[Any] = return_tensors
return preprocess_params, {}, postprocess_params
def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : int ):
SCREAMING_SNAKE_CASE:Union[str, Any] = self.framework
SCREAMING_SNAKE_CASE:List[str] = self.tokenizer(SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
return model_inputs
def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ):
SCREAMING_SNAKE_CASE:List[Any] = self.model(**SCREAMING_SNAKE_CASE__ )
return model_outputs
def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Any ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any] ):
return super().__call__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
| 139 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class _snake_case ( _a ):
_A : Optional[int] = '''t5'''
_A : Union[str, Any] = ['''past_key_values''']
_A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,):
SCREAMING_SNAKE_CASE:int = vocab_size
SCREAMING_SNAKE_CASE:Any = d_model
SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv
SCREAMING_SNAKE_CASE:Optional[int] = d_ff
SCREAMING_SNAKE_CASE:Tuple = num_layers
SCREAMING_SNAKE_CASE:str = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads
SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets
SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance
SCREAMING_SNAKE_CASE:Dict = dropout_rate
SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE:List[str] = initializer_factor
SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE:str = use_cache
SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" )
SCREAMING_SNAKE_CASE:Any = act_info[-1]
SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated"
if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2:
raise ValueError(
F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE:int = "gelu_new"
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,)
class _snake_case ( _a ):
@property
def __UpperCamelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE:int = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence"
SCREAMING_SNAKE_CASE:str = {0: "batch"}
SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"}
SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" )
return common_inputs
@property
def __UpperCamelCase ( self : Optional[int] ):
return 13
| 139 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase__ : Any =logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
UpperCAmelCase__ : Tuple ={
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase__ : Dict ={
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase__ : Dict =sorted(arg_to_scheduler.keys())
UpperCAmelCase__ : Any ='''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class __A ( pl.LightningModule ):
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="base" , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ):
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(UpperCAmelCase_ )
lowerCamelCase =0
lowerCamelCase =Path(self.hparams.output_dir )
lowerCamelCase =self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
lowerCamelCase =AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=UpperCAmelCase_ , **UpperCAmelCase_ , )
else:
lowerCamelCase =config
lowerCamelCase =("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(self.hparams , UpperCAmelCase_ , UpperCAmelCase_ ):
assert hasattr(self.config , UpperCAmelCase_ ), f"""model config doesn't have a `{p}` attribute"""
setattr(self.config , UpperCAmelCase_ , getattr(self.hparams , UpperCAmelCase_ ) )
if tokenizer is None:
lowerCamelCase =AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCAmelCase_ , )
else:
lowerCamelCase =tokenizer
lowerCamelCase =MODEL_MODES[mode]
if model is None:
lowerCamelCase =self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCAmelCase_ , )
else:
lowerCamelCase =model
def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ):
lowerCamelCase =self.model_type.from_pretrained(*UpperCAmelCase_ , **UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase =arg_to_scheduler[self.hparams.lr_scheduler]
lowerCamelCase =get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
lowerCamelCase ={"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1}
return scheduler
def _snake_case ( self ):
lowerCamelCase =self.model
lowerCamelCase =["""bias""", """LayerNorm.weight"""]
lowerCamelCase =[
{
"""params""": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"""weight_decay""": self.hparams.weight_decay,
},
{
"""params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
if self.hparams.adafactor:
lowerCamelCase =Adafactor(
UpperCAmelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCAmelCase_ , relative_step=UpperCAmelCase_ )
else:
lowerCamelCase =AdamW(
UpperCAmelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
lowerCamelCase =optimizer
lowerCamelCase =self.get_lr_scheduler()
return [optimizer], [scheduler]
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
return self.validation_step(UpperCAmelCase_ , UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ ):
return self.validation_end(UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
lowerCamelCase =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def _snake_case ( self , UpperCAmelCase_ ):
if stage == "test":
lowerCamelCase =len(self.test_dataloader().dataset )
else:
lowerCamelCase =self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=UpperCAmelCase_ )
lowerCamelCase =len(self.train_dataloader().dataset )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ):
raise NotImplementedError("""You must implement this for your task""" )
def _snake_case ( self ):
return self.train_loader
def _snake_case ( self ):
return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=UpperCAmelCase_ )
def _snake_case ( self ):
return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ ):
return os.path.join(
self.hparams.data_dir , """cached_{}_{}_{}""".format(
UpperCAmelCase_ , list(filter(UpperCAmelCase_ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def _snake_case ( self , UpperCAmelCase_ ):
lowerCamelCase =self.output_dir.joinpath("""best_tfmr""" )
lowerCamelCase =self.step_count
self.model.save_pretrained(UpperCAmelCase_ )
self.tokenizer.save_pretrained(UpperCAmelCase_ )
@staticmethod
def _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
parser.add_argument(
"""--model_name_or_path""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--config_name""" , default="""""" , type=UpperCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""" )
parser.add_argument(
"""--tokenizer_name""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument(
"""--cache_dir""" , default=str(Path(UpperCAmelCase_ ).parent / """test_run""" / """cache""" ) , type=UpperCAmelCase_ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , )
parser.add_argument(
"""--encoder_layerdrop""" , type=UpperCAmelCase_ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--decoder_layerdrop""" , type=UpperCAmelCase_ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--dropout""" , type=UpperCAmelCase_ , help="""Dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--attention_dropout""" , type=UpperCAmelCase_ , help="""Attention dropout probability (Optional). Goes into model.config""" , )
parser.add_argument("""--learning_rate""" , default=5E-5 , type=UpperCAmelCase_ , help="""The initial learning rate for Adam.""" )
parser.add_argument(
"""--lr_scheduler""" , default="""linear""" , choices=UpperCAmelCase_ , metavar=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Learning rate scheduler""" , )
parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCAmelCase_ , help="""Weight decay if we apply some.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=UpperCAmelCase_ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--warmup_steps""" , default=0 , type=UpperCAmelCase_ , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--num_workers""" , default=4 , type=UpperCAmelCase_ , help="""kwarg passed to DataLoader""" )
parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=UpperCAmelCase_ )
parser.add_argument("""--train_batch_size""" , default=32 , type=UpperCAmelCase_ )
parser.add_argument("""--eval_batch_size""" , default=32 , type=UpperCAmelCase_ )
parser.add_argument("""--adafactor""" , action="""store_true""" )
class __A ( pl.Callback ):
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __A ( pl.Callback ):
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(UpperCAmelCase_ )
class __A ( pl.Callback ):
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =trainer.lr_schedulers[0]["""scheduler"""]
lowerCamelCase ={f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
rank_zero_info("""***** Validation results *****""" )
lowerCamelCase =trainer.callback_metrics
# Log results
for key in sorted(UpperCAmelCase_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ):
rank_zero_info("""***** Test results *****""" )
lowerCamelCase =trainer.callback_metrics
# Log and save results to file
lowerCamelCase =os.path.join(pl_module.hparams.output_dir , """test_results.txt""" )
with open(UpperCAmelCase_ , """w""" ) as writer:
for key in sorted(UpperCAmelCase_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) )
writer.write("""{} = {}\n""".format(UpperCAmelCase_ , str(metrics[key] ) ) )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"""--output_dir""" , default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_UpperCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=_UpperCAmelCase , default="""O2""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_UpperCAmelCase )
parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_UpperCAmelCase , help="""Max gradient norm""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" )
parser.add_argument(
"""--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_UpperCAmelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--seed""" , type=_UpperCAmelCase , default=42 , help="""random seed for initialization""" )
parser.add_argument(
"""--data_dir""" , default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_UpperCAmelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , )
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[] , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Dict:
pl.seed_everything(args.seed )
# init model
lowerCamelCase =Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_UpperCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
lowerCamelCase =pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_UpperCAmelCase )
if logging_callback is None:
lowerCamelCase =LoggingCallback()
lowerCamelCase ={}
if args.fpaa:
lowerCamelCase =16
if args.gpus > 1:
lowerCamelCase ="""auto"""
lowerCamelCase ="""ddp"""
lowerCamelCase =args.accumulate_grad_batches
lowerCamelCase =None
lowerCamelCase ="""auto"""
lowerCamelCase =pl.Trainer.from_argparse_args(
_UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , )
if args.do_train:
trainer.fit(_UpperCAmelCase )
else:
print("""RAG modeling tests with new set functions successfuly executed!""" )
return trainer
| 262 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__)
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
return (preds == labels).mean()
@dataclass
class __A :
__A = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__A = field(
default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__A = field(
default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__A = field(
default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __A :
__A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__A = field(metadata={"""help""": """Should contain the data files for the task."""} )
__A = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A = field(
default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _lowercase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase )
# Set seed
set_seed(training_args.seed )
try:
lowerCamelCase =processors[data_args.task_name]()
lowerCamelCase =processor.get_labels()
lowerCamelCase =len(_UpperCAmelCase )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
lowerCamelCase =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCamelCase =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowerCamelCase =(
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowerCamelCase =(
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_UpperCAmelCase ) -> Dict:
lowerCamelCase =np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )}
# Data collator
lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowerCamelCase =Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCamelCase ={}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCamelCase =trainer.evaluate()
lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(_UpperCAmelCase , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase )
writer.write("""%s = %s\n""" % (key, value) )
results.update(_UpperCAmelCase )
return results
def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 262 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : List[Any] = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ["GLPNFeatureExtractor"]
__UpperCamelCase : str = ["GLPNImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = [
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
"GLPNForDepthEstimation",
"GLPNLayer",
"GLPNModel",
"GLPNPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 228 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = ShapEImgaImgPipeline
UpperCamelCase__ = ['''image''']
UpperCamelCase__ = ['''image''']
UpperCamelCase__ = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase__ = False
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return 8
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
a = CLIPVisionModel(__magic_name__ )
return model
@property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
a = PriorTransformer(**__magic_name__ )
return model
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
a = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__magic_name__ )
return model
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_image_processor
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , )
a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Tuple=0 ):
'''simple docstring'''
a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """cpu"""
a = self.get_dummy_components()
a = self.pipeline_class(**__magic_name__ )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = pipe(**self.get_dummy_inputs(__magic_name__ ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = torch_device == """cpu"""
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_dummy_components()
a = self.pipeline_class(**__magic_name__ )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = 1
a = 2
a = self.get_dummy_inputs(__magic_name__ )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
a = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
a = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = torch.Generator(device=__magic_name__ ).manual_seed(0 )
a = pipe(
__magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 228 | 1 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__UpperCamelCase = datasets.logging.get_logger(__name__)
__UpperCamelCase = '''\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
'''
__UpperCamelCase = '''\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
'''
__UpperCamelCase = '''
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bleurt = datasets.load_metric("bleurt")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results["scores"]])
[1.03, 1.04]
'''
__UpperCamelCase = {
'''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''',
'''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''',
'''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''',
'''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''',
'''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''',
'''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''',
'''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''',
'''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''',
'''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''',
'''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
def a_ ( self) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/google-research/bleurt', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': datasets.Value('string', id='sequence'),
'references': datasets.Value('string', id='sequence'),
}), codebase_urls=['https://github.com/google-research/bleurt'], reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'], )
def a_ ( self, lowerCAmelCase__) -> Any:
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
'Using default BLEURT-Base checkpoint for sequence maximum length 128. '
'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').')
snake_case_ = 'bleurt-base-128'
if self.config_name.lower() in CHECKPOINT_URLS:
snake_case_ = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
snake_case_ = self.config_name.upper()
else:
raise KeyError(
f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}')
# download the model checkpoint specified by self.config_name and set up the scorer
snake_case_ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name])
snake_case_ = score.BleurtScorer(os.path.join(lowerCAmelCase__, lowerCAmelCase__))
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]:
snake_case_ = self.scorer.score(references=lowerCAmelCase__, candidates=lowerCAmelCase__)
return {"scores": scores}
| 368 | """simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer
SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = True
def a_ ( self) -> int:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>')
tokenizer.save_pretrained(self.tmpdirname)
def a_ ( self, lowerCAmelCase__) -> Any:
snake_case_ = 'this is a test'
snake_case_ = 'this is a test'
return input_text, output_text
def a_ ( self) -> Optional[int]:
snake_case_ = '<pad>'
snake_case_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__)
def a_ ( self) -> Tuple:
snake_case_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], '<pad>')
self.assertEqual(vocab_keys[1], '<unk>')
self.assertEqual(vocab_keys[-1], '[PAD]')
self.assertEqual(len(lowerCAmelCase__), 3_0001)
def a_ ( self) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size, 3_0000)
def a_ ( self) -> List[str]:
# fmt: off
snake_case_ = ' \tHeLLo!how \n Are yoU? '
snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?']
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
@unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.')
def a_ ( self) -> str:
pass
@unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.')
def a_ ( self) -> List[Any]:
pass
def a_ ( self) -> str:
# fmt: off
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> List[Any]:
# fmt: off
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Dict:
# fmt: off
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ]
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Tuple:
# fmt: off
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Any:
# fmt: off
snake_case_ = ' \tHeLLo!how \n Are yoU? '
snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?']
# fmt: on
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Dict:
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_rust_tokenizer()
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__))
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = self.get_rust_tokenizer()
snake_case_ = tokenizer.encode(lowerCAmelCase__)
snake_case_ = rust_tokenizer.encode(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> int:
snake_case_ = 'This is a test'
snake_case_ = [13, 1, 4398, 25, 21, 1289]
snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test']
snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test']
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__)
snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__)
snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
# fmt: off
snake_case_ = 'I was born in 92000, and this is falsé.'
snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ]
snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ]
# fmt: on
snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Tuple:
snake_case_ = DebertaVaTokenizer(lowerCAmelCase__)
snake_case_ = tokenizer.encode('sequence builders')
snake_case_ = tokenizer.encode('multi-sequence build')
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__)
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__)
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__)
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, )
@slow
def a_ ( self) -> Union[str, Any]:
# fmt: off
snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
| 312 | 0 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
_lowerCamelCase : int = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"encoder.layer_norm_for_extract": "layer_norm_for_extract",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"label_embs_concat": "label_embeddings_concat",
"mask_emb": "masked_spec_embed",
"spk_proj": "speaker_proj",
}
_lowerCamelCase : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"label_embeddings_concat",
"speaker_proj",
"layer_norm_for_extract",
]
def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('.' ):
UpperCamelCase = getattr(A__ , A__ )
if weight_type is not None:
UpperCamelCase = getattr(A__ , A__ ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __lowerCamelCase ( A__ , A__ ) -> Dict:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key):
# special case since naming is very similar
continue
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(A__ )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , A__ )
if "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
else:
UpperCamelCase = None
set_recursively(A__ , A__ , A__ , A__ , A__ )
continue
if not is_used:
unused_weights.append(A__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Dict:
"""simple docstring"""
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(A__ )
@torch.no_grad()
def __lowerCamelCase ( A__ , A__ , A__=None , A__=None , A__=True ) -> int:
"""simple docstring"""
if config_path is not None:
UpperCamelCase = UniSpeechSatConfig.from_pretrained(A__ )
else:
UpperCamelCase = UniSpeechSatConfig()
UpperCamelCase = ''
if is_finetuned:
UpperCamelCase = UniSpeechSatForCTC(A__ )
else:
UpperCamelCase = UniSpeechSatForPreTraining(A__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
UpperCamelCase = model[0].eval()
recursively_load_weights(A__ , A__ )
hf_wavavec.save_pretrained(A__ )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_lowerCamelCase : Any = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 28 |
'''simple docstring'''
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
_lowerCamelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
_lowerCamelCase : Optional[int] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
_lowerCamelCase : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE ( datasets.Metric ):
"""simple docstring"""
def A ( self : Union[str, Any] ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False ):
"""simple docstring"""
if rouge_types is None:
UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase__ , use_stemmer=UpperCamelCase__ )
if use_aggregator:
UpperCamelCase = scoring.BootstrapAggregator()
else:
UpperCamelCase = []
for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = scorer.score(UpperCamelCase__ , UpperCamelCase__ )
if use_aggregator:
aggregator.add_scores(UpperCamelCase__ )
else:
scores.append(UpperCamelCase__ )
if use_aggregator:
UpperCamelCase = aggregator.aggregate()
else:
UpperCamelCase = {}
for key in scores[0]:
UpperCamelCase = [score[key] for score in scores]
return result
| 28 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : int = LDMTextToImagePipeline
UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS - {
'''negative_prompt''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
'''prompt_embeds''',
}
UpperCamelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - {
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase_ : Dict = False
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
_UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = AutoencoderKL(
block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCAmelCase : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
_UpperCAmelCase : List[str] = CLIPTextModel(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_UpperCAmelCase : Any = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=0 ) -> Union[str, Any]:
"""simple docstring"""
if str(lowerCAmelCase__ ).startswith("mps" ):
_UpperCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCAmelCase : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : str = self.get_dummy_components()
_UpperCAmelCase : Tuple = LDMTextToImagePipeline(**lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_6, 1_6, 3)
_UpperCAmelCase : List[str] = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=torch.floataa , lowerCAmelCase__ : Tuple=0 ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
_UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
_UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = self.get_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_5_6, 2_5_6, 3)
_UpperCAmelCase : int = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
_UpperCAmelCase : Optional[int] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa , lowerCAmelCase__ : Any=0 ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : int = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
_UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 5_0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : str = self.get_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = pipe(**lowerCAmelCase__ ).images[0]
_UpperCAmelCase : int = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
_UpperCAmelCase : Any = np.abs(expected_image - image ).max()
assert max_diff < 1e-3 | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a : str , a : Any=sys.maxsize ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = "bilinear"
SCREAMING_SNAKE_CASE : List[str] = max_size
SCREAMING_SNAKE_CASE : int = short_edge_length
def __call__( self : List[Any] , a : str ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = []
for img in imgs:
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = img.shape[:2]
# later: provide list and randomly choose index for resize
SCREAMING_SNAKE_CASE : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
SCREAMING_SNAKE_CASE : str = size * 1.0 / min(a , a )
if h < w:
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = size, scale * w
else:
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = scale * h, size
if max(a , a ) > self.max_size:
SCREAMING_SNAKE_CASE : Any = self.max_size * 1.0 / max(a , a )
SCREAMING_SNAKE_CASE : Optional[Any] = newh * scale
SCREAMING_SNAKE_CASE : Any = neww * scale
SCREAMING_SNAKE_CASE : Union[str, Any] = int(neww + 0.5 )
SCREAMING_SNAKE_CASE : Dict = int(newh + 0.5 )
if img.dtype == np.uinta:
SCREAMING_SNAKE_CASE : Dict = Image.fromarray(a )
SCREAMING_SNAKE_CASE : Dict = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
SCREAMING_SNAKE_CASE : Tuple = np.asarray(a )
else:
SCREAMING_SNAKE_CASE : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.interpolate(
a , (newh, neww) , mode=self.interp_method , align_corners=a ).squeeze(0 )
img_augs.append(a )
return img_augs
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : List[str] , a : int ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
SCREAMING_SNAKE_CASE : int = cfg.INPUT.FORMAT
SCREAMING_SNAKE_CASE : Union[str, Any] = cfg.SIZE_DIVISIBILITY
SCREAMING_SNAKE_CASE : str = cfg.PAD_VALUE
SCREAMING_SNAKE_CASE : int = cfg.INPUT.MAX_SIZE_TEST
SCREAMING_SNAKE_CASE : Any = cfg.MODEL.DEVICE
SCREAMING_SNAKE_CASE : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
SCREAMING_SNAKE_CASE : Union[str, Any] = lambda a : (x - self.pixel_mean) / self.pixel_std
def __UpperCamelCase ( self : Tuple , a : Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = tuple(max(a ) for s in zip(*[img.shape for img in images] ) )
SCREAMING_SNAKE_CASE : str = [im.shape[-2:] for im in images]
SCREAMING_SNAKE_CASE : Union[str, Any] = [
nn.functional.pad(
a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(a , a )
]
return torch.stack(a ), torch.tensor(a )
def __call__( self : Optional[Any] , a : List[Any] , a : Dict=False ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(a , a ):
SCREAMING_SNAKE_CASE : int = [images]
if single_image:
assert len(a ) == 1
for i in range(len(a ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(a , images.pop(a ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
a , torch.as_tensor(img_tensorize(images.pop(a ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([im.shape[:2] for im in images] )
SCREAMING_SNAKE_CASE : Optional[int] = self.aug(a )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalizer(a ) for x in images]
# now pad them to do the following operations
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.pad(a )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
SCREAMING_SNAKE_CASE : Tuple = torch.true_divide(a , a )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCamelCase__ ( _a , _a):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCamelCase__ ( _a , _a):
assert torch.isfinite(_a).all(), "Box tensor contains infinite or NaN!"
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = box_size
tensor[:, 0].clamp_(min=0 , max=_a)
tensor[:, 1].clamp_(min=0 , max=_a)
tensor[:, 2].clamp_(min=0 , max=_a)
tensor[:, 3].clamp_(min=0 , max=_a) | 76 |
'''simple docstring'''
from PIL import Image
def _a( UpperCamelCase__ : Image, UpperCamelCase__ : float ):
'''simple docstring'''
def brightness(UpperCamelCase__ : int ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -2_5_5.0 <= level <= 2_5_5.0:
raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' )
return img.point(UpperCamelCase__ )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
a_ = change_brightness(img, 1_0_0)
brigt_img.save('image_data/lena_brightness.png', format='png') | 152 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__)
def A__ ( lowerCamelCase ) -> Any:
UpperCamelCase_: Optional[int] = DPTConfig()
if "large" in checkpoint_url:
UpperCamelCase_: Tuple = 10_24
UpperCamelCase_: Union[str, Any] = 40_96
UpperCamelCase_: Union[str, Any] = 24
UpperCamelCase_: str = 16
UpperCamelCase_: Dict = [5, 11, 17, 23]
UpperCamelCase_: Any = [2_56, 5_12, 10_24, 10_24]
UpperCamelCase_: str = (1, 3_84, 3_84)
if "ade" in checkpoint_url:
UpperCamelCase_: Tuple = True
UpperCamelCase_: Any = 1_50
UpperCamelCase_: str = """huggingface/label-files"""
UpperCamelCase_: List[Any] = """ade20k-id2label.json"""
UpperCamelCase_: List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) )
UpperCamelCase_: str = {int(lowerCamelCase ): v for k, v in idalabel.items()}
UpperCamelCase_: str = idalabel
UpperCamelCase_: str = {v: k for k, v in idalabel.items()}
UpperCamelCase_: Tuple = [1, 1_50, 4_80, 4_80]
return config, expected_shape
def A__ ( lowerCamelCase ) -> str:
UpperCamelCase_: int = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCamelCase , lowerCamelCase )
def A__ ( lowerCamelCase ) -> Union[str, Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCamelCase_: int = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
UpperCamelCase_: List[str] = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
UpperCamelCase_: Optional[int] = name.replace("""patch_embed""" , """patch_embeddings""" )
if "pos_embed" in name:
UpperCamelCase_: Any = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
UpperCamelCase_: int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
UpperCamelCase_: List[str] = name.replace("""proj""" , """projection""" )
if "blocks" in name:
UpperCamelCase_: int = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
UpperCamelCase_: str = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
UpperCamelCase_: Tuple = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name:
UpperCamelCase_: str = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
UpperCamelCase_: Optional[int] = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
UpperCamelCase_: List[str] = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
UpperCamelCase_: Optional[Any] = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
UpperCamelCase_: Union[str, Any] = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
UpperCamelCase_: List[str] = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
UpperCamelCase_: Optional[int] = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
UpperCamelCase_: str = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
UpperCamelCase_: Dict = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCamelCase_: Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
UpperCamelCase_: List[str] = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
UpperCamelCase_: List[Any] = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
UpperCamelCase_: List[str] = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
UpperCamelCase_: Optional[int] = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
UpperCamelCase_: Tuple = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCamelCase_: int = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCamelCase_: int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
UpperCamelCase_: List[str] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
UpperCamelCase_: Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
UpperCamelCase_: Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
UpperCamelCase_: Any = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
UpperCamelCase_: Tuple = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
UpperCamelCase_: Optional[Any] = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
UpperCamelCase_: Optional[Any] = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
UpperCamelCase_: List[str] = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
UpperCamelCase_: Dict = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
UpperCamelCase_: Tuple = name.replace("""auxlayer""" , """auxiliary_head.head""" )
return name
def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase_: Union[str, Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
UpperCamelCase_: Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase_: Tuple = in_proj_weight[: config.hidden_size, :]
UpperCamelCase_: int = in_proj_bias[: config.hidden_size]
UpperCamelCase_: Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase_: int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase_: Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase_: Any = in_proj_bias[-config.hidden_size :]
def A__ ( ) -> Dict:
UpperCamelCase_: Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCamelCase_: List[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str:
UpperCamelCase_, UpperCamelCase_: Any = get_dpt_config(lowerCamelCase )
# load original state_dict from URL
UpperCamelCase_: Dict = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(lowerCamelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCamelCase_: Any = state_dict.pop(lowerCamelCase )
UpperCamelCase_: Optional[int] = val
# read in qkv matrices
read_in_q_k_v(lowerCamelCase , lowerCamelCase )
# load HuggingFace model
UpperCamelCase_: Optional[int] = DPTForSemanticSegmentation(lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# Check outputs on an image
UpperCamelCase_: str = 4_80 if """ade""" in checkpoint_url else 3_84
UpperCamelCase_: Union[str, Any] = DPTImageProcessor(size=lowerCamelCase )
UpperCamelCase_: List[Any] = prepare_img()
UpperCamelCase_: Optional[int] = image_processor(lowerCamelCase , return_tensors="""pt""" )
# forward pass
UpperCamelCase_: Optional[int] = model(**lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**lowerCamelCase ).predicted_depth
# Assert logits
UpperCamelCase_: Optional[int] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
UpperCamelCase_: int = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(lowerCamelCase )
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCamelCase )
)
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCamelCase , )
if __name__ == "__main__":
lowerCamelCase_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""",
type=str,
help="""URL of the original DPT checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
parser.add_argument(
"""--model_name""",
default="""dpt-large""",
type=str,
help="""Name of the model, in case you're pushing to the hub.""",
)
lowerCamelCase_ : Any = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 223 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _UpperCamelCase :
'''simple docstring'''
__UpperCamelCase : str = PegasusConfig
__UpperCamelCase : str = {}
__UpperCamelCase : Optional[Any] = """gelu"""
def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ):
UpperCamelCase_: List[str] = parent
UpperCamelCase_: Optional[Any] = batch_size
UpperCamelCase_: Union[str, Any] = seq_length
UpperCamelCase_: Tuple = is_training
UpperCamelCase_: Tuple = use_labels
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: Optional[Any] = num_hidden_layers
UpperCamelCase_: List[Any] = num_attention_heads
UpperCamelCase_: Optional[int] = intermediate_size
UpperCamelCase_: Dict = hidden_dropout_prob
UpperCamelCase_: str = attention_probs_dropout_prob
UpperCamelCase_: Optional[int] = max_position_embeddings
UpperCamelCase_: Union[str, Any] = eos_token_id
UpperCamelCase_: Optional[int] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def lowerCAmelCase__ ( self : str ):
UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Optional[int] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ )
return config, inputs_dict
def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ):
UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder()
UpperCamelCase_: Any = inputs_dict["""input_ids"""]
UpperCamelCase_: int = input_ids[:1, :]
UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :]
UpperCamelCase_: Tuple = inputs_dict["""head_mask"""]
UpperCamelCase_: int = 1
# first forward pass
UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ )
UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0]
UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 )
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]:
if attention_mask is None:
UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _UpperCamelCase ( _A , _A , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__UpperCamelCase : int = (
{
"""conversational""": TFPegasusForConditionalGeneration,
"""feature-extraction""": TFPegasusModel,
"""summarization""": TFPegasusForConditionalGeneration,
"""text2text-generation""": TFPegasusForConditionalGeneration,
"""translation""": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__UpperCamelCase : Optional[Any] = True
__UpperCamelCase : Any = False
__UpperCamelCase : Dict = False
def lowerCAmelCase__ ( self : Dict ):
UpperCamelCase_: Tuple = TFPegasusModelTester(self )
UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ )
def lowerCAmelCase__ ( self : Dict ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self : Optional[int] ):
UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ )
@require_sentencepiece
@require_tokenizers
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase : Optional[int] = [
"""California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"""
""" reduce the risk of wildfires.""",
"""N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__UpperCamelCase : Union[str, Any] = """google/pegasus-xsum"""
@cached_property
def lowerCAmelCase__ ( self : Dict ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def lowerCAmelCase__ ( self : int ):
UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ):
UpperCamelCase_: str = self.translate_src_text(**snake_case_ )
assert self.expected_text == generated_words
def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ):
UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" )
UpperCamelCase_: Tuple = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , )
UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ )
return generated_words
@slow
def lowerCAmelCase__ ( self : Optional[Any] ):
self._assert_generated_batch_equal_expected()
| 223 | 1 |
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[Any] = DownBlockaD # noqa F405
a :Any = 'down'
def _lowercase ( self : Dict ) -> str:
lowercase_ = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :int = ResnetDownsampleBlockaD # noqa F405
a :Dict = 'down'
def _lowercase ( self : Dict ) -> int:
lowercase_ = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :int = AttnDownBlockaD # noqa F405
a :Tuple = 'down'
def _lowercase ( self : Optional[Any] ) -> Optional[Any]:
lowercase_ = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :str = CrossAttnDownBlockaD # noqa F405
a :str = 'down'
def _lowercase ( self : List[Any] ) -> Optional[Any]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
def _lowercase ( self : List[Any] ) -> Dict:
lowercase_ = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :List[str] = SimpleCrossAttnDownBlockaD # noqa F405
a :List[Any] = 'down'
@property
def _lowercase ( self : Tuple ) -> Dict:
return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] ) -> List[Any]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
lowercase_ = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Dict = SkipDownBlockaD # noqa F405
a :str = 'down'
@property
def _lowercase ( self : int ) -> Optional[int]:
return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[int] ) -> List[str]:
lowercase_ = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[Any] = AttnSkipDownBlockaD # noqa F405
a :Optional[Any] = 'down'
@property
def _lowercase ( self : Optional[int] ) -> List[str]:
return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Any ) -> Dict:
lowercase_ = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Dict = DownEncoderBlockaD # noqa F405
a :Tuple = 'down'
@property
def _lowercase ( self : List[Any] ) -> Optional[int]:
return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : str ) -> Dict:
lowercase_ = {
'''in_channels''': 3_2,
'''out_channels''': 3_2,
}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self : List[Any] ) -> Tuple:
lowercase_ = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[int] = AttnDownEncoderBlockaD # noqa F405
a :Optional[Any] = 'down'
@property
def _lowercase ( self : List[str] ) -> Dict:
return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[str] ) -> List[Any]:
lowercase_ = {
'''in_channels''': 3_2,
'''out_channels''': 3_2,
}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self : str ) -> Any:
lowercase_ = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Dict = UNetMidBlockaD # noqa F405
a :str = 'mid'
def _lowercase ( self : Any ) -> int:
lowercase_ = {
'''in_channels''': 3_2,
'''temb_channels''': 1_2_8,
}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self : Optional[Any] ) -> Any:
lowercase_ = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :List[Any] = UNetMidBlockaDCrossAttn # noqa F405
a :str = 'mid'
def _lowercase ( self : List[Any] ) -> List[Any]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
def _lowercase ( self : Any ) -> str:
lowercase_ = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :str = UNetMidBlockaDSimpleCrossAttn # noqa F405
a :List[str] = 'mid'
@property
def _lowercase ( self : Any ) -> int:
return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] ) -> List[Any]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
def _lowercase ( self : Tuple ) -> int:
lowercase_ = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :str = UpBlockaD # noqa F405
a :Optional[int] = 'up'
@property
def _lowercase ( self : List[str] ) -> Dict:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] ) -> List[Any]:
lowercase_ = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[Any] = ResnetUpsampleBlockaD # noqa F405
a :Tuple = 'up'
@property
def _lowercase ( self : int ) -> Dict:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : int ) -> Optional[Any]:
lowercase_ = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Any = CrossAttnUpBlockaD # noqa F405
a :Optional[Any] = 'up'
@property
def _lowercase ( self : Optional[Any] ) -> Optional[int]:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[str] ) -> Optional[Any]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
def _lowercase ( self : Optional[Any] ) -> Optional[int]:
lowercase_ = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405
a :List[str] = 'up'
@property
def _lowercase ( self : Tuple ) -> List[str]:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : str ) -> List[str]:
lowercase_ , lowercase_ = super().prepare_init_args_and_inputs_for_common()
lowercase_ = 3_2
return init_dict, inputs_dict
def _lowercase ( self : Dict ) -> Any:
lowercase_ = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[int] = AttnUpBlockaD # noqa F405
a :Tuple = 'up'
@property
def _lowercase ( self : Any ) -> str:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def _lowercase ( self : Any ) -> Union[str, Any]:
lowercase_ = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[int] = SkipUpBlockaD # noqa F405
a :Tuple = 'up'
@property
def _lowercase ( self : Tuple ) -> Any:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : str ) -> Optional[int]:
lowercase_ = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Union[str, Any] = AttnSkipUpBlockaD # noqa F405
a :List[Any] = 'up'
@property
def _lowercase ( self : Optional[Any] ) -> Tuple:
return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Any ) -> List[str]:
lowercase_ = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Any = UpDecoderBlockaD # noqa F405
a :Optional[Any] = 'up'
@property
def _lowercase ( self : Dict ) -> Union[str, Any]:
return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : str ) -> Tuple:
lowercase_ = {'''in_channels''': 3_2, '''out_channels''': 3_2}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self : int ) -> Tuple:
lowercase_ = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37]
super().test_output(SCREAMING_SNAKE_CASE_ )
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :List[Any] = AttnUpDecoderBlockaD # noqa F405
a :List[str] = 'up'
@property
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[int] ) -> str:
lowercase_ = {'''in_channels''': 3_2, '''out_channels''': 3_2}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase_ = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68]
super().test_output(SCREAMING_SNAKE_CASE_ )
| 30 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None , ):
snake_case : int = {}
if train_file is not None:
snake_case : List[Any] = [train_file]
if eval_file is not None:
snake_case : Optional[int] = [eval_file]
if test_file is not None:
snake_case : Any = [test_file]
snake_case : int = datasets.load_dataset("csv" , data_files=__lowerCamelCase )
snake_case : str = list(ds[list(files.keys() )[0]].features.keys() )
snake_case : int = features_name.pop(__lowerCamelCase )
snake_case : str = list(set(ds[list(files.keys() )[0]][label_name] ) )
snake_case : str = {label: i for i, label in enumerate(__lowerCamelCase )}
snake_case : List[Any] = tokenizer.model_input_names
snake_case : List[Any] = {}
if len(__lowerCamelCase ) == 1:
for k in files.keys():
snake_case : Tuple = ds[k].map(
lambda __lowerCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) , batched=__lowerCamelCase , )
elif len(__lowerCamelCase ) == 2:
for k in files.keys():
snake_case : List[Any] = ds[k].map(
lambda __lowerCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) , batched=__lowerCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
snake_case : Dict = {k: v for k, v in ex.items() if k in input_names}
snake_case : Union[str, Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
snake_case : str = {k: v for k, v in ex.items() if k in input_names}
snake_case : Any = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
snake_case : str = {k: v for k, v in ex.items() if k in input_names}
snake_case : List[str] = labelaid[ex[label_name]]
yield (d, label)
snake_case : int = (
tf.data.Dataset.from_generator(
__lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
snake_case : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
snake_case : Tuple = (
tf.data.Dataset.from_generator(
__lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
snake_case : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
snake_case : Optional[int] = (
tf.data.Dataset.from_generator(
__lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
snake_case : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCamelCase = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase :
A__ : int = field(metadata={"help": "Which column contains the label"} )
A__ : str = field(default=A_ ,metadata={"help": "The path of the training file"} )
A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the development file"} )
A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the test file"} )
A__ : int = field(
default=1_28 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
A__ : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class UpperCAmelCase :
A__ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
A__ : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
A__ : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
A__ : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
A__ : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
def UpperCamelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
snake_case , snake_case , snake_case : int = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case , snake_case , snake_case , snake_case : Tuple = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
snake_case : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowerCamelCase ) , labelaid=__lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
snake_case : int = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(__lowerCamelCase : EvalPrediction ) -> Dict:
snake_case : Optional[int] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
snake_case : int = TFTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case : int = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
snake_case : Any = trainer.evaluate()
snake_case : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(__lowerCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(__lowerCamelCase )
return results
if __name__ == "__main__":
main()
| 59 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowercase__ : List[str] = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def __lowercase ( _a = "mumbai" ):
snake_case_ : Tuple = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
snake_case_ : Any = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
snake_case_ : Any = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f'Job {i:>2} is {job[0]} at {job[1]}')
| 155 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowercase__ : List[Any] = {
'''configuration_clip''': [
'''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPConfig''',
'''CLIPOnnxConfig''',
'''CLIPTextConfig''',
'''CLIPVisionConfig''',
],
'''processing_clip''': ['''CLIPProcessor'''],
'''tokenization_clip''': ['''CLIPTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Any = ['''CLIPTokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = ['''CLIPFeatureExtractor''']
lowercase__ : Any = ['''CLIPImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[Any] = [
'''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPModel''',
'''CLIPPreTrainedModel''',
'''CLIPTextModel''',
'''CLIPTextModelWithProjection''',
'''CLIPVisionModel''',
'''CLIPVisionModelWithProjection''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCLIPModel''',
'''TFCLIPPreTrainedModel''',
'''TFCLIPTextModel''',
'''TFCLIPVisionModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Dict = [
'''FlaxCLIPModel''',
'''FlaxCLIPPreTrainedModel''',
'''FlaxCLIPTextModel''',
'''FlaxCLIPTextPreTrainedModel''',
'''FlaxCLIPVisionModel''',
'''FlaxCLIPVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 155 | 1 |
import math
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float:
'''simple docstring'''
if (
not isinstance(__snake_case ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float:
'''simple docstring'''
if (
not isinstance(__snake_case ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 209 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__(__snake_case ) -> int: # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__() -> Any:
'''simple docstring'''
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
lowerCamelCase__ = [1, 2, 3]
with pytest.raises(__snake_case ):
with parallel_backend('''unsupported backend''' ):
map_nested(__snake_case ,__snake_case ,num_proc=2 )
with pytest.raises(__snake_case ):
with parallel_backend('''unsupported backend''' ):
map_nested(__snake_case ,__snake_case ,num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' ,[2, -1] )
def lowerCAmelCase__(__snake_case ) -> Tuple:
'''simple docstring'''
lowerCamelCase__ = [1, 2]
lowerCamelCase__ = {'''a''': 1, '''b''': 2}
lowerCamelCase__ = {'''a''': [1, 2], '''b''': [3, 4]}
lowerCamelCase__ = {'''a''': {'''1''': 1}, '''b''': 2}
lowerCamelCase__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
lowerCamelCase__ = [2, 3]
lowerCamelCase__ = {'''a''': 2, '''b''': 3}
lowerCamelCase__ = {'''a''': [2, 3], '''b''': [4, 5]}
lowerCamelCase__ = {'''a''': {'''1''': 2}, '''b''': 3}
lowerCamelCase__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
| 209 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class __lowerCAmelCase ( unittest.TestCase , A ):
def _lowerCamelCase ( self : Tuple) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = load_tool('text-classification')
self.tool.setup()
_UpperCAmelCase = load_tool('text-classification' , remote=A)
def _lowerCamelCase ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(A , 'positive')
def _lowerCamelCase ( self : List[str]) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.remote_tool('That\'s quite cool' , ['positive', 'negative'])
self.assertEqual(A , 'positive')
def _lowerCamelCase ( self : Any) -> str:
"""simple docstring"""
_UpperCAmelCase = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(A , 'positive')
def _lowerCamelCase ( self : Any) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'])
self.assertEqual(A , 'positive')
| 290 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
UpperCAmelCase__ = {"tokenization_bertweet": ["BertweetTokenizer"]}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 290 | 1 |
"""simple docstring"""
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('1.0.0a'):
raise Exception('requires fairseq >= 1.0.0a')
logging.set_verbosity_info()
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = 'Hello world! cécé herlolip'
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : int = FairseqRobertaModel.from_pretrained(_snake_case )
roberta.eval() # disable dropout
SCREAMING_SNAKE_CASE__ : Any = roberta.model.encoder.sentence_encoder
SCREAMING_SNAKE_CASE__ : Any = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our RoBERTa config:""" ,_snake_case )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = XLMRobertaXLForSequenceClassification(_snake_case ) if classification_head else XLMRobertaXLForMaskedLM(_snake_case )
model.eval()
# Now let's copy all the weights.
# Embeddings
SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.embed_tokens.weight
SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.embed_positions.weight
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.layer_norm.weight
SCREAMING_SNAKE_CASE__ : Dict = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
SCREAMING_SNAKE_CASE__ : BertLayer = model.roberta.encoder.layer[i]
SCREAMING_SNAKE_CASE__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
SCREAMING_SNAKE_CASE__ : RobertaAttention = layer.attention
SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn_layer_norm.weight
SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.self_attn_layer_norm.bias
# self attention
SCREAMING_SNAKE_CASE__ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.q_proj.weight
SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.q_proj.bias
SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.k_proj.weight
SCREAMING_SNAKE_CASE__ : int = roberta_layer.self_attn.k_proj.bias
SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.v_proj.weight
SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias
# self-attention output
SCREAMING_SNAKE_CASE__ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.out_proj.weight
SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.final_layer_norm.weight
SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.final_layer_norm.bias
# intermediate
SCREAMING_SNAKE_CASE__ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.fca.weight
SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.bias
# output
SCREAMING_SNAKE_CASE__ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.weight
SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.fca.bias
# end of layer
if classification_head:
SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight
SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias
SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight
SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
SCREAMING_SNAKE_CASE__ : str = roberta.model.encoder.lm_head.dense.weight
SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.encoder.lm_head.dense.bias
SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight
SCREAMING_SNAKE_CASE__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias
SCREAMING_SNAKE_CASE__ : Optional[int] = roberta.model.encoder.lm_head.weight
SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
SCREAMING_SNAKE_CASE__ : torch.Tensor = roberta.encode(_snake_case ).unsqueeze(0 ) # batch of size 1
SCREAMING_SNAKE_CASE__ : Tuple = model(_snake_case )[0]
if classification_head:
SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_snake_case ) )
else:
SCREAMING_SNAKE_CASE__ : Tuple = roberta.model(_snake_case )[0]
print(our_output.shape ,their_output.shape )
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
SCREAMING_SNAKE_CASE__ : Tuple = torch.allclose(_snake_case ,_snake_case ,atol=1E-3 )
print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
pathlib.Path(_snake_case ).mkdir(parents=_snake_case ,exist_ok=_snake_case )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 25 |
"""simple docstring"""
import math
import unittest
def lowercase_ ( _snake_case ):
assert isinstance(_snake_case ,_snake_case ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def __magic_name__ (self ) -> List[Any]:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , )
self.assertFalse(
is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
def _lowerCamelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int | None = None , lowerCamelCase_ : int | None = None ):
"""simple docstring"""
if start is None:
UpperCAmelCase_ : Optional[Any] = 0
if end is None:
UpperCAmelCase_ : Optional[int] = len(lowerCamelCase_ ) - 1
if start >= end:
return
UpperCAmelCase_ : Optional[int] = (start + end) // 2
slowsort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
slowsort(lowerCamelCase_ , mid + 1 , lowerCamelCase_ )
if sequence[end] < sequence[mid]:
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = sequence[mid], sequence[end]
slowsort(lowerCamelCase_ , lowerCamelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 274 | '''simple docstring'''
snake_case__ : str = '''Tobias Carryer'''
from time import time
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ): # noqa: B008
'''simple docstring'''
UpperCAmelCase_ : str = multiplier
UpperCAmelCase_ : Dict = increment
UpperCAmelCase_ : Tuple = modulo
UpperCAmelCase_ : Dict = seed
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
snake_case__ : Any = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31)
while True:
print(lcg.next_number())
| 274 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class a__( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase_ : Tuple = '''SpeechT5FeatureExtractor'''
UpperCAmelCase_ : Union[str, Any] = '''SpeechT5Tokenizer'''
def __init__( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
super().__init__(__lowerCAmelCase , __lowerCAmelCase)
def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = kwargs.pop("""audio""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""text""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""text_target""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""audio_target""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""sampling_rate""" , __lowerCAmelCase)
if audio is not None and text is not None:
raise ValueError(
"""Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""")
if audio_target is not None and text_target is not None:
raise ValueError(
"""Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""")
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"""You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""")
if audio is not None:
lowerCAmelCase = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase)
elif text is not None:
lowerCAmelCase = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase)
else:
lowerCAmelCase = None
if audio_target is not None:
lowerCAmelCase = self.feature_extractor(audio_target=__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = targets["""input_values"""]
elif text_target is not None:
lowerCAmelCase = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = targets["""input_ids"""]
else:
lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase = labels
lowerCAmelCase = targets.get("""attention_mask""")
if decoder_attention_mask is not None:
lowerCAmelCase = decoder_attention_mask
return inputs
def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = kwargs.pop("""input_values""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""input_ids""" , __lowerCAmelCase)
lowerCAmelCase = kwargs.pop("""labels""" , __lowerCAmelCase)
if input_values is not None and input_ids is not None:
raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""")
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"""You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""")
if input_values is not None:
lowerCAmelCase = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase)
elif input_ids is not None:
lowerCAmelCase = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase)
else:
lowerCAmelCase = None
if labels is not None:
if "input_ids" in labels or (isinstance(__lowerCAmelCase , __lowerCAmelCase) and "input_ids" in labels[0]):
lowerCAmelCase = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = targets["""input_ids"""]
else:
lowerCAmelCase = self.feature_extractor.feature_size
lowerCAmelCase = self.feature_extractor.num_mel_bins
lowerCAmelCase = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = feature_size_hack
lowerCAmelCase = targets["""input_values"""]
else:
lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase = labels
lowerCAmelCase = targets.get("""attention_mask""")
if decoder_attention_mask is not None:
lowerCAmelCase = decoder_attention_mask
return inputs
def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase)
def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase)
| 272 | '''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class a__( enum.Enum ):
'''simple docstring'''
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : Any = 2
@add_end_docstrings(lowerCAmelCase__ )
class a__( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase_ : int = '''
In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The
voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western
Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision
and denounces one of the men as a horse thief. Although his father initially slaps him for making such an
accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,
begging for his blessing. <eod> </s> <eos>
'''
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase)
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING)
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
lowerCAmelCase = None
if self.model.config.prefix is not None:
lowerCAmelCase = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
lowerCAmelCase = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params)
lowerCAmelCase = {**self._preprocess_params, **preprocess_params}
lowerCAmelCase = {**self._forward_params, **forward_params}
def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ):
"""simple docstring"""
lowerCAmelCase = {}
if prefix is not None:
lowerCAmelCase = prefix
if prefix:
lowerCAmelCase = self.tokenizer(
__lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework)
lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
""" [None, 'hole']""")
lowerCAmelCase = handle_long_generation
preprocess_params.update(__lowerCAmelCase)
lowerCAmelCase = generate_kwargs
lowerCAmelCase = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""")
if return_tensors is not None:
raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""")
lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""")
lowerCAmelCase = ReturnType.TENSORS
if return_type is not None:
lowerCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
lowerCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
lowerCAmelCase = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase)
if len(__lowerCAmelCase) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""")
lowerCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({"""add_space_before_punct_symbol""": True})
return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase)
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase)
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = self.tokenizer(
prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework)
lowerCAmelCase = prompt_text
if handle_long_generation == "hole":
lowerCAmelCase = inputs["""input_ids"""].shape[-1]
if "max_new_tokens" in generate_kwargs:
lowerCAmelCase = generate_kwargs["""max_new_tokens"""]
else:
lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len
if new_tokens < 0:
raise ValueError("""We cannot infer how many new tokens are expected""")
if cur_len + new_tokens > self.tokenizer.model_max_length:
lowerCAmelCase = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
"""We cannot use `hole` to handle this generation the number of desired tokens exceeds the"""
""" models max length""")
lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:]
if "attention_mask" in inputs:
lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:]
return inputs
def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = model_inputs["""input_ids"""]
lowerCAmelCase = model_inputs.get("""attention_mask""" , __lowerCAmelCase)
# Allow empty prompts
if input_ids.shape[1] == 0:
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = 1
else:
lowerCAmelCase = input_ids.shape[0]
lowerCAmelCase = model_inputs.pop("""prompt_text""")
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0)
if prefix_length > 0:
lowerCAmelCase = """max_new_tokens""" in generate_kwargs or (
"""generation_config""" in generate_kwargs
and generate_kwargs["""generation_config"""].max_new_tokens is not None
)
if not has_max_new_tokens:
lowerCAmelCase = generate_kwargs.get("""max_length""") or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
lowerCAmelCase = """min_new_tokens""" in generate_kwargs or (
"""generation_config""" in generate_kwargs
and generate_kwargs["""generation_config"""].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase)
lowerCAmelCase = generated_sequence.shape[0]
if self.framework == "pt":
lowerCAmelCase = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:])
elif self.framework == "tf":
lowerCAmelCase = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]))
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.FULL_TEXT , __lowerCAmelCase=True):
"""simple docstring"""
lowerCAmelCase = model_outputs["""generated_sequence"""][0]
lowerCAmelCase = model_outputs["""input_ids"""]
lowerCAmelCase = model_outputs["""prompt_text"""]
lowerCAmelCase = generated_sequence.numpy().tolist()
lowerCAmelCase = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
lowerCAmelCase = {"""generated_token_ids""": sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
lowerCAmelCase = self.tokenizer.decode(
__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
lowerCAmelCase = 0
else:
lowerCAmelCase = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ))
if return_type == ReturnType.FULL_TEXT:
lowerCAmelCase = prompt_text + text[prompt_length:]
else:
lowerCAmelCase = text[prompt_length:]
lowerCAmelCase = {"""generated_text""": all_text}
records.append(__lowerCAmelCase)
return records
| 272 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: Dict =original_name.split("." )[0]
lowerCamelCase__: Any =key.split("." )
lowerCamelCase__: Union[str, Any] =int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 2] )
lowerCamelCase__: List[Any] =int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 1] )
lowerCamelCase__: List[str] =orig_block_num - offset
lowerCamelCase__: Tuple =key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" )
return key
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: List[Any] =OrderedDict()
lowerCamelCase__: Optional[int] =0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
lowerCamelCase__: Dict =key.replace("network" , "poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
lowerCamelCase__: int =key[: key.find("proj" )]
lowerCamelCase__: Dict =key.replace(__SCREAMING_SNAKE_CASE , F"""patch_embeddings.{total_embed_found}.""" )
lowerCamelCase__: Optional[int] =key.replace("proj" , "projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
lowerCamelCase__: int ="poolformer.encoder." + key
if "mlp.fc1" in key:
lowerCamelCase__: Optional[Any] =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" )
if "mlp.fc2" in key:
lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" )
if "norm1" in key:
lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm1" , "before_norm" )
if "norm2" in key:
lowerCamelCase__: Dict =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm2" , "after_norm" )
if "layer_scale_1" in key:
lowerCamelCase__: Optional[int] =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" )
if "layer_scale_2" in key:
lowerCamelCase__: Any =replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" )
if "head" in key:
lowerCamelCase__: int =key.replace("head" , "classifier" )
lowerCamelCase__: Tuple =value
return new_state_dict
def lowerCAmelCase_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: int =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return image
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__: Any =PoolFormerConfig()
# set attributes based on model_name
lowerCamelCase__: Any ="huggingface/label-files"
lowerCamelCase__: int =model_name[-3:]
lowerCamelCase__: List[Any] =1000
lowerCamelCase__: Tuple ="imagenet-1k-id2label.json"
lowerCamelCase__: str =(1, 1000)
# set config attributes
lowerCamelCase__: Dict =json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: List[str] ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowerCamelCase__: Any =idalabel
lowerCamelCase__: Any ={v: k for k, v in idalabel.items()}
if size == "s12":
lowerCamelCase__: Dict =[2, 2, 6, 2]
lowerCamelCase__: str =[64, 128, 320, 512]
lowerCamelCase__: Optional[Any] =4.0
lowerCamelCase__: Union[str, Any] =0.9
elif size == "s24":
lowerCamelCase__: Tuple =[4, 4, 12, 4]
lowerCamelCase__: List[str] =[64, 128, 320, 512]
lowerCamelCase__: Tuple =4.0
lowerCamelCase__: Optional[int] =0.9
elif size == "s36":
lowerCamelCase__: int =[6, 6, 18, 6]
lowerCamelCase__: int =[64, 128, 320, 512]
lowerCamelCase__: List[str] =4.0
lowerCamelCase__: Dict =1e-6
lowerCamelCase__: List[Any] =0.9
elif size == "m36":
lowerCamelCase__: Dict =[6, 6, 18, 6]
lowerCamelCase__: Dict =[96, 192, 384, 768]
lowerCamelCase__: str =4.0
lowerCamelCase__: Union[str, Any] =1e-6
lowerCamelCase__: Union[str, Any] =0.9_5
elif size == "m48":
lowerCamelCase__: str =[8, 8, 24, 8]
lowerCamelCase__: Optional[int] =[96, 192, 384, 768]
lowerCamelCase__: str =4.0
lowerCamelCase__: int =1e-6
lowerCamelCase__: str =0.9_5
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor
lowerCamelCase__: Union[str, Any] =PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE )
# Prepare image
lowerCamelCase__: int =prepare_img()
lowerCamelCase__: Tuple =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
lowerCamelCase__: Optional[int] =torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) )
# rename keys
lowerCamelCase__: Any =rename_keys(__SCREAMING_SNAKE_CASE )
# create HuggingFace model and load state dict
lowerCamelCase__: str =PoolFormerForImageClassification(__SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
model.eval()
# Define image processor
lowerCamelCase__: Any =PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE )
lowerCamelCase__: Any =image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values
# forward pass
lowerCamelCase__: int =model(__SCREAMING_SNAKE_CASE )
lowerCamelCase__: Union[str, Any] =outputs.logits
# define expected logit slices for different models
if size == "s12":
lowerCamelCase__: List[str] =torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] )
elif size == "s24":
lowerCamelCase__: Optional[int] =torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] )
elif size == "s36":
lowerCamelCase__: List[str] =torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] )
elif size == "m36":
lowerCamelCase__: Union[str, Any] =torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] )
elif size == "m48":
lowerCamelCase__: List[str] =torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] )
else:
raise ValueError(F"""Size {size} not supported""" )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="poolformer_s12",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__A = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 370 |
from __future__ import annotations
from typing import Any
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Any , UpperCAmelCase_ : int) ->None:
'''simple docstring'''
lowerCamelCase__: int =num_of_nodes
lowerCamelCase__: list[list[int]] =[]
lowerCamelCase__: dict[int, int] ={}
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None:
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight])
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->int:
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node])
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int) ->None:
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
lowerCamelCase__: Dict =self.find_component(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None:
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
lowerCamelCase__: Optional[int] =v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase_)
elif component_size[u_node] >= component_size[v_node]:
lowerCamelCase__: Tuple =self.find_component(UpperCAmelCase_)
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->None:
'''simple docstring'''
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =0
lowerCamelCase__: list[Any] =[-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes):
self.m_component.update({node: node})
component_size.append(1)
lowerCamelCase__: List[str] =self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge
lowerCamelCase__: List[Any] =self.m_component[u]
lowerCamelCase__: str =self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
lowerCamelCase__: Union[str, Any] =[u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge
lowerCamelCase__: str =self.m_component[u]
lowerCamelCase__: Any =self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""")
num_of_components -= 1
lowerCamelCase__: Tuple =[-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""")
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 273 | 0 |
"""simple docstring"""
import qiskit
def UpperCamelCase__ ( lowercase__ : int , lowercase__ : int ):
snake_case : Tuple = qiskit.Aer.get_backend("aer_simulator" )
# Create a Quantum Circuit acting on the q register
snake_case : List[str] = qiskit.QuantumCircuit(lowercase__ , lowercase__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
snake_case : List[str] = qiskit.execute(lowercase__ , lowercase__ , shots=1000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowercase__ )
if __name__ == "__main__":
print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
| 148 |
"""simple docstring"""
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class lowerCamelCase__ :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 13 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 37 , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , ):
"""simple docstring"""
snake_case : int = parent
snake_case : List[Any] = batch_size
snake_case : List[str] = image_size
snake_case : int = patch_size
snake_case : int = num_channels
snake_case : Any = is_training
snake_case : int = use_labels
snake_case : Optional[Any] = hidden_size
snake_case : str = num_hidden_layers
snake_case : Optional[int] = num_attention_heads
snake_case : Union[str, Any] = intermediate_size
snake_case : Dict = hidden_act
snake_case : Any = hidden_dropout_prob
snake_case : Optional[Any] = attention_probs_dropout_prob
snake_case : List[Any] = type_sequence_label_size
snake_case : Optional[Any] = initializer_range
snake_case : Any = encoder_stride
snake_case : Tuple = num_attention_outputs
snake_case : Dict = embed_dim
snake_case : Optional[Any] = embed_dim + 1
snake_case : Any = resolution
snake_case : int = depths
snake_case : int = hidden_sizes
snake_case : int = dim
snake_case : Tuple = mlp_expansion_ratio
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case : Optional[int] = None
if self.use_labels:
snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case : str = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self ):
"""simple docstring"""
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case : str = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE )
snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case : Optional[int] = self.type_sequence_label_size
snake_case : Tuple = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE )
snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case : Tuple = 1
snake_case : Any = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE )
snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : Any = self.prepare_config_and_inputs()
snake_case , snake_case , snake_case : Tuple = config_and_inputs
snake_case : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
a__ : Dict = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
a__ : int = (
{
"""feature-extraction""": TFEfficientFormerModel,
"""image-classification""": (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
a__ : int = False
a__ : List[str] = False
a__ : Union[str, Any] = False
a__ : Optional[Any] = False
a__ : str = False
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : List[Any] = TFEfficientFormerModelTester(self )
snake_case : Dict = ConfigTester(
self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def lowerCamelCase_ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="EfficientFormer does not use inputs_embeds" )
def lowerCamelCase_ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="EfficientFormer does not support input and output embeddings" )
def lowerCamelCase_ ( self ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case : str = model_class(SCREAMING_SNAKE_CASE )
snake_case : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case : Optional[int] = [*signature.parameters.keys()]
snake_case : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def lowerCamelCase_ ( self ):
"""simple docstring"""
def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE )
snake_case : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE )
snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case : List[Any] = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
if hasattr(self.model_tester , "encoder_seq_length" ):
snake_case : List[Any] = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1:
snake_case : Optional[int] = seq_length * self.model_tester.chunk_length
else:
snake_case : List[Any] = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
snake_case : List[Any] = outputs.decoder_hidden_states
self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE )
snake_case : Tuple = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case : List[Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
snake_case : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" )
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case : str = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case : str = True
snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE )
snake_case : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE )
snake_case : Optional[Any] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE )
snake_case : Tuple = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE )
if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ):
snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
snake_case : Optional[int] = True
snake_case : List[Any] = False
snake_case : Optional[int] = True
snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE )
snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE )
snake_case : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case : Tuple = True
snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE )
snake_case : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE )
snake_case : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
snake_case : Optional[Any] = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
snake_case : Any = model(SCREAMING_SNAKE_CASE )
self.assertTrue(outputs_dict is not None )
def UpperCamelCase__ ( ):
snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self ):
"""simple docstring"""
return (
EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : str = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" )
snake_case : List[Any] = self.default_image_processor
snake_case : Optional[Any] = prepare_img()
snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" )
# forward pass
snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
# verify the logits
snake_case : int = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
snake_case : Dict = tf.constant([-0.05_55, 0.48_25, -0.08_52] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
snake_case : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
"snap-research/efficientformer-l1-300" )
snake_case : int = self.default_image_processor
snake_case : List[Any] = prepare_img()
snake_case : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" )
# forward pass
snake_case : Any = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
# verify the logits
snake_case : Any = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
snake_case : Optional[int] = tf.constant([-0.13_12, 0.43_53, -1.04_99] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
| 148 | 1 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while second != 0:
lowercase__ : List[Any] = first & second
first ^= second
lowercase__ : Optional[int] = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = int(input('''Enter the first number: ''').strip())
UpperCamelCase = int(input('''Enter the second number: ''').strip())
print(f"{add(first, second) = }")
| 333 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]:
if not head:
return True
# split the list to two parts
UpperCamelCase_ , UpperCamelCase_ = head.next, head
while fast and fast.next:
UpperCamelCase_ = fast.next.next
UpperCamelCase_ = slow.next
UpperCamelCase_ = slow.next
UpperCamelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCamelCase_ = None
while second:
UpperCamelCase_ = second.next
UpperCamelCase_ = node
UpperCamelCase_ = second
UpperCamelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCamelCase_ = node.next
UpperCamelCase_ = head.next
return True
def lowerCamelCase__ ( a__ : List[str] ) -> int:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCamelCase_ = UpperCamelCase_ = UpperCamelCase_ = head
while fast and fast.next:
UpperCamelCase_ , UpperCamelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCamelCase_ = [slow.val]
while slow.next:
UpperCamelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCamelCase_ = cur.next
return True
def lowerCamelCase__ ( a__ : Tuple ) -> Dict:
if not head or not head.next:
return True
UpperCamelCase_ = {}
UpperCamelCase_ = 0
while head:
if head.val in d:
d[head.val].append(a__ )
else:
UpperCamelCase_ = [pos]
UpperCamelCase_ = head.next
pos += 1
UpperCamelCase_ = pos - 1
UpperCamelCase_ = 0
for v in d.values():
if len(a__ ) % 2 != 0:
middle += 1
else:
UpperCamelCase_ = 0
for i in range(0 , len(a__ ) ):
if v[i] + v[len(a__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 261 |
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowercase_ ( __SCREAMING_SNAKE_CASE ):
A__ : List[Any] = """EncodecFeatureExtractor"""
A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
super().__init__(__UpperCamelCase , __UpperCamelCase )
UpperCamelCase_ = self.feature_extractor
UpperCamelCase_ = False
def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ):
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase )
def __call__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
UpperCamelCase_ = args[0]
UpperCamelCase_ = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if audio is not None:
UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase_ = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase_ = audio_inputs["""padding_mask"""]
return inputs
def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
UpperCamelCase_ = args[0]
UpperCamelCase_ = args[1:]
if audio_values is not None:
return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase )
else:
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ):
"""simple docstring"""
UpperCamelCase_ = to_numpy(__UpperCamelCase )
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape
if padding_mask is None:
return list(__UpperCamelCase )
UpperCamelCase_ = to_numpy(__UpperCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase_ = seq_len - padding_mask.shape[-1]
UpperCamelCase_ = 1 - self.feature_extractor.padding_value
UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase )
UpperCamelCase_ = audio_values.tolist()
for i in range(__UpperCamelCase ):
UpperCamelCase_ = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 )
return audio_values
| 261 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : int = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 274 |
from __future__ import annotations
from collections.abc import Callable
__lowerCAmelCase = list[list[float | int]]
def snake_case_ ( snake_case , snake_case ) -> Matrix:
lowercase__: int = len(snake_case )
lowercase__: Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case )]
lowercase__: int
lowercase__: int
lowercase__: int
lowercase__: int
lowercase__: int
lowercase__: float
for row in range(snake_case ):
for col in range(snake_case ):
lowercase__: List[Any] = matrix[row][col]
lowercase__: Optional[int] = vector[row][0]
lowercase__: str = 0
lowercase__: Any = 0
while row < size and col < size:
# pivoting
lowercase__: List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case , snake_case ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
lowercase__ , lowercase__: Optional[int] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , snake_case ):
lowercase__: Any = augmented[rowa][col] / augmented[row][col]
lowercase__: int = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , snake_case ):
for row in range(snake_case ):
lowercase__: Union[str, Any] = augmented[row][col] / augmented[col][col]
for cola in range(snake_case , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case )
]
def snake_case_ ( snake_case ) -> Callable[[int], int]:
lowercase__: int = len(snake_case )
lowercase__: Matrix = [[0 for _ in range(snake_case )] for _ in range(snake_case )]
lowercase__: Matrix = [[0] for _ in range(snake_case )]
lowercase__: Matrix
lowercase__: int
lowercase__: int
lowercase__: int
for x_val, y_val in enumerate(snake_case ):
for col in range(snake_case ):
lowercase__: List[str] = (x_val + 1) ** (size - col - 1)
lowercase__: str = y_val
lowercase__: Optional[int] = solve(snake_case , snake_case )
def interpolated_func(snake_case ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case ) )
return interpolated_func
def snake_case_ ( snake_case ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def snake_case_ ( snake_case = question_function , snake_case = 10 ) -> int:
lowercase__: list[int] = [func(snake_case ) for x_val in range(1 , order + 1 )]
lowercase__: list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
lowercase__: int = 0
lowercase__: Callable[[int], int]
lowercase__: int
for poly in polynomials:
lowercase__: List[str] = 1
while func(snake_case ) == poly(snake_case ):
x_val += 1
ret += poly(snake_case )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 196 | 0 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCamelCase: Dict = logging.get_logger(__name__)
_UpperCamelCase: Dict = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
_UpperCamelCase: Optional[Any] = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
_UpperCamelCase: Any = {'facebook/blenderbot-3B': 1_2_8}
class a__ ( SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = ['input_ids', 'attention_mask']
_lowerCamelCase = BlenderbotTokenizer
def __init__( self : List[str], lowerCAmelCase : List[Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : Tuple="replace", lowerCAmelCase : List[Any]="<s>", lowerCAmelCase : Union[str, Any]="</s>", lowerCAmelCase : Optional[Any]="</s>", lowerCAmelCase : int="<s>", lowerCAmelCase : str="<unk>", lowerCAmelCase : int="<pad>", lowerCAmelCase : Dict="<mask>", lowerCAmelCase : int=False, lowerCAmelCase : List[Any]=True, **lowerCAmelCase : Optional[int], ) -> str:
super().__init__(
lowerCAmelCase, lowerCAmelCase, tokenizer_file=lowerCAmelCase, errors=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, sep_token=lowerCAmelCase, cls_token=lowerCAmelCase, unk_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token=lowerCAmelCase, add_prefix_space=lowerCAmelCase, trim_offsets=lowerCAmelCase, **lowerCAmelCase, )
lowercase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowerCAmelCase ) != add_prefix_space:
lowercase : Tuple = getattr(lowerCAmelCase, pre_tok_state.pop('type' ) )
lowercase : Optional[int] = add_prefix_space
lowercase : Tuple = pre_tok_class(**lowerCAmelCase )
lowercase : Union[str, Any] = add_prefix_space
lowercase : Dict = 'post_processor'
lowercase : Dict = getattr(self.backend_tokenizer, lowerCAmelCase, lowerCAmelCase )
if tokenizer_component_instance:
lowercase : int = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase : List[Any] = tuple(state['sep'] )
if "cls" in state:
lowercase : Optional[int] = tuple(state['cls'] )
lowercase : Union[str, Any] = False
if state.get('add_prefix_space', lowerCAmelCase ) != add_prefix_space:
lowercase : Any = add_prefix_space
lowercase : Tuple = True
if state.get('trim_offsets', lowerCAmelCase ) != trim_offsets:
lowercase : Dict = trim_offsets
lowercase : Union[str, Any] = True
if changes_to_apply:
lowercase : Any = getattr(lowerCAmelCase, state.pop('type' ) )
lowercase : List[str] = component_class(**lowerCAmelCase )
setattr(self.backend_tokenizer, lowerCAmelCase, lowerCAmelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def lowercase ( self : Union[str, Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase ( self : Optional[int], lowerCAmelCase : Optional[Any] ) -> Any:
lowercase : Tuple = AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else value
lowercase : str = value
def lowercase ( self : List[Any], *lowerCAmelCase : Any, **lowerCAmelCase : Optional[Any] ) -> BatchEncoding:
lowercase : Optional[Any] = kwargs.get('is_split_into_words', lowerCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCAmelCase, **lowerCAmelCase )
def lowercase ( self : List[Any], *lowerCAmelCase : Dict, **lowerCAmelCase : Union[str, Any] ) -> BatchEncoding:
lowercase : str = kwargs.get('is_split_into_words', lowerCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCAmelCase, **lowerCAmelCase )
def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Optional[str] = None ) -> Tuple[str]:
lowercase : Optional[int] = self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase )
return tuple(lowerCAmelCase )
def lowercase ( self : Optional[Any], lowerCAmelCase : List[int], lowerCAmelCase : Optional[List[int]] = None ) -> List[int]:
lowercase : str = [self.sep_token_id]
lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase ( self : List[Any], lowerCAmelCase : List[int], lowerCAmelCase : Optional[List[int]] = None ) -> Union[str, Any]:
return token_ids_a + [self.eos_token_id]
def lowercase ( self : Dict, lowerCAmelCase : "Conversation" ) -> List[int]:
lowercase : Dict = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(lowerCAmelCase )
lowercase : Dict = ' '.join(lowerCAmelCase )
lowercase : int = self.encode(lowerCAmelCase )
if len(lowerCAmelCase ) > self.model_max_length:
lowercase : Any = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 53 |
"""simple docstring"""
import datasets
from .evaluate import evaluate
_UpperCamelCase: str = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n'
_UpperCamelCase: int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n'
_UpperCamelCase: Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
def lowercase ( self : List[str] ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': {
'id': datasets.Value('string' ),
'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ),
},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], )
def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Optional[Any] ) -> Optional[Any]:
lowercase : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions}
lowercase : Any = [
{
'paragraphs': [
{
'qas': [
{
'answers': [{'text': answer_text} for answer_text in ref['answers']['text']],
'id': ref['id'],
}
for ref in references
]
}
]
}
]
lowercase : int = evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 53 | 1 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple:
__lowerCAmelCase: str = year % 1_9
__lowerCAmelCase: List[Any] = year % 4
__lowerCAmelCase: Tuple = year % 7
__lowerCAmelCase: Optional[Any] = math.floor(year / 1_0_0 )
__lowerCAmelCase: int = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 )
__lowerCAmelCase: str = leap_day_inhibits / 4
__lowerCAmelCase: List[Any] = (
1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 3_0
__lowerCAmelCase: Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__lowerCAmelCase: Tuple = (1_9 * metonic_cycle + secular_moon_shift) % 3_0
# PHM -> Paschal Full Moon
__lowerCAmelCase: List[str] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 2_9 and days_from_phm_to_sunday == 6:
return datetime(UpperCAmelCase_ , 4 , 1_9 )
elif days_to_add == 2_8 and days_from_phm_to_sunday == 6:
return datetime(UpperCAmelCase_ , 4 , 1_8 )
else:
return datetime(UpperCAmelCase_ , 3 , 2_2 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
__A = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 217 |
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ):
"""simple docstring"""
a , a :int = 1, 1
a :Any = 2
while True:
a :Optional[int] = 0
a :str = fa + fa
a , a :List[Any] = fa, f
index += 1
for _ in str(UpperCAmelCase_ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 94 | 0 |
import numpy as np
from PIL import Image
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray:
lowerCAmelCase__ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
lowerCAmelCase__ : Any = 0
lowerCAmelCase__ : Optional[int] = 0
lowerCAmelCase__ : Union[str, Any] = 0
lowerCAmelCase__ : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase__ : Tuple = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase__ : Union[str, Any] = 0
lowerCAmelCase__ : Union[str, Any] = 0
return updated_arr
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray:
lowerCAmelCase__ : List[str] = np.array(SCREAMING_SNAKE_CASE_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
lowerCAmelCase__ : str = 0
lowerCAmelCase__ : int = 0
lowerCAmelCase__ : Optional[int] = 0
lowerCAmelCase__ : Optional[int] = 0
# compute the shape of the output matrix
lowerCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase__ : Tuple = 0
lowerCAmelCase__ : int = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name="""avgpooling""", verbose=True)
# Loading the image
lowerCamelCase__ = Image.open("""path_to_image""")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show() | 351 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowerCamelCase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowerCamelCase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
"""emoji""": True,
},
}
]
lowerCamelCase__ = 0
for log in Path().glob("""*.log"""):
lowerCamelCase__ = 0
with open(log, """r""") as f:
for line in f:
lowerCamelCase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowerCamelCase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowerCamelCase__ = F"""{line["duration"]:.4f}"""
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowerCamelCase__ = []
log.unlink()
lowerCamelCase__ = """"""
lowerCamelCase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowerCamelCase__ = []
lowerCamelCase__ = {}
for test in failed_tests:
lowerCamelCase__ = test[0].split("""::""")
lowerCamelCase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowerCamelCase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowerCamelCase__ = [test[0] for test in failed_table]
lowerCamelCase__ = list(set(files))
# Count number of instances in failed_tests
lowerCamelCase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowerCamelCase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results."""
lowerCamelCase__ = len(err) + 10
lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}"""
print(F"""### {message}""")
else:
lowerCamelCase__ = """No failed tests! 🤗"""
print(F"""## {message}""")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowerCamelCase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowerCamelCase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
lowerCamelCase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowerCamelCase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowerCamelCase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowerCamelCase__ = row[0]
else:
lowerCamelCase__ = """"""
lowerCamelCase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 307 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.