code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
A_ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' # Return True if there is node that has not iterated. __UpperCAmelCase = [False] * len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [s] __UpperCAmelCase = True while queue: __UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = True __UpperCAmelCase = u return visited[t] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = [-1] * (len(SCREAMING_SNAKE_CASE )) __UpperCAmelCase = 0 __UpperCAmelCase = [] __UpperCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = float('''Inf''' ) __UpperCAmelCase = sink while s != source: # Find the minimum value in select path __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) __UpperCAmelCase = parent[s] max_flow += path_flow __UpperCAmelCase = sink while v != source: __UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCAmelCase = parent[v] for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1.5 SCREAMING_SNAKE_CASE = int(factor * num_class_images ) SCREAMING_SNAKE_CASE = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1E4: break else: SCREAMING_SNAKE_CASE = int(factor * num_images ) SCREAMING_SNAKE_CASE = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tqdm(desc="""downloading real regularization images""" , total=_SCREAMING_SNAKE_CASE ) with open(F"""{class_data_dir}/caption.txt""" , """w""" ) as fa, open(F"""{class_data_dir}/urls.txt""" , """w""" ) as fa, open( F"""{class_data_dir}/images.txt""" , """w""" ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE = requests.get(images["""url"""] ) if img.status_code == 2_00: SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowercase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""""" , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=2_00 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
193
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : List[Any] = XGLMConfig UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : Any = "gelu" def __init__( self , A_ , A_=14 , A_=7 , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =d_model __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =ffn_dim __UpperCamelCase =activation_function __UpperCamelCase =activation_dropout __UpperCamelCase =attention_dropout __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =None __UpperCamelCase =0 __UpperCamelCase =2 __UpperCamelCase =1 def _a ( self ) -> Optional[Any]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def _a ( self ) -> Dict: __UpperCamelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =self.get_config() __UpperCamelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , ) def _a ( self ) -> Any: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ : Dict = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[Any] = False def _a ( self ) -> Tuple: __UpperCamelCase =TFXGLMModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , n_embd=37 ) def _a ( self ) -> Any: self.config_tester.run_common_tests() @slow def _a ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def _a ( self ) -> str: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self , A_=True ) -> int: __UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase =model.generate(A_ , do_sample=A_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , A_ ) @slow def _a ( self ) -> Any: __UpperCamelCase =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase =model.generate(A_ , do_sample=A_ , seed=[7, 0] ) __UpperCamelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=A_ ) __UpperCamelCase =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[Any]: __UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase ='left' # use different length sentences to test batching __UpperCamelCase =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase =tokenizer(A_ , return_tensors='tf' , padding=A_ ) __UpperCamelCase =inputs['input_ids'] __UpperCamelCase =model.generate(input_ids=A_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase =model.generate(input_ids=A_ , max_new_tokens=12 ) __UpperCamelCase =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase =model.generate(input_ids=A_ , max_new_tokens=12 ) __UpperCamelCase =tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) __UpperCamelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) __UpperCamelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) __UpperCamelCase =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] )
62
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
0
import os def snake_case_ ( ) -> Any: with open(os.path.dirname(snake_case ) + '/grid.txt' ) as f: lowercase__: Union[str, Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(snake_case ) for x in f.readline().split()] ) lowercase__: List[Any] = 0 # right for i in range(20 ): for j in range(17 ): lowercase__: Any = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase__: Any = temp # down for i in range(17 ): for j in range(20 ): lowercase__: List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase__: Optional[int] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase__: Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase__: Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase__: str = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase__: Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
288
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Tuple = ['input_values', 'attention_mask'] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 16_000 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 7_600 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Dict = do_normalize lowercase__: Optional[Any] = return_attention_mask lowercase__: str = num_mel_bins lowercase__: Dict = hop_length lowercase__: Dict = win_length lowercase__: Optional[int] = win_function lowercase__: Any = frame_signal_scale lowercase__: Tuple = fmin lowercase__: Tuple = fmax lowercase__: Dict = mel_floor lowercase__: int = reduction_factor lowercase__: List[Any] = win_length * sampling_rate // 1_000 lowercase__: Optional[Any] = hop_length * sampling_rate // 1_000 lowercase__: Optional[int] = optimal_fft_length(self.sample_size ) lowercase__: Optional[Any] = (self.n_fft // 2) + 1 lowercase__: str = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) lowercase__: Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__: List[str] = np.array(lowerCAmelCase__ , np.intaa ) lowercase__: Tuple = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): lowercase__: int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__: Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowercase__: Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__: List[str] = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowercase__: Dict = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowercase__: str = None if audio_target is not None: lowercase__: List[str] = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: lowercase__: int = inputs_target['input_values'] lowercase__: List[str] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__: Optional[int] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__: int = isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase__: Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase__: Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__: Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Optional[int] = [speech] # needed to make pad() work on spectrogram inputs lowercase__: str = self.feature_size # convert into correct format for padding if is_target: lowercase__: int = [self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] lowercase__: Dict = BatchFeature({'input_values': features} ) lowercase__: Union[str, Any] = self.num_mel_bins else: lowercase__: Union[str, Any] = BatchFeature({'input_values': speech} ) lowercase__: Dict = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: List[str] = feature_size_hack # convert input values to correct format lowercase__: Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): lowercase__: List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__: Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__: Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__: Tuple = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__: str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__: Tuple = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__: str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__: Union[str, Any] = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__: int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__: str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a__ : str = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((64, 64) ) __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , safety_checker=__SCREAMING_SNAKE_CASE , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = PNDMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Optional[Any] = get_tests_dir('fixtures/dummy-config.json') class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Optional[Any] = 0 def __A ( self ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def __A ( self ): A__ : str = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(A__ , A__ ) def __A ( self ): A__ : List[Any] = AutoConfig.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __A ( self ): A__ : List[Any] = AutoConfig.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __A ( self ): A__ : List[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(A__ , A__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A__ : str = os.path.join(A__ , """fake-roberta""" ) os.makedirs(A__ , exist_ok=A__ ) with open(os.path.join(A__ , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) A__ : Tuple = AutoConfig.from_pretrained(A__ ) self.assertEqual(type(A__ ) , A__ ) def __A ( self ): try: AutoConfig.register("""custom""" , A__ ) # Wrong model type will raise an error with self.assertRaises(A__ ): AutoConfig.register("""model""" , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoConfig.register("""bert""" , A__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Optional[int] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A__ ) A__ : Optional[Any] = AutoConfig.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __A ( self ): with self.assertRaisesRegex( A__ , """bert-base is not a local folder and is not a valid model identifier""" ): A__ : Any = AutoConfig.from_pretrained("""bert-base""" ) def __A ( self ): with self.assertRaisesRegex( A__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A__ : Tuple = AutoConfig.from_pretrained(A__ , revision="""aaaaaa""" ) def __A ( self ): with self.assertRaisesRegex( A__ , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): A__ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def __A ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A__ ): A__ : Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): A__ : Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=A__ ) A__ : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=A__ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A__ ) A__ : Union[str, Any] = AutoConfig.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def __A ( self ): class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = '''new-model''' try: AutoConfig.register("""new-model""" , A__ ) # If remote code is not set, the default is to use local A__ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. A__ : Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=A__ ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub A__ : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=A__ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
141
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Union[str, Any] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : List[str] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : Optional[Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Optional[Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_MAPPING A_ : Any = auto_class_update(FlaxAutoModel) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Optional[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : List[str] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
141
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowerCamelCase_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = '''left''' def __init__( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Dict="<unk>" , __UpperCAmelCase : Tuple="<sep>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : int="<cls>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : Optional[Any]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _A = 3 _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if self.remove_space: _A = " ".join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _A = unicodedata.normalize("NFKD" , __UpperCAmelCase ) _A = "".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase ( self : str , __UpperCAmelCase : str ): '''simple docstring''' _A = self.preprocess_text(__UpperCAmelCase ) _A = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _A = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.sp_model.PieceToId(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Dict ): '''simple docstring''' _A = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = None , __UpperCAmelCase : bool = True , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = kwargs.pop("use_source_tokenizer" , __UpperCAmelCase ) _A = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _A = [] _A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _A = [] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _A = "".join(__UpperCAmelCase ) _A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _A = self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
79
def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' __magic_name__ : Union[str, Any] = len(_snake_case ) + 1 __magic_name__ : List[str] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __magic_name__ : str = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __magic_name__ : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __magic_name__ : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __magic_name__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __magic_name__ : Optional[int] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __magic_name__ : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __magic_name__ : List[Any] = dp[i - 1][j] else: __magic_name__ : Union[str, Any] = 0 else: __magic_name__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") snake_case : Optional[Any] = "aab" snake_case : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
281
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __lowerCamelCase ( lowerCAmelCase__ ): return np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) class a_ : '''simple docstring''' def __init__( self : str , *, lowercase__ : float = np.inf , lowercase__ : str = "linear" , lowercase__ : float = 0.0 , ): '''simple docstring''' lowerCAmelCase__ = regularization lowerCAmelCase__ = gamma if kernel == "linear": lowerCAmelCase__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') lowerCAmelCase__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCAmelCase__ = F"""Unknown kernel: {kernel}""" raise ValueError(lowercase__) def __snake_case ( self : List[str] , lowercase__ : ndarray , lowercase__ : ndarray): '''simple docstring''' return np.dot(lowercase__ , lowercase__) def __snake_case ( self : Dict , lowercase__ : ndarray , lowercase__ : ndarray): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __snake_case ( self : List[Any] , lowercase__ : list[ndarray] , lowercase__ : ndarray): '''simple docstring''' lowerCAmelCase__ = observations lowerCAmelCase__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCAmelCase__ ) , ) = np.shape(lowercase__) def to_minimize(lowercase__ : ndarray) -> float: lowerCAmelCase__ = 0 ((lowerCAmelCase__ ) , ) = np.shape(lowercase__) for i in range(lowercase__): for j in range(lowercase__): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowercase__) lowerCAmelCase__ = LinearConstraint(lowercase__ , 0 , 0) lowerCAmelCase__ = Bounds(0 , self.regularization) lowerCAmelCase__ = minimize( lowercase__ , np.ones(lowercase__) , bounds=lowercase__ , constraints=[ly_contraint]).x lowerCAmelCase__ = l_star # calculating mean offset of separation plane to points lowerCAmelCase__ = 0 for i in range(lowercase__): for j in range(lowercase__): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) lowerCAmelCase__ = s / n def __snake_case ( self : List[Any] , lowercase__ : ndarray): '''simple docstring''' lowerCAmelCase__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase__) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
356
from __future__ import annotations lowerCAmelCase__ = tuple[int, int, int] lowerCAmelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCAmelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCAmelCase__ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowerCAmelCase__ = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowerCAmelCase__ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowerCAmelCase__ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowerCAmelCase__ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowerCAmelCase__ = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowerCAmelCase__ = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowerCAmelCase__ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowerCAmelCase__ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowerCAmelCase__ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: lowerCAmelCase__ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict lowerCAmelCase__ = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def __lowerCamelCase ( lowerCAmelCase__ ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = F"""Plugboard setting isn't type string ({type(lowerCAmelCase__ )})""" raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: lowerCAmelCase__ = F"""Odd number of symbols ({len(lowerCAmelCase__ )})""" raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ = set() for i in pbstring: if i not in abc: lowerCAmelCase__ = F"""'{i}' not in list of symbols""" raise Exception(lowerCAmelCase__ ) elif i in tmppbl: lowerCAmelCase__ = F"""Duplicate symbol ({i})""" raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary lowerCAmelCase__ = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): lowerCAmelCase__ = pbstring[j + 1] lowerCAmelCase__ = pbstring[j] return pb def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (rotora, rotora, rotora) , lowerCAmelCase__ = "" , ): lowerCAmelCase__ = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ = reflector[symbol] # 2nd rotors lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = 'This is my Python script that emulates the Enigma machine from WWII.' lowerCAmelCase__ = (1, 1, 1) lowerCAmelCase__ = 'pictures' lowerCAmelCase__ = (rotora, rotora, rotora) lowerCAmelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
119
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , a : Optional[int] , a : str=13 , a : str=7 , a : List[Any]=True , a : List[str]=True , a : int=True , a : Any=True , a : Tuple=99 , a : int=32 , a : Union[str, Any]=5 , a : str=4 , a : Optional[Any]=37 , a : Optional[Any]="gelu" , a : Any=0.1 , a : Optional[Any]=0.1 , a : Any=512 , a : int=16 , a : Optional[int]=2 , a : Optional[int]=0.02 , a : str=4 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = num_choices def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True lowerCamelCase__ =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = FlaxRoFormerModelTester(self ) @slow def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a ) SCREAMING_SNAKE_CASE : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Tuple = model(a )[0] SCREAMING_SNAKE_CASE : Optional[int] = 5_0000 SCREAMING_SNAKE_CASE : Any = (1, 6, vocab_size) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Any = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
76
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def _A ( lowercase__ ): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) if "model" in sd.keys(): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" )["""model"""] # pop unnecessary weights lowercase__ = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) lowercase__ = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowercase__ = sd.pop(lowercase__ ) lowercase__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowercase__ = sd[key] # We split QKV in separate Q,K,V lowercase__ = key.replace(""".qkv_proj.""" , """.q_proj.""" ) lowercase__ = key.replace(""".qkv_proj.""" , """.k_proj.""" ) lowercase__ = key.replace(""".qkv_proj.""" , """.v_proj.""" ) lowercase__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowercase__ , lowercase__ , lowercase__ = torch.split(lowercase__ , depth // 3 , dim=0 ) lowercase__ = q lowercase__ = k lowercase__ = v del sd[key] return sd @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__=None ): lowercase__ = load_checkpoint(lowercase__ ) if config is not None: lowercase__ = OPTConfig.from_pretrained(lowercase__ ) else: lowercase__ = OPTConfig() lowercase__ = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __A = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
164
0
import math class A_ : def __init__(self :int , _UpperCamelCase :Any=0 )-> Any: # a graph with Node 0,1,...,N-1 __A = n __A = [ [math.inf for j in range(0 , __snake_case )] for i in range(0 , __snake_case ) ] # adjacency matrix for weight __A = [ [math.inf for j in range(0 , __snake_case )] for i in range(0 , __snake_case ) ] # dp[i][j] stores minimum distance from i to j def _lowerCAmelCase (self :int , _UpperCamelCase :str , _UpperCamelCase :Tuple , _UpperCamelCase :int )-> Optional[Any]: __A = w def _lowerCAmelCase (self :int )-> Dict: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Any , _UpperCamelCase :List[str] )-> Optional[int]: return self.dp[u][v] if __name__ == "__main__": snake_case__ : Any = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
358
import math def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( lowerCamelCase: float = 0.1 ) -> int: '''simple docstring''' __A = 3 __A = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
250
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase ) _UpperCAmelCase = size if size is not None else {'shortest_edge': 224} _UpperCAmelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCAmelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase , param_name='crop_size' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase = get_resize_output_image_size(UpperCAmelCase , size=size['shortest_edge'] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size['height'], size['width']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(UpperCAmelCase , param_name='size' , default_to_square=UpperCAmelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(UpperCAmelCase , param_name='crop_size' , default_to_square=UpperCAmelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
39
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
1
'''simple docstring''' from math import isqrt def lowercase__( __UpperCamelCase: int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 ,isqrt(__UpperCamelCase ) + 1 ) ) def lowercase__( __UpperCamelCase: int = 10**6 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
246
'''simple docstring''' from __future__ import annotations def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = array[indexa], array[indexa] def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if length > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = int(length / 2 ) for i in range(__UpperCamelCase ,low + middle ): comp_and_swap(__UpperCamelCase ,__UpperCamelCase ,i + middle ,__UpperCamelCase ) bitonic_merge(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) bitonic_merge(__UpperCamelCase ,low + middle ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if length > 1: SCREAMING_SNAKE_CASE : Dict = int(length / 2 ) bitonic_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,1 ) bitonic_sort(__UpperCamelCase ,low + middle ,__UpperCamelCase ,0 ) bitonic_merge(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
246
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset snake_case_ : Any = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __snake_case ( nn.Module ): def __init__( self : List[Any] , _snake_case : Any): """simple docstring""" super().__init__() UpperCAmelCase_ = torchvision.models.resnetaaa(pretrained=_snake_case) UpperCAmelCase_ = list(model.children())[:-2] UpperCAmelCase_ = nn.Sequential(*_snake_case) UpperCAmelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def lowerCamelCase ( self : Optional[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.pool(self.model(_snake_case)) UpperCAmelCase_ = torch.flatten(_snake_case , start_dim=2) UpperCAmelCase_ = out.transpose(1 , 2).contiguous() return out # BxNx2048 class __snake_case ( a ): def __init__( self : int , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = [json.loads(_snake_case) for l in open(_snake_case)] UpperCAmelCase_ = os.path.dirname(_snake_case) UpperCAmelCase_ = tokenizer UpperCAmelCase_ = labels UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = max_seq_length UpperCAmelCase_ = transforms def __len__( self : Union[str, Any]): """simple docstring""" return len(self.data) def __getitem__( self : Dict , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=_snake_case)) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase_ = sentence[: self.max_seq_length] UpperCAmelCase_ = torch.zeros(self.n_classes) UpperCAmelCase_ = 1 UpperCAmelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''') UpperCAmelCase_ = self.transforms(_snake_case) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = Counter() for row in self.data: label_freqs.update(row['''label''']) return label_freqs def A (__A : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = [len(row['''sentence'''] ) for row in batch] UpperCAmelCase_ , UpperCAmelCase_ = len(__A ), max(__A ) UpperCAmelCase_ = torch.zeros(__A , __A , dtype=torch.long ) UpperCAmelCase_ = torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): UpperCAmelCase_ = input_row['''sentence'''] UpperCAmelCase_ = 1 UpperCAmelCase_ = torch.stack([row['''image'''] for row in batch] ) UpperCAmelCase_ = torch.stack([row['''label'''] for row in batch] ) UpperCAmelCase_ = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCAmelCase_ = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A () -> Dict: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A () -> Optional[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
51
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=1_3 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=9_9 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=5 ,SCREAMING_SNAKE_CASE__ : List[Any]=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,): __lowerCamelCase : int = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Union[str, Any] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Tuple = use_attention_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[int] = num_choices def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=SCREAMING_SNAKE_CASE__ ,) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = FlaxDistilBertModelTester(self) @slow def lowerCAmelCase ( self : int): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('distilbert-base-uncased') __lowerCamelCase : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @require_flax class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowerCamelCase : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCamelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return image def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = dct.pop(lowercase ) lowerCamelCase_ = val def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCamelCase_ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCamelCase_ = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) lowerCamelCase_ = qkv_bias def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = 3_64 if 'coco' in model_name else 2_24 lowerCamelCase_ = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowerCamelCase_ = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Optional[Any]=None , lowercase : Dict=False ): '''simple docstring''' lowerCamelCase_ = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowerCamelCase_ = tokenizer('\n' , add_special_tokens=lowercase ).input_ids[0] lowerCamelCase_ , lowerCamelCase_ = get_blipa_config(lowercase , eos_token_id=lowercase ) lowerCamelCase_ = BlipaForConditionalGeneration(lowercase ).eval() lowerCamelCase_ = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowerCamelCase_ , lowerCamelCase_ = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('Done!' ) # update state dict keys lowerCamelCase_ = original_model.state_dict() lowerCamelCase_ = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ = state_dict.pop(lowercase ) if key.startswith('Qformer.bert' ): lowerCamelCase_ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCamelCase_ = key.replace('self' , 'attention' ) if "opt_proj" in key: lowerCamelCase_ = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowerCamelCase_ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowerCamelCase_ = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowerCamelCase_ = key.replace('t5' , 'language' ) lowerCamelCase_ = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase_ = load_demo_image() lowerCamelCase_ = vis_processors['eval'](lowercase ).unsqueeze(0 ).to(lowercase ) lowerCamelCase_ = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowercase ) # create processor lowerCamelCase_ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase , image_std=lowercase ) lowerCamelCase_ = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) lowerCamelCase_ = processor(images=lowercase , return_tensors='pt' ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase_ = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowerCamelCase_ = hf_model(lowercase , lowercase ).logits else: lowerCamelCase_ = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowerCamelCase_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowerCamelCase_ = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase_ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase_ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase ) else: # cast to same type lowerCamelCase_ = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowerCamelCase_ = '' lowerCamelCase_ = tokenizer(lowercase , return_tensors='pt' ).input_ids.to(lowercase ) lowerCamelCase_ = original_model.generate({'image': original_pixel_values} ) lowerCamelCase_ = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowercase ) lowerCamelCase_ = input_ids.shape[1] lowerCamelCase_ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) lowerCamelCase_ = [text.strip() for text in output_text] print('HF generation:' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() lowerCamelCase : Optional[Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) lowerCamelCase : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
0
def lowercase_ (A : str , A : List[Any] , A : Dict ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(A , n - 1 , A ) * a) % mod else: snake_case__ : int = binary_exponentiation(A , n / 2 , A ) return (b * b) % mod # a prime number a_ :Dict = 701 a_ :int = 1_000_000_000 a_ :int = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
277
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = TransfoXLTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Optional[int] ) ->Any: super().setUp() snake_case__ : Tuple = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] snake_case__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Union[str, Any], **_snake_case : List[Any] ) ->Dict: snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : str ) ->Dict: snake_case__ : List[Any] = '<unk> UNwanted , running' snake_case__ : List[Any] = '<unk> unwanted, running' return input_text, output_text def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : Dict = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=_snake_case ) snake_case__ : str = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_snake_case, ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ), [0, 4, 8, 7] ) def lowercase_ ( self : List[str] ) ->List[Any]: snake_case__ : str = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : Optional[int] = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : Optional[int] ) ->Union[str, Any]: snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=_snake_case ) snake_case__ : Dict = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' snake_case__ : List[Any] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_snake_case ), _snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ), _snake_case ) def lowercase_ ( self : Dict ) ->Any: snake_case__ : Dict = self.get_tokenizer() snake_case__ : Optional[Any] = len(_snake_case ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ), [1] ) self.assertEqual(tokenizer.decode([1] ), 'new1' )
277
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=5 ): """simple docstring""" assert masked_input.count("<mask>" ) == 1 a__ : Dict =torch.tensor(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ).unsqueeze(0 ) # Batch size 1 a__ : Dict =model(snake_case_ )[0] # The last hidden-state is the first element of the output tuple a__ : Any =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a__ : int =logits[0, masked_index, :] a__ : Any =logits.softmax(dim=0 ) a__ , a__ : Optional[Any] =prob.topk(k=snake_case_ , dim=0 ) a__ : str =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(snake_case_ ) )] ) a__ : Union[str, Any] =tokenizer.mask_token a__ : List[Any] =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a__ : Any =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(snake_case_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(snake_case_ ) , snake_case_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(snake_case_ , snake_case_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCAmelCase : Any = CamembertTokenizer.from_pretrained("""camembert-base""") UpperCAmelCase : Optional[Any] = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() UpperCAmelCase : int = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
370
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[Any] ={ "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : List[Any] ={ "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a__ : Optional[int] =f'''{src_lang}-{tgt_lang}''' a__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) a__ : Tuple =os.path.join(SCREAMING_SNAKE_CASE , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = model_name.split("""-""") UpperCAmelCase : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
148
0
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE : int = True for i in range(0 , len(a__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(1 , len(a__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE : List[Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') a__ : int = [int(x) for x in input().split()] # inputing elements of the list in one line a__ : List[str] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
313
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Any = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __UpperCamelCase : Optional[Any] = {'''mobilebert-uncased''': 5_1_2} __UpperCamelCase : Optional[Any] = {} class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = MobileBertTokenizer def __init__( self : Optional[int] ,lowercase_ : Union[str, Any]=None ,lowercase_ : List[str]=None ,lowercase_ : List[str]=True ,lowercase_ : Optional[Any]="[UNK]" ,lowercase_ : Any="[SEP]" ,lowercase_ : Dict="[PAD]" ,lowercase_ : Optional[Any]="[CLS]" ,lowercase_ : List[Any]="[MASK]" ,lowercase_ : str=True ,lowercase_ : Any=None ,**lowercase_ : List[str] ,): super().__init__( lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,tokenize_chinese_chars=lowercase_ ,strip_accents=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,lowercase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,lowercase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,lowercase_ ) != tokenize_chinese_chars ): lowerCAmelCase__ : List[Any] = getattr(lowercase_ ,normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : List[str] = do_lower_case lowerCAmelCase__ : Tuple = strip_accents lowerCAmelCase__ : List[Any] = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**lowercase_ ) lowerCAmelCase__ : Optional[Any] = do_lower_case def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Dict ,lowercase_ : Optional[Any]=None ): lowerCAmelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Optional[Any] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ )
74
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCamelCase : Union[str, Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = _TestCommandArgs(dataset=A_ , all_configs=A_ , save_infos=A_ ) lowerCAmelCase__ : Optional[int] = TestCommand(*A_ ) test_command.run() lowerCAmelCase__ : int = os.path.join(A_ , '''README.md''' ) assert os.path.exists(A_ ) lowerCAmelCase__ : List[Any] = DatasetInfosDict.from_directory(A_ ) lowerCAmelCase__ : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = getattr(dataset_infos['''default'''] , A_ ), getattr(expected_dataset_infos['''default'''] , A_ ) if key == "num_bytes": assert is_apercent_close(A_ , A_ ) elif key == "splits": assert list(A_ ) == list(A_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
74
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __a = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def __UpperCAmelCase ( a_: List[str] ): for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(_lowerCAmelCase, _lowerCAmelCase ) return k def __UpperCAmelCase ( a_: Dict, a_: List[Any] ): _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(_lowerCAmelCase ) _UpperCAmelCase : Dict = PegasusConfig(**_lowerCAmelCase ) _UpperCAmelCase : Any = PegasusForConditionalGeneration(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = torch_model.model.state_dict() _UpperCAmelCase : List[Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : int = rename_state_dict_key(_lowerCAmelCase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : Any = torch.tensor(_lowerCAmelCase, dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _UpperCAmelCase : str = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Optional[Any] = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Tuple = {k: torch.zeros_like(_lowerCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : int = torch_model.model.load_state_dict(_lowerCAmelCase, strict=_lowerCAmelCase ) _UpperCAmelCase : Any = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def __UpperCAmelCase ( a_: List[str]="./ckpt/aeslc/model.ckpt-32000" ): _UpperCAmelCase : List[str] = tf.train.list_variables(_lowerCAmelCase ) _UpperCAmelCase : int = {} _UpperCAmelCase : Any = ["Adafactor", "global_step"] for name, shape in tqdm(_lowerCAmelCase, desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : Tuple = tf.train.load_variable(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Any = array return tf_weights def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): # save tokenizer first _UpperCAmelCase : Optional[Any] = Path(_lowerCAmelCase ).parent.name _UpperCAmelCase : Optional[Any] = task_specific_params[f"""summarization_{dataset}"""]["max_position_embeddings"] _UpperCAmelCase : Optional[Any] = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=_lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_lowerCAmelCase ) # convert model _UpperCAmelCase : List[str] = get_tf_weights_as_numpy(_lowerCAmelCase ) _UpperCAmelCase : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": _UpperCAmelCase : Union[str, Any] = task_specific_params _UpperCAmelCase : Tuple = convert_pegasus(_lowerCAmelCase, _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(_lowerCAmelCase, Path(_lowerCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') __a = parser.parse_args() if args.save_dir is None: __a = Path(args.tf_ckpt_path).parent.name __a = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( A__ ,A__ ,unittest.TestCase ): A_ = IFImgaImgSuperResolutionPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) A_ = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase__ ( self : str )->List[str]: '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : Any , _snake_case : List[Any] , _snake_case : List[str]=0 )->Optional[int]: '''simple docstring''' if str(__A ).startswith("""mps""" ): __lowerCAmelCase : Optional[int] = torch.manual_seed(__A ) else: __lowerCAmelCase : Any = torch.Generator(device=__A ).manual_seed(__A ) __lowerCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) __lowerCAmelCase : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) __lowerCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : Optional[Any] )->Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase__ ( self : Optional[int] )->Tuple: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' self._test_save_load_local() def UpperCAmelCase__ ( self : Optional[Any] )->Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
351
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _UpperCAmelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _UpperCAmelCase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : int = json.loads(f.read() ) __lowerCAmelCase : Dict = collections.OrderedDict() __lowerCAmelCase : str = collections.OrderedDict() __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : Tuple = f.readlines() __lowerCAmelCase : Tuple = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = b __lowerCAmelCase : Dict = idx for wd in b: __lowerCAmelCase : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any="<|endoftext|>" , _snake_case : str="<|endoftext|>" , _snake_case : str="<|startoftext|>" , _snake_case : List[Any]="<|endoftext|>" , _snake_case : str=False , **_snake_case : List[Any] , )->Union[str, Any]: '''simple docstring''' super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __lowerCAmelCase : Any = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = load_vocab_and_emoji(_snake_case , _snake_case ) __lowerCAmelCase : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Tuple )->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any , _snake_case : str )->Optional[int]: '''simple docstring''' return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] )->Any: '''simple docstring''' return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , _snake_case : Any )->int: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """""".join(_snake_case ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : "Conversation" )->List[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: __lowerCAmelCase : List[str] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = 0 if os.path.isdir(_snake_case ): __lowerCAmelCase : Dict = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : List[Any] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __lowerCAmelCase : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase : List[str] = token_index writer.write(""",""".join(_snake_case ) + """\n""" ) index += 1 with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class snake_case_ ( __lowercase ): def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = vocab # same as swe __lowerCAmelCase : str = ids_to_tokens # same as bpe __lowerCAmelCase : Dict = emoji __lowerCAmelCase : int = np.max([len(_snake_case ) for w in self.vocab.keys()] ) __lowerCAmelCase : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __lowerCAmelCase : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __lowerCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __lowerCAmelCase : Optional[Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : Union[str, Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __lowerCAmelCase : List[Any] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __lowerCAmelCase : Union[str, Any] = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __lowerCAmelCase : str = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int )->int: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Any )->str: '''simple docstring''' __lowerCAmelCase : List[str] = self.content_repattera.sub("""<URL>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , _snake_case ) __lowerCAmelCase : Optional[Any] = self.content_repattera.sub("""<TEL>""" , _snake_case ) __lowerCAmelCase : str = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<PRICE>""" , _snake_case ) __lowerCAmelCase : List[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase__ ( self : str , _snake_case : List[Any] , _snake_case : Optional[int]=False )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Union[str, Any] = text.replace("""\r\n""" , """<BR>""" ) __lowerCAmelCase : Tuple = text.replace("""\n""" , """<BR>""" ) __lowerCAmelCase : List[str] = text.replace("""\r""" , """<BR>""" ) __lowerCAmelCase : Dict = text.replace("""\t""" , """<TAB>""" ) __lowerCAmelCase : Dict = text.replace("""—""" , """ー""" ) __lowerCAmelCase : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : Optional[Any] = text.replace(_snake_case , _snake_case ) if clean: __lowerCAmelCase : List[Any] = self.clean_text(_snake_case ) def check_simbol(_snake_case : List[str] ): __lowerCAmelCase : Optional[int] = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: __lowerCAmelCase : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(_snake_case : Union[str, Any] ): __lowerCAmelCase : Dict = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: __lowerCAmelCase : List[str] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = [] while pos < len(_snake_case ): __lowerCAmelCase : str = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __lowerCAmelCase : Tuple = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): __lowerCAmelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: __lowerCAmelCase : Tuple = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) __lowerCAmelCase : int = e else: __lowerCAmelCase : Dict = pos + 1 __lowerCAmelCase : Dict = text[pos:end] if check_simbol(_snake_case ): result.append("""<KIGOU>""" ) elif checkuae(_snake_case ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __lowerCAmelCase : int = end return result def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] , _snake_case : List[Any]="\n" )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Dict = """""".join(_snake_case ) return text
232
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): UpperCamelCase__ : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase__ : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase__ : Optional[int] = np.concatenate(__a , axis=0 ) UpperCamelCase__ : List[str] = np.array(__a ).astype(np.floataa ) / 255.0 UpperCamelCase__ : int = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ : List[str] = 2.0 * image - 1.0 UpperCamelCase__ : int = torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase__ : int = torch.cat(__a , dim=0 ) return image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0.9_9_9_5 ) -> Dict: if not isinstance(__a , np.ndarray ): UpperCamelCase__ : str = True UpperCamelCase__ : Optional[int] = va.device UpperCamelCase__ : List[str] = va.cpu().numpy() UpperCamelCase__ : int = va.cpu().numpy() UpperCamelCase__ : List[str] = np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) ) if np.abs(__a ) > DOT_THRESHOLD: UpperCamelCase__ : List[str] = (1 - t) * va + t * va else: UpperCamelCase__ : Union[str, Any] = np.arccos(__a ) UpperCamelCase__ : Optional[int] = np.sin(__a ) UpperCamelCase__ : Dict = theta_a * t UpperCamelCase__ : Optional[Any] = np.sin(__a ) UpperCamelCase__ : Union[str, Any] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase__ : str = sin_theta_t / sin_theta_a UpperCamelCase__ : Optional[int] = sa * va + sa * va if inputs_are_torch: UpperCamelCase__ : List[str] = torch.from_numpy(__a ).to(__a ) return va def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: UpperCamelCase__ : str = F.normalize(__a , dim=-1 ) UpperCamelCase__ : Any = F.normalize(__a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: for param in model.parameters(): UpperCamelCase__ : Any = value class __a ( A__ ): def __init__( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , clip_model=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , coca_model=UpperCamelCase_ , coca_tokenizer=UpperCamelCase_ , coca_transform=UpperCamelCase_ , ) UpperCamelCase__ : List[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCamelCase_ ) else feature_extractor.size['''shortest_edge'''] ) UpperCamelCase__ : List[str] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCamelCase_ ) set_requires_grad(self.clip_model , UpperCamelCase_ ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Dict = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def __lowercase ( self : int ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase_ ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.vae , UpperCamelCase_ ) def __lowercase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.vae , UpperCamelCase_ ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.unet , UpperCamelCase_ ) def __lowercase ( self : Optional[int] ): '''simple docstring''' set_requires_grad(self.unet , UpperCamelCase_ ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' UpperCamelCase__ : int = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) UpperCamelCase__ : Dict = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' if not isinstance(UpperCamelCase_ , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(UpperCamelCase_ )}' ) UpperCamelCase__ : List[str] = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ : int = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase_ ) ] UpperCamelCase__ : str = torch.cat(UpperCamelCase_ , dim=0 ) else: UpperCamelCase__ : Tuple = self.vae.encode(UpperCamelCase_ ).latent_dist.sample(UpperCamelCase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ : str = 0.1_8_2_1_5 * init_latents UpperCamelCase__ : Optional[Any] = init_latents.repeat_interleave(UpperCamelCase_ , dim=0 ) UpperCamelCase__ : Any = randn_tensor(init_latents.shape , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents UpperCamelCase__ : Tuple = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ : List[Any] = init_latents return latents def __lowercase ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.coca_transform(UpperCamelCase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase__ : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase__ : int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.feature_extractor.preprocess(UpperCamelCase_ ) UpperCamelCase__ : Any = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase__ : str = self.clip_model.get_image_features(UpperCamelCase_ ) UpperCamelCase__ : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase_ ) UpperCamelCase__ : Union[str, Any] = image_embeddings_clip.repeat_interleave(UpperCamelCase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' UpperCamelCase__ : List[str] = latents.detach().requires_grad_() UpperCamelCase__ : List[Any] = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual UpperCamelCase__ : List[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase__ : Union[str, Any] = self.scheduler.alphas_cumprod[timestep] UpperCamelCase__ : Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase__ : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase__ : Any = torch.sqrt(UpperCamelCase_ ) UpperCamelCase__ : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCamelCase_ ): UpperCamelCase__ : Any = self.scheduler.sigmas[index] UpperCamelCase__ : Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ : Dict = 1 / 0.1_8_2_1_5 * sample UpperCamelCase__ : List[Any] = self.vae.decode(UpperCamelCase_ ).sample UpperCamelCase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : List[Any] = transforms.Resize(self.feature_extractor_size )(UpperCamelCase_ ) UpperCamelCase__ : Optional[int] = self.normalize(UpperCamelCase_ ).to(latents.dtype ) UpperCamelCase__ : Union[str, Any] = self.clip_model.get_image_features(UpperCamelCase_ ) UpperCamelCase__ : Any = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase_ ) UpperCamelCase__ : Any = spherical_dist_loss(UpperCamelCase_ , UpperCamelCase_ ).mean() * clip_guidance_scale UpperCamelCase__ : str = -torch.autograd.grad(UpperCamelCase_ , UpperCamelCase_ )[0] if isinstance(self.scheduler , UpperCamelCase_ ): UpperCamelCase__ : List[Any] = latents.detach() + grads * (sigma**2) UpperCamelCase__ : Optional[int] = noise_pred_original else: UpperCamelCase__ : Tuple = noise_pred_original - torch.sqrt(UpperCamelCase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict = None , SCREAMING_SNAKE_CASE : Dict = None , SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 , SCREAMING_SNAKE_CASE : List[str] = 5_12 , SCREAMING_SNAKE_CASE : Optional[int] = 0.6 , SCREAMING_SNAKE_CASE : Any = 50 , SCREAMING_SNAKE_CASE : Dict = 7.5 , SCREAMING_SNAKE_CASE : Union[str, Any] = 1 , SCREAMING_SNAKE_CASE : List[Any] = 0.0 , SCREAMING_SNAKE_CASE : str = 1_00 , SCREAMING_SNAKE_CASE : Dict = None , SCREAMING_SNAKE_CASE : int = "pil" , SCREAMING_SNAKE_CASE : Union[str, Any] = True , SCREAMING_SNAKE_CASE : Any = 0.8 , SCREAMING_SNAKE_CASE : Dict = 0.1 , SCREAMING_SNAKE_CASE : str = 0.1 , ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(UpperCamelCase_ )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(UpperCamelCase_ , torch.Generator ) and batch_size > 1: UpperCamelCase__ : List[Any] = [generator] + [None] * (batch_size - 1) UpperCamelCase__ : Union[str, Any] = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCamelCase__ : Union[str, Any] = [x[0] for x in coca_is_none if x[1]] UpperCamelCase__ : Union[str, Any] = ''', '''.join(UpperCamelCase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCamelCase_ ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCamelCase__ : List[str] = self.get_image_description(UpperCamelCase_ ) if style_prompt is None: if len(UpperCamelCase_ ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCamelCase__ : List[Any] = self.get_image_description(UpperCamelCase_ ) # get prompt text embeddings for content and style UpperCamelCase__ : Union[str, Any] = self.tokenizer( UpperCamelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="pt" , ) UpperCamelCase__ : Any = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase__ : Any = self.tokenizer( UpperCamelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="pt" , ) UpperCamelCase__ : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase__ : str = slerp(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase__ : List[str] = text_embeddings.repeat_interleave(UpperCamelCase_ , dim=0 ) # set timesteps UpperCamelCase__ : Dict = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase__ : Any = {} if accepts_offset: UpperCamelCase__ : Tuple = 1 self.scheduler.set_timesteps(UpperCamelCase_ , **UpperCamelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase__ : int = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , self.device ) UpperCamelCase__ : Optional[Any] = timesteps[:1].repeat(UpperCamelCase_ ) # Preprocess image UpperCamelCase__ : Any = preprocess(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ : Dict = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text_embeddings.dtype , self.device , UpperCamelCase_ ) UpperCamelCase__ : Optional[int] = preprocess(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ : Optional[Any] = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text_embeddings.dtype , self.device , UpperCamelCase_ ) UpperCamelCase__ : int = slerp(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip_guidance_scale > 0: UpperCamelCase__ : Optional[Any] = self.get_clip_image_embeddings(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ : List[str] = self.get_clip_image_embeddings(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ : Dict = slerp( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ : str = content_text_input.input_ids.shape[-1] UpperCamelCase__ : List[str] = self.tokenizer([""] , padding="max_length" , max_length=UpperCamelCase_ , return_tensors="pt" ) UpperCamelCase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase__ : Optional[Any] = uncond_embeddings.repeat_interleave(UpperCamelCase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase__ : Any = torch.randn(UpperCamelCase_ , generator=UpperCamelCase_ , device="cpu" , dtype=UpperCamelCase_ ).to( self.device ) else: UpperCamelCase__ : int = torch.randn(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=UpperCamelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCamelCase__ : Union[str, Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Any = {} if accepts_eta: UpperCamelCase__ : Union[str, Any] = eta # check if the scheduler accepts generator UpperCamelCase__ : int = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase__ : List[Any] = generator with self.progress_bar(total=UpperCamelCase_ ): for i, t in enumerate(UpperCamelCase_ ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : str = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual UpperCamelCase__ : str = self.unet(UpperCamelCase_ , UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ : List[str] = noise_pred.chunk(2 ) UpperCamelCase__ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase__ : Dict = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase__ : Optional[int] = self.cond_fn( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Dict = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ : Any = 1 / 0.1_8_2_1_5 * latents UpperCamelCase__ : Union[str, Any] = self.vae.decode(UpperCamelCase_ ).sample UpperCamelCase__ : Any = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCamelCase_ , nsfw_content_detected=UpperCamelCase_ )
189
'''simple docstring''' from collections import defaultdict class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase__ :Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase__ :str = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase__ :Optional[int] = (1 << len(UpperCamelCase_ )) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase__ :str = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase__ :Optional[int] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
97
0
"""simple docstring""" from __future__ import annotations from random import choice def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return choice(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = random_pivot(_SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time UpperCamelCase = [e for e in lst if e < pivot] UpperCamelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(_SCREAMING_SNAKE_CASE , k - len(_SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
244
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off lowerCAmelCase__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = ["input_ids", "attention_mask"] UpperCAmelCase_ = [] UpperCAmelCase_ = [] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=None , __a=None , __a=None , __a = None , __a=None , **__a , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , tokenizer_file=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase = 1 UpperCamelCase = len(self.sp_model ) UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a ) } UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase = src_lang if src_lang is not None else "en_XX" UpperCamelCase = self.lang_code_to_id[self._src_lang] UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__(self , __a ) -> Tuple: UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case_ (self ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ (self ) -> str: return self._src_lang @src_lang.setter def snake_case_ (self , __a ) -> None: UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ (self , __a , __a = None , __a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) UpperCamelCase = [1] * len(self.prefix_tokens ) UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def snake_case_ (self , __a , __a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , __a , __a , __a , __a , **__a ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase = src_lang UpperCamelCase = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) UpperCamelCase = self.convert_tokens_to_ids(__a ) UpperCamelCase = tgt_lang_id return inputs def snake_case_ (self ) -> List[str]: UpperCamelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ (self , __a ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case_ (self , __a ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ (self , __a ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ (self , __a ) -> Optional[int]: UpperCamelCase = "".join(__a ).replace(__a , " " ).strip() return out_string def snake_case_ (self , __a , __a = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def snake_case_ (self , __a , __a = "en_XX" , __a = None , __a = "ro_RO" , **__a , ) -> BatchEncoding: UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def snake_case_ (self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ (self ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ (self , __a ) -> None: UpperCamelCase = self.lang_code_to_id[src_lang] UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] def snake_case_ (self , __a ) -> None: UpperCamelCase = self.lang_code_to_id[lang] UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
244
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger() def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": snake_case_ :Optional[int] = timm.create_model("""levit_128s""", pretrained=UpperCAmelCase_ ) else: snake_case_ :Any = timm.create_model("""levit_128""", pretrained=UpperCAmelCase_ ) if hidden_sizes == 192: snake_case_ :Optional[int] = timm.create_model("""levit_192""", pretrained=UpperCAmelCase_ ) if hidden_sizes == 256: snake_case_ :Optional[Any] = timm.create_model("""levit_256""", pretrained=UpperCAmelCase_ ) if hidden_sizes == 384: snake_case_ :str = timm.create_model("""levit_384""", pretrained=UpperCAmelCase_ ) from_model.eval() snake_case_ :Tuple = LevitForImageClassificationWithTeacher(UpperCAmelCase_ ).eval() snake_case_ :List[Any] = OrderedDict() snake_case_ :str = from_model.state_dict() snake_case_ :Optional[int] = list(from_model.state_dict().keys() ) snake_case_ :Union[str, Any] = list(our_model.state_dict().keys() ) print(len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) ) for i in range(len(UpperCAmelCase_ ) ): snake_case_ :Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(UpperCAmelCase_ ) snake_case_ :Tuple = torch.randn((2, 3, 224, 224) ) snake_case_ :Tuple = from_model(UpperCAmelCase_ ) snake_case_ :Any = our_model(UpperCAmelCase_ ).logits assert torch.allclose(UpperCAmelCase_, UpperCAmelCase_ ), "The model logits don't match the original one." snake_case_ :Optional[Any] = name print(UpperCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case_ :int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def A_ ( _lowercase, _lowercase = None, _lowercase = True ): '''simple docstring''' snake_case_ :Tuple = 'imagenet-1k-id2label.json' snake_case_ :Tuple = 1000 snake_case_ :Tuple = (1, num_labels) snake_case_ :Optional[Any] = 'huggingface/label-files' snake_case_ :Optional[int] = num_labels snake_case_ :Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase_, UpperCAmelCase_, repo_type="""dataset""" ), """r""" ) ) snake_case_ :Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} snake_case_ :Tuple = idalabel snake_case_ :Optional[Any] = {v: k for k, v in idalabel.items()} snake_case_ :str = partial(UpperCAmelCase_, num_labels=UpperCAmelCase_, idalabel=UpperCAmelCase_, labelaid=UpperCAmelCase_ ) snake_case_ :Tuple = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } snake_case_ :Optional[Any] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], UpperCAmelCase_, names_to_config[model_name], UpperCAmelCase_, UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) __a = parser.parse_args() __a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
66
'''simple docstring''' import string from math import logaa def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) UpperCAmelCase : Optional[Any] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase : Tuple = corpus_without_punctuation.split('\n' ) UpperCAmelCase : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCAmelCase_ )) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return round(tf * idf , 3 )
151
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( __lowerCAmelCase ): UpperCAmelCase =(DDIMParallelScheduler,) UpperCAmelCase =(('''eta''', 0.0), ('''num_inference_steps''', 5_0)) def lowerCAmelCase ( self , **snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : Any ={ 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase_) return config def lowerCAmelCase ( self , **snake_case) -> int: '''simple docstring''' _UpperCAmelCase : Tuple =self.scheduler_classes[0] _UpperCAmelCase : List[Any] =self.get_scheduler_config(**lowerCAmelCase_) _UpperCAmelCase : Union[str, Any] =scheduler_class(**lowerCAmelCase_) _UpperCAmelCase , _UpperCAmelCase : Tuple =1_0, 0.0 _UpperCAmelCase : List[str] =self.dummy_model() _UpperCAmelCase : str =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase_) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] =model(lowerCAmelCase_ , lowerCAmelCase_) _UpperCAmelCase : Optional[Any] =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample return sample def lowerCAmelCase ( self) -> str: '''simple docstring''' for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def lowerCAmelCase ( self) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase_) _UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] _UpperCAmelCase : Tuple =self.get_scheduler_config(steps_offset=1) _UpperCAmelCase : Optional[int] =scheduler_class(**lowerCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1])) def lowerCAmelCase ( self) -> str: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_) def lowerCAmelCase ( self) -> str: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase_) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase_) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=lowerCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=lowerCAmelCase_) def lowerCAmelCase ( self) -> str: '''simple docstring''' for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0]): self.check_over_forward(time_step=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase_ , eta=lowerCAmelCase_) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.scheduler_classes[0] _UpperCAmelCase : Tuple =self.get_scheduler_config() _UpperCAmelCase : int =scheduler_class(**lowerCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8) - 0.02)) < 1E-5 def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.scheduler_classes[0] _UpperCAmelCase : Dict =self.get_scheduler_config() _UpperCAmelCase : int =scheduler_class(**lowerCAmelCase_) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =1_0, 0.0 scheduler.set_timesteps(lowerCAmelCase_) _UpperCAmelCase : Optional[Any] =self.dummy_model() _UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter _UpperCAmelCase : Dict =self.dummy_sample_deter + 0.1 _UpperCAmelCase : List[str] =self.dummy_sample_deter - 0.1 _UpperCAmelCase : Optional[int] =samplea.shape[0] _UpperCAmelCase : Tuple =torch.stack([samplea, samplea, samplea] , dim=0) _UpperCAmelCase : Union[str, Any] =torch.arange(lowerCAmelCase_)[0:3, None].repeat(1 , lowerCAmelCase_) _UpperCAmelCase : Optional[Any] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) _UpperCAmelCase : Dict =scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase_) _UpperCAmelCase : Optional[int] =torch.sum(torch.abs(lowerCAmelCase_)) _UpperCAmelCase : str =torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : str =self.full_loop() _UpperCAmelCase : str =torch.sum(torch.abs(lowerCAmelCase_)) _UpperCAmelCase : Optional[int] =torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =self.full_loop(prediction_type='v_prediction') _UpperCAmelCase : List[str] =torch.sum(torch.abs(lowerCAmelCase_)) _UpperCAmelCase : int =torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def lowerCAmelCase ( self) -> Any: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 _UpperCAmelCase : List[str] =self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01) _UpperCAmelCase : int =torch.sum(torch.abs(lowerCAmelCase_)) _UpperCAmelCase : int =torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 _UpperCAmelCase : str =self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01) _UpperCAmelCase : Optional[int] =torch.sum(torch.abs(lowerCAmelCase_)) _UpperCAmelCase : Tuple =torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
365
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 _UpperCAmelCase : Tuple =nums[0] _UpperCAmelCase : int =0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Optional[int] =( max_excluding + num, max(__lowerCamelCase , __lowerCamelCase ), ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1024 ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [], [] __SCREAMING_SNAKE_CASE = list(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(lowerCAmelCase_ ): return tok(lowerCAmelCase_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __SCREAMING_SNAKE_CASE = new_src + " " + src __SCREAMING_SNAKE_CASE = new_tgt + " " + tgt if is_too_big(lowerCAmelCase_ ) or is_too_big(lowerCAmelCase_ ): # cant fit, finalize example finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) return finished_src, finished_tgt def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase_ ) save_path.mkdir(exist_ok=lowerCAmelCase_ ) for split in ["train"]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pack_examples(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""packed {split} split from {len(lowerCAmelCase_ )} examples -> {len(lowerCAmelCase_ )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(lowerCAmelCase_ ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(lowerCAmelCase_ ) ) for split in ["val", "test"]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(lowerCAmelCase_ , save_path / f"""{split}.source""" ) shutil.copyfile(lowerCAmelCase_ , save_path / f"""{split}.target""" ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=lowerCAmelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=lowerCAmelCase_ , default=128 ) parser.add_argument("--data_dir" , type=lowerCAmelCase_ ) parser.add_argument("--save_path" , type=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
54
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self : int ) -> Optional[int]: raise NotImplementedError()
54
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a ) -> bool: '''simple docstring''' __magic_name__ = str(a ) return len(a ) == 9 and set(a ) == set('''123456789''' ) def UpperCamelCase ( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): __magic_name__ = 10_0002 * base_num if is_9_pandigital(a ): return candidate for base_num in range(333 , 99 , -1 ): __magic_name__ = 100_2003 * base_num if is_9_pandigital(a ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
98
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self : str , a__ : Union[str, Any] , a__ : Dict=13 , a__ : List[str]=32 , a__ : List[Any]=2 , a__ : List[str]=3 , a__ : Union[str, Any]=16 , a__ : Dict=[1, 2, 1] , a__ : Optional[Any]=[2, 2, 4] , a__ : List[str]=2 , a__ : Optional[Any]=2.0 , a__ : Union[str, Any]=True , a__ : int=0.0 , a__ : int=0.0 , a__ : Tuple=0.1 , a__ : List[str]="gelu" , a__ : str=False , a__ : Optional[int]=True , a__ : List[Any]=0.02 , a__ : Any=1E-5 , a__ : int=True , a__ : List[Any]=None , a__ : Dict=True , a__ : Optional[int]=10 , a__ : Any=8 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = patch_norm __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = is_training __magic_name__ = scope __magic_name__ = use_labels __magic_name__ = type_sequence_label_size __magic_name__ = encoder_stride def snake_case__ ( self : List[Any] ): __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[int] ): __magic_name__ = SwinvaModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) __magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : str , a__ : int ): __magic_name__ = SwinvaForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = SwinvaForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__ ( self : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any ): __magic_name__ = self.type_sequence_label_size __magic_name__ = SwinvaForImageClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :int = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :Tuple = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :Union[str, Any] = False __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Dict = False __SCREAMING_SNAKE_CASE :Union[str, Any] = False def snake_case__ ( self : str ): __magic_name__ = SwinvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , embed_dim=37 ) def snake_case__ ( self : Tuple ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[Any] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def snake_case__ ( self : str ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def snake_case__ ( self : Union[str, Any] ): pass def snake_case__ ( self : Optional[int] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def snake_case__ ( self : Union[str, Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = True for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions __magic_name__ = len(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = config.window_size**2 __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __magic_name__ = len(a__ ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): __magic_name__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __magic_name__ = 2 self.assertEqual(out_len + added_hidden_states , len(a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case__ ( self : Any , a__ : Dict , a__ : str , a__ : str , a__ : List[Any] ): __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.hidden_states __magic_name__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swinv2 has a different seq_length __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = reshaped_hidden_states[0].shape __magic_name__ = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : List[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) def snake_case__ ( self : str ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def snake_case__ ( self : Dict ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case__ ( self : Any ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = SwinvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def snake_case__ ( self : List[str] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = _config_zero_init(a__ ) for model_class in self.all_model_classes: __magic_name__ = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[int] ): __magic_name__ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( a__ ) __magic_name__ = self.default_image_processor __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __magic_name__ = model(**a__ ) # verify the logits __magic_name__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __magic_name__ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
98
1
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _lowercase ( ): '''simple docstring''' __UpperCamelCase = [randint(-1_000 ,1_000 ) for i in range(10 )] __UpperCamelCase = randint(-5_000 ,5_000 ) return (arr, r) a__ : Optional[Any] = make_dataset() def _lowercase ( __A ,__A ): '''simple docstring''' for triplet in permutations(_SCREAMING_SNAKE_CASE ,3 ): if sum(_SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(_SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def _lowercase ( __A ,__A ): '''simple docstring''' arr.sort() __UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): __UpperCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' __UpperCamelCase = '\ntriplet_sum1(*dataset)\n' __UpperCamelCase = '\ntriplet_sum2(*dataset)\n' __UpperCamelCase = repeat(setup=_SCREAMING_SNAKE_CASE ,stmt=_SCREAMING_SNAKE_CASE ,repeat=5 ,number=10_000 ) __UpperCamelCase = repeat(setup=_SCREAMING_SNAKE_CASE ,stmt=_SCREAMING_SNAKE_CASE ,repeat=5 ,number=10_000 ) return (min(_SCREAMING_SNAKE_CASE ), min(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() a__ : Any = solution_times() print(f'''The time for naive implementation is {times[0]}.''') print(f'''The time for optimized implementation is {times[1]}.''')
349
"""simple docstring""" from math import pi, sqrt, tan def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) a__: List[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) a__: int = (sidea + sidea + sidea) / 2 a__: Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
290
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __lowerCAmelCase : str = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] __lowerCAmelCase : Tuple = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check __lowerCAmelCase : Any = primes[:idx] break __lowerCAmelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __lowerCAmelCase : List[Any] = False for r in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = pow(SCREAMING_SNAKE_CASE , d * 2**r , SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __lowerCAmelCase : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _SCREAMING_SNAKE_CASE ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __lowercase ): A_ = ['image_processor', 'tokenizer'] A_ = 'ChineseCLIPImageProcessor' A_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[Any] , _snake_case : List[Any]=None , _snake_case : str=None , **_snake_case : int )->List[str]: '''simple docstring''' __lowerCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _snake_case , ) __lowerCAmelCase : List[str] = kwargs.pop("""feature_extractor""" ) __lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_snake_case , _snake_case ) __lowerCAmelCase : Any = self.image_processor def __call__( self : Optional[Any] , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : List[str]=None , **_snake_case : Any )->Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __lowerCAmelCase : List[Any] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __lowerCAmelCase : Tuple = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : int )->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Dict , *_snake_case : Dict , **_snake_case : Any )->Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.tokenizer.model_input_names __lowerCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _snake_case , ) return self.image_processor_class
232
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase :str = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): def __init__(self , lowercase = True ): A_ : dict[T, list[T]] = {} # dictionary of lists A_ : Any = directed def _a (self , lowercase , lowercase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) A_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ : Optional[Any] = [destination_vertex] A_ : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ : int = [destination_vertex] A_ : List[str] = [] return self def __repr__(self ): return pformat(self.adj_list )
206
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : def __init__(self ): A_ : int = {} def _a (self , lowercase , lowercase , lowercase=1 ): if self.graph.get(lowercase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A_ : Tuple = [[w, v]] if not self.graph.get(lowercase ): A_ : Union[str, Any] = [] def _a (self ): return list(self.graph ) def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Union[str, Any] = [] A_ : Dict = [] if s == -2: A_ : List[Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : List[str] = stack[len(lowercase ) - 1] else: A_ : str = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : Tuple = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : Union[str, Any] = deque() A_ : Tuple = [] if s == -2: A_ : int = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): A_ : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _a (self , lowercase ): return len(self.graph[u] ) def _a (self , lowercase=-2 ): A_ : Dict = [] A_ : Optional[Any] = [] if s == -2: A_ : int = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[Any] = s A_ : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase ) != 0: A_ : int = stack[len(lowercase ) - 1] else: A_ : Optional[Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return sorted_nodes def _a (self ): A_ : Dict = [] A_ : Tuple = [] A_ : Any = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[int] = -2 A_ : List[Any] = [] A_ : List[str] = s A_ : Optional[int] = False A_ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(lowercase ) != 0: A_ : Union[str, Any] = stack[len(lowercase ) - 1] else: A_ : Tuple = False indirect_parents.append(lowercase ) A_ : Tuple = s A_ : Tuple = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : Union[str, Any] = [] A_ : str = [] A_ : List[Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[Any] = -2 A_ : Tuple = [] A_ : Optional[Any] = s A_ : Union[str, Any] = False A_ : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : List[str] = True if len(lowercase ) != 0: A_ : Dict = stack[len(lowercase ) - 1] else: A_ : int = False indirect_parents.append(lowercase ) A_ : List[Any] = s A_ : int = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self , lowercase=-2 , lowercase=-1 ): A_ : str = time() self.dfs(lowercase , lowercase ) A_ : Any = time() return end - begin def _a (self , lowercase=-2 ): A_ : Union[str, Any] = time() self.bfs(lowercase ) A_ : Optional[Any] = time() return end - begin class _lowerCAmelCase : def __init__(self ): A_ : List[str] = {} def _a (self , lowercase , lowercase , lowercase=1 ): # check if the u exists if self.graph.get(lowercase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A_ : int = [[w, v]] # add the other way if self.graph.get(lowercase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A_ : Any = [[w, u]] def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) # the other way round if self.graph.get(lowercase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Dict = [] A_ : List[Any] = [] if s == -2: A_ : str = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : Dict = stack[len(lowercase ) - 1] else: A_ : List[str] = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : Union[str, Any] = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : int = deque() A_ : Optional[Any] = [] if s == -2: A_ : Optional[int] = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): return len(self.graph[u] ) def _a (self ): A_ : Optional[int] = [] A_ : Dict = [] A_ : Union[str, Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[Any] = -2 A_ : List[str] = [] A_ : int = s A_ : Optional[int] = False A_ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : int = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(lowercase ) != 0: A_ : Any = stack[len(lowercase ) - 1] else: A_ : str = False indirect_parents.append(lowercase ) A_ : Dict = s A_ : List[Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : Optional[int] = [] A_ : Optional[int] = [] A_ : List[str] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Any = -2 A_ : Any = [] A_ : Tuple = s A_ : str = False A_ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Any = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Union[str, Any] = True if len(lowercase ) != 0: A_ : List[Any] = stack[len(lowercase ) - 1] else: A_ : int = False indirect_parents.append(lowercase ) A_ : int = s A_ : int = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self ): return list(self.graph ) def _a (self , lowercase=-2 , lowercase=-1 ): A_ : Any = time() self.dfs(lowercase , lowercase ) A_ : Optional[Any] = time() return end - begin def _a (self , lowercase=-2 ): A_ : List[Any] = time() self.bfs(lowercase ) A_ : List[Any] = time() return end - begin
206
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_( snake_case : Any ): '''simple docstring''' if isinstance(snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class _snake_case : def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> str: '''simple docstring''' snake_case_ = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) snake_case_ = TFVisionTextDualEncoderModel(a__ ) snake_case_ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> str: '''simple docstring''' snake_case_ , snake_case_ = self.get_vision_text_model(a__ , a__ ) snake_case_ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) snake_case_ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> int: '''simple docstring''' snake_case_ , snake_case_ = self.get_vision_text_model(a__ , a__ ) snake_case_ = {"vision_model": vision_model, "text_model": text_model} snake_case_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) snake_case_ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> Any: '''simple docstring''' snake_case_ , snake_case_ = self.get_vision_text_model(a__ , a__ ) snake_case_ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) snake_case_ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) snake_case_ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) snake_case_ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) snake_case_ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) snake_case_ = after_output[0].numpy() snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1e-5 ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ = self.get_vision_text_model(a__ , a__ ) snake_case_ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) snake_case_ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) snake_case_ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = to_atuple(vision_model.config.image_size ) snake_case_ = to_atuple(vision_model.config.patch_size ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case_ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = np.abs((a - b) ).max() self.assertLessEqual(a__ , a__ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ , snake_case_ = self.get_pretrained_model_and_inputs() snake_case_ = model_a(**a__ ) snake_case_ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) snake_case_ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) snake_case_ = model_a(**a__ ) snake_case_ = after_outputs[0].numpy() snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1e-5 ) @require_tf class _snake_case ( lowercase_ , unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) snake_case_ = 13 snake_case_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case_ = random_attention_mask([batch_size, 4] ) snake_case_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = TFViTModel(a__ , name="vision_model" ) snake_case_ = TFBertModel(a__ , name="text_model" ) return vision_model, text_model def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = TFViTModelTester(self ) snake_case_ = TFBertModelTester(self ) snake_case_ = vit_model_tester.prepare_config_and_inputs() snake_case_ = bert_model_tester.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = vision_config_and_inputs ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _snake_case ( lowercase_ , unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) snake_case_ = 13 snake_case_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case_ = random_attention_mask([batch_size, 4] ) snake_case_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__=None , **a__ ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ = self.get_vision_text_model(a__ , a__ ) snake_case_ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) snake_case_ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) snake_case_ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case_ = to_atuple(vision_model.config.image_size ) snake_case_ = to_atuple(vision_model.config.patch_size ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case_ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case_ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase__ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = TFDeiTModel(a__ , name="vision_model" ) snake_case_ = TFRobertaModel(a__ , name="text_model" ) return vision_model, text_model def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = TFDeiTModelTester(self ) snake_case_ = TFRobertaModelTester(self ) snake_case_ = vit_model_tester.prepare_config_and_inputs() snake_case_ = bert_model_tester.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = vision_config_and_inputs ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _snake_case ( lowercase_ , unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) snake_case_ = 13 snake_case_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case_ = random_attention_mask([batch_size, 4] ) snake_case_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = TFCLIPVisionModel(a__ , name="vision_model" ) snake_case_ = TFBertModel(a__ , name="text_model" ) return vision_model, text_model def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = TFCLIPVisionModelTester(self ) snake_case_ = TFBertModelTester(self ) snake_case_ = clip_model_tester.prepare_config_and_inputs() snake_case_ = bert_model_tester.prepare_config_and_inputs() snake_case_ , snake_case_ = vision_config_and_inputs ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=a__ ) snake_case_ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case_ = processor( text=["una foto di un gatto", "una foto di un cane"] , images=a__ , padding=a__ , return_tensors="np" ) snake_case_ = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) snake_case_ = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a__ , atol=1e-3 ) )
92
'''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](snake_case , snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
92
1
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[int]: __A : Optional[int] = int(a ) # Initialize Result __A : Optional[int] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCAmelCase : List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCAmelCase : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
280
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: __A : List[str] = x __A : str = y for step in range(a ): # noqa: B007 __A : Union[str, Any] = a * a - b * b + x __A : Optional[int] = 2 * a * b + y __A : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: __A : str = Image.new('RGB' , (image_width, image_height) ) __A : Dict = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates __A : Dict = figure_width / image_width * image_height __A : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __A : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __A : Union[str, Any] = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __A : Optional[Any] = get_color_coded_rgb(a ) else: __A : Dict = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
280
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _snake_case : '''simple docstring''' pass
357
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [False] * len(_a ) UpperCAmelCase_ : Any = [-1] * len(_a ) def dfs(_a : Optional[int] , _a : str ): UpperCAmelCase_ : int = True UpperCAmelCase_ : Optional[int] = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
59
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' snake_case_ = """pixel_values""" snake_case_ = False snake_case_ = TimmBackboneConfig def __init__( self : List[Any] ,A : Optional[int] ,**A : Union[str, Any] ): requires_backends(self ,"timm" ) super().__init__(snake_case__ ) __A = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(snake_case__ ,"out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) __A = getattr(snake_case__ ,"use_pretrained_backbone" ,snake_case__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. __A = config.out_indices if getattr(snake_case__ ,"out_indices" ,snake_case__ ) is not None else (-1,) __A = timm.create_model( config.backbone ,pretrained=snake_case__ ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=snake_case__ ,**snake_case__ ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __A = self._backbone.return_layers __A = {layer['''module''']: str(snake_case__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case__ ) @classmethod def UpperCamelCase_ ( cls : Dict ,A : Tuple ,*A : List[str] ,**A : Optional[int] ): requires_backends(cls ,["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig __A = kwargs.pop("config" ,TimmBackboneConfig() ) __A = kwargs.pop("use_timm_backbone" ,snake_case__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) __A = kwargs.pop("num_channels" ,config.num_channels ) __A = kwargs.pop("features_only" ,config.features_only ) __A = kwargs.pop("use_pretrained_backbone" ,config.use_pretrained_backbone ) __A = kwargs.pop("out_indices" ,config.out_indices ) __A = TimmBackboneConfig( backbone=snake_case__ ,num_channels=snake_case__ ,features_only=snake_case__ ,use_pretrained_backbone=snake_case__ ,out_indices=snake_case__ ,) return super()._from_config(snake_case__ ,**snake_case__ ) def UpperCamelCase_ ( self : Tuple ,A : List[Any] ): pass def UpperCamelCase_ ( self : Any ,A : int ,A : int=None ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,**A : Dict ): __A = return_dict if return_dict is not None else self.config.use_return_dict __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __A = self._all_layers __A = self._backbone(snake_case__ ,**snake_case__ ) __A = self._return_layers __A = tuple(hidden_states[i] for i in self.out_indices ) else: __A = self._backbone(snake_case__ ,**snake_case__ ) __A = None __A = tuple(snake_case__ ) __A = tuple(snake_case__ ) if hidden_states is not None else None if not return_dict: __A = (feature_maps,) if output_hidden_states: __A = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case__ ,hidden_states=snake_case__ ,attentions=snake_case__ )
15
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
0
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return base * power(UpperCamelCase_ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _SCREAMING_SNAKE_CASE : str = int(input("Enter the base: ").strip()) _SCREAMING_SNAKE_CASE : Dict = int(input("Enter the exponent: ").strip()) _SCREAMING_SNAKE_CASE : str = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _SCREAMING_SNAKE_CASE : Any = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
213
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = UnCLIPImageVariationPipeline __magic_name__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __magic_name__ = IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case = UnCLIPTextProjModel(**__snake_case ) return model @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def a_ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model def a_ ( self ): snake_case = self.dummy_decoder snake_case = self.dummy_text_proj snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_super_res_first snake_case = self.dummy_super_res_last snake_case = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) snake_case = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def a_ ( self , __snake_case , __snake_case=0 , __snake_case=True ): snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) if pil_image: snake_case = input_image * 0.5 + 0.5 snake_case = input_image.clamp(0 , 1 ) snake_case = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = torch.device('''cpu''' ) class A__ : """simple docstring""" __magic_name__ = 1 snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device=__snake_case ).manual_seed(0 ) snake_case = pipe.decoder.dtype snake_case = 1 snake_case = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case ).images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) # Don't pass image, instead pass embedding snake_case = pipeline_inputs.pop('''image''' ) snake_case = pipe.image_encoder(__snake_case ).image_embeds snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case , image_embeddings=__snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__snake_case , expected_max_diff=__snake_case ) @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' snake_case = True snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__snake_case , relax_max_difference=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) def a_ ( self ): snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case = [2, 3] self._test_inference_batch_consistent( batch_sizes=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__snake_case ) @skip_mps def a_ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a_ ( self ): return super().test_save_load_local() @skip_mps def a_ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case = pipeline( __snake_case , generator=__snake_case , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(__snake_case , __snake_case , 1_5 )
213
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __snake_case ( unittest.TestCase): def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=1_3 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : str=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Dict=9_9 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : str=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Dict=5_1_2 , __lowerCAmelCase : Optional[int]=1_6 , __lowerCAmelCase : str=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : List[str]=4 , ): """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Dict = use_attention_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Dict = num_choices def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_attention_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __snake_case ( UpperCAmelCase__ , unittest.TestCase): snake_case__ : Any = True snake_case__ : Optional[Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Tuple = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = FlaxBertModel.from_pretrained('''bert-base-cased''' ) _lowerCamelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCamelCase__( a__): UpperCAmelCase__ : int = 'levit' def __init__( self: int , UpperCamelCase_: List[Any]=2_24 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: int=3 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Optional[int]=1 , UpperCamelCase_: List[str]=16 , UpperCamelCase_: Tuple=[1_28, 2_56, 3_84] , UpperCamelCase_: List[str]=[4, 8, 12] , UpperCamelCase_: Optional[int]=[4, 4, 4] , UpperCamelCase_: Union[str, Any]=[16, 16, 16] , UpperCamelCase_: int=0 , UpperCamelCase_: Union[str, Any]=[2, 2, 2] , UpperCamelCase_: Optional[Any]=[2, 2, 2] , UpperCamelCase_: Optional[Any]=0.02 , **UpperCamelCase_: List[Any] , ): super().__init__(**_lowerCamelCase ) __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = kernel_size __lowerCamelCase = stride __lowerCamelCase = padding __lowerCamelCase = hidden_sizes __lowerCamelCase = num_attention_heads __lowerCamelCase = depths __lowerCamelCase = key_dim __lowerCamelCase = drop_path_rate __lowerCamelCase = patch_size __lowerCamelCase = attention_ratio __lowerCamelCase = mlp_ratio __lowerCamelCase = initializer_range __lowerCamelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCamelCase__( a__): UpperCAmelCase__ : int = version.parse('1.11') @property def lowerCAmelCase__ ( self: Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: int ): return 1E-4
354
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
0
'''simple docstring''' import argparse from collections import defaultdict import yaml snake_case_ : Union[str, Any] = 'docs/source/en/_toctree.yml' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: UpperCAmelCase_ : str = defaultdict(A_ ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(A_ ) UpperCAmelCase_ : Optional[int] = new_doc_list UpperCAmelCase_ : str = [key for key, value in counts.items() if value > 1] UpperCAmelCase_ : Tuple = [] for duplicate_key in duplicates: UpperCAmelCase_ : List[Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(A_ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCAmelCase_ : Union[str, Any] = sorted(A_, key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(A_ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(A_ ) # Sort return overview_doc def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int=False ) -> List[Any]: with open(A_, encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase_ : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase_ : List[Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase_ : Tuple = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase_ : int = api_doc[scheduler_idx]['''sections'''] UpperCAmelCase_ : Tuple = clean_doc_toc(A_ ) UpperCAmelCase_ : Optional[int] = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase_ : str = True if overwrite: UpperCAmelCase_ : Union[str, Any] = new_scheduler_doc if diff: if overwrite: UpperCAmelCase_ : Any = api_doc with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(A_, allow_unicode=A_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> List[str]: with open(A_, encoding='''utf-8''' ) as f: UpperCAmelCase_ : List[Any] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase_ : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase_ : Union[str, Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase_ : Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase_ : int = False UpperCAmelCase_ : Optional[int] = api_doc[pipeline_idx]['''sections'''] UpperCAmelCase_ : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase_ : Dict = pipeline_doc['''section'''] UpperCAmelCase_ : List[Any] = clean_doc_toc(A_ ) if overwrite: UpperCAmelCase_ : Any = new_sub_pipeline_doc new_pipeline_docs.append(A_ ) # sort overall pipeline doc UpperCAmelCase_ : str = clean_doc_toc(A_ ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase_ : Dict = True if overwrite: UpperCAmelCase_ : Optional[Any] = new_pipeline_docs if diff: if overwrite: UpperCAmelCase_ : List[Any] = api_doc with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(A_, allow_unicode=A_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") snake_case_ : Dict = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
125
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=("DownEncoderBlock2D",) , UpperCamelCase__ : Optional[Any]=(64,) , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Optional[Any]="silu" , UpperCamelCase__ : List[str]=True , ) -> str: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) # down __magic_name__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = 2 * out_channels if double_z else out_channels __magic_name__ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = x __magic_name__ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : int ): def custom_forward(*UpperCamelCase__ : str ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: __magic_name__ = down_block(UpperCamelCase__ ) # middle __magic_name__ = self.mid_block(UpperCamelCase__ ) # post-process __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[Any]=("UpDecoderBlock2D",) , UpperCamelCase__ : List[Any]=(64,) , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Optional[int]="silu" , UpperCamelCase__ : Tuple="group" , ) -> Dict: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) __magic_name__ = in_channels if norm_type == """spatial""" else None # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up __magic_name__ = list(reversed(UpperCamelCase__ ) ) __magic_name__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = reversed_block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) __magic_name__ = output_channel # out if norm_type == "spatial": __magic_name__ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None ) -> Tuple: """simple docstring""" __magic_name__ = z __magic_name__ = self.conv_in(UpperCamelCase__ ) __magic_name__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : Optional[int] ): def custom_forward(*UpperCamelCase__ : int ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle __magic_name__ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) else: __magic_name__ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict="random" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict=True ) -> Optional[Any]: """simple docstring""" super().__init__() __magic_name__ = n_e __magic_name__ = vq_embed_dim __magic_name__ = beta __magic_name__ = legacy __magic_name__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __magic_name__ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) __magic_name__ = self.used.shape[0] __magic_name__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __magic_name__ = self.re_embed __magic_name__ = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __magic_name__ = n_e __magic_name__ = sane_index_shape def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) __magic_name__ = (inds[:, :, None] == used[None, None, ...]).long() __magic_name__ = match.argmax(-1 ) __magic_name__ = match.sum(2 ) < 1 if self.unknown_index == "random": __magic_name__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __magic_name__ = self.unknown_index return new.reshape(UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token __magic_name__ = 0 # simply set to zero __magic_name__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __magic_name__ = z.permute(0 , 2 , 3 , 1 ).contiguous() __magic_name__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __magic_name__ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) __magic_name__ = self.embedding(UpperCamelCase__ ).view(z.shape ) __magic_name__ = None __magic_name__ = None # compute loss for embedding if not self.legacy: __magic_name__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __magic_name__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __magic_name__ = z + (z_q - z).detach() # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __magic_name__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __magic_name__ = self.remap_to_used(UpperCamelCase__ ) __magic_name__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __magic_name__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" if self.remap is not None: __magic_name__ = indices.reshape(shape[0] , -1 ) # add batch axis __magic_name__ = self.unmap_to_all(UpperCamelCase__ ) __magic_name__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors __magic_name__ = self.embedding(UpperCamelCase__ ) if shape is not None: __magic_name__ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Optional[int]: """simple docstring""" __magic_name__ = parameters __magic_name__ , __magic_name__ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) __magic_name__ = torch.clamp(self.logvar , -30.0 , 20.0 ) __magic_name__ = deterministic __magic_name__ = torch.exp(0.5 * self.logvar ) __magic_name__ = torch.exp(self.logvar ) if self.deterministic: __magic_name__ = __magic_name__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self : Tuple , UpperCamelCase__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" __magic_name__ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) __magic_name__ = self.mean + self.std * sample return x def _lowercase ( self : Dict , UpperCamelCase__ : Optional[int]=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=[1, 2, 3] ) -> Optional[int]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) __magic_name__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.mean
88
0
'''simple docstring''' from __future__ import annotations class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : str ): '''simple docstring''' _A , _A = text, pattern _A , _A = len(__UpperCAmelCase ), len(__UpperCAmelCase ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCAmelCase ( self : int ): '''simple docstring''' _A = [] for i in range(self.textLen - self.patLen + 1 ): _A = self.mismatch_in_text(__UpperCAmelCase ) if mismatch_index == -1: positions.append(__UpperCAmelCase ) else: _A = self.match_in_pattern(self.text[mismatch_index] ) _A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCamelCase_ = '''ABAABA''' lowerCamelCase_ = '''AB''' lowerCamelCase_ = BoyerMooreSearch(text, pattern) lowerCamelCase_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
174
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''camembert''' def __init__( self : Union[str, Any] , __UpperCAmelCase : int=30522 , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Dict=3072 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[str]=1E-12 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : int="absolute" , __UpperCAmelCase : Any=True , __UpperCAmelCase : int=None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
174
1
_A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = input("Enter message: " ) lowerCAmelCase_ = input("Enter key [alphanumeric]: " ) lowerCAmelCase_ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): lowerCAmelCase_ = """encrypt""" lowerCAmelCase_ = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith("d" ): lowerCAmelCase_ = """decrypt""" lowerCAmelCase_ = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F"""\n{mode.title()}ed message:""" ) print(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encrypt" ) def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decrypt" ) def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = key.upper() for symbol in message: lowerCAmelCase_ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase_ = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
231
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCAmelCase : Optional[int] = trt.Logger(trt.Logger.WARNING) __UpperCAmelCase : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCAmelCase : Tuple = parser.parse_args() if args.tokenizer_name: __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCAmelCase : Optional[Any] = args.per_device_eval_batch_size __UpperCAmelCase : Dict = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCAmelCase : Tuple = "temp_engine/bert-fp16.engine" if args.inta: __UpperCAmelCase : List[Any] = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCAmelCase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCAmelCase : int = [network.get_input(i) for i in range(network.num_inputs)] __UpperCAmelCase : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCAmelCase : Optional[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCAmelCase : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCAmelCase : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: __snake_case: Tuple = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) __snake_case: Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) __snake_case: List[str] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE__) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE__) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE__) # start time __snake_case: int = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE__) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE__), int(SCREAMING_SNAKE_CASE__)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # Synchronize the stream and take time stream.synchronize() # end time __snake_case: Optional[Any] = time.time() __snake_case: Dict = end_time - start_time __snake_case: Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCAmelCase : Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCAmelCase : str = raw_datasets["validation"].column_names __UpperCAmelCase : Dict = "question" if "question" in column_names else column_names[0] __UpperCAmelCase : List[Any] = "context" if "context" in column_names else column_names[1] __UpperCAmelCase : List[str] = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCAmelCase : List[str] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __UpperCAmelCase : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[int]: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __snake_case: Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __snake_case: List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=SCREAMING_SNAKE_CASE__ , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __snake_case: Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __snake_case: int = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __snake_case: int = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE__) __snake_case: List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __snake_case: Any = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __snake_case: Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __UpperCAmelCase : int = raw_datasets["validation"] # Validation Feature Creation __UpperCAmelCase : Dict = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCAmelCase : Dict = default_data_collator __UpperCAmelCase : List[Any] = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCAmelCase : str = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="eval") -> Optional[int]: # Post-processing: we match the start logits and end logits to answers in the original context. __snake_case: Optional[Any] = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __snake_case: Tuple = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __snake_case: str = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __snake_case: Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE__ , label_ids=SCREAMING_SNAKE_CASE__) __UpperCAmelCase : List[str] = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE__)) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE__).itemsize # Allocate device memory for inputs and outputs. __UpperCAmelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCAmelCase : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCAmelCase : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCAmelCase : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) __UpperCAmelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCAmelCase : Optional[int] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') __UpperCAmelCase : Optional[Any] = 0.0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = timeit.default_timer() __UpperCAmelCase : Union[str, Any] = None for step, batch in enumerate(eval_dataloader): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCAmelCase , __UpperCAmelCase : str = outputs __UpperCAmelCase : Any = torch.tensor(start_logits) __UpperCAmelCase : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCAmelCase : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCAmelCase : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCAmelCase : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCAmelCase : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCAmelCase : Union[str, Any] = nested_truncate(all_preds, len(eval_dataset)) __UpperCAmelCase : List[str] = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_000)) logger.info("Total Number of Inference = %d", niter) __UpperCAmelCase : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCAmelCase : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
111
0
class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : str = size _lowerCamelCase : Any = [0] * size _lowerCamelCase : Tuple = [0] * size @staticmethod def A_ ( lowercase ): return index | (index + 1) @staticmethod def A_ ( lowercase ): return (index & (index + 1)) - 1 def A_ ( self , lowercase , lowercase ): _lowerCamelCase : int = value while index < self.size: _lowerCamelCase : Any = self.get_prev(lowercase ) + 1 if current_left_border == index: _lowerCamelCase : int = value else: _lowerCamelCase : List[Any] = max(lowercase , lowercase , lowercase ) _lowerCamelCase : List[str] = self.get_next(lowercase ) def A_ ( self , lowercase , lowercase ): right -= 1 # Because of right is exclusive _lowerCamelCase : Optional[Any] = 0 while left <= right: _lowerCamelCase : Tuple = self.get_prev(lowercase ) if left <= current_left: _lowerCamelCase : Tuple = max(lowercase , self.tree[right] ) _lowerCamelCase : Dict = current_left else: _lowerCamelCase : str = max(lowercase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : Optional[Any] = n * (n + 1) * (2 * n + 1) / 6 lowercase__ : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6} __lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: str = do_resize __lowerCAmelCase: Any = size __lowerCAmelCase: Dict = resample __lowerCAmelCase: Tuple = do_center_crop __lowerCAmelCase: str = crop_size __lowerCAmelCase: List[Any] = do_rescale __lowerCAmelCase: int = rescale_factor __lowerCAmelCase: List[Any] = do_normalize __lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: str = size if size is not None else self.size __lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: List[str] = resample if resample is not None else self.resample __lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: __lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: __lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: __lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: __lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] __lowerCAmelCase: List[str] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(UpperCamelCase__): __lowerCAmelCase: Optional[int] = target_sizes.numpy() __lowerCAmelCase: List[Any] = [] for idx in range(len(UpperCamelCase__)): __lowerCAmelCase: List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCamelCase__) else: __lowerCAmelCase: Tuple = logits.argmax(dim=1) __lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
217
0
"""simple docstring""" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 1 while len(SCREAMING_SNAKE_CASE_ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE_ ) ) i += 1 _UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Union[str, Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Any = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } lowerCamelCase : str = '▁' class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) snake_case : Optional[Any] = vocab_file snake_case : Optional[Any] = False if not self.vocab_file else True def UpperCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Any = [self.cls_token_id] snake_case : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Tuple = [self.sep_token_id] snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : int = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
124
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: snake_case : Any = parent snake_case : List[Any] = batch_size snake_case : List[Any] = seq_length snake_case : Dict = is_training snake_case : List[str] = use_input_mask snake_case : List[str] = use_token_type_ids snake_case : Dict = use_labels snake_case : Optional[int] = vocab_size snake_case : Optional[int] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : int = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : List[str] = num_choices snake_case : Optional[int] = scope def UpperCAmelCase ( self ) -> int: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Tuple = None if self.use_token_type_ids: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[int] = None snake_case : str = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> List[str]: snake_case : Tuple = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Optional[Any]: snake_case : List[Any] = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : Optional[int] = self.num_labels snake_case : Union[str, Any] = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : Union[str, Any] = self.num_labels snake_case : Union[str, Any] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : int = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = self.num_choices snake_case : Union[str, Any] = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Any = config_and_inputs snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : Dict = NystromformerModelTester(self ) snake_case : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = """the [MASK] of Belgium is Brussels""" snake_case : Any = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Union[str, Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : Optional[int] = model(encoding.input_ids ).logits snake_case : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
124
1
def A__ ( lowerCamelCase ) -> list: UpperCamelCase_: Dict = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase_: Dict = True for i in range(0 , len(lowerCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase_, UpperCamelCase_: Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_: List[Any] = False for i in range(1 , len(lowerCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase_, UpperCamelCase_: List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_: Optional[int] = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") lowerCamelCase_ : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase_ : Dict = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if exponent == 1: return base if exponent % 2 == 0: _lowerCamelCase : int = _modexpt(lowercase__ , exponent // 2 , lowercase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase__ , exponent - 1 , lowercase__ )) % modulo_value def _snake_case ( lowercase__ = 1777 , lowercase__ = 1855 , lowercase__ = 8 ): _lowerCamelCase : Dict = base for _ in range(1 , lowercase__ ): _lowerCamelCase : Union[str, Any] = _modexpt(lowercase__ , lowercase__ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
96
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
0
import argparse import json import subprocess def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[Any] = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCAmelCase__ : List[str] = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowerCAmelCase__ : Any = output.stdout.decode('utf-8' ) lowerCAmelCase__ : Tuple = json.loads(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCAmelCase__ : Optional[int] = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return values.split(',' ) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowerCamelCase__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self : Tuple , lowercase_ : bool = True , lowercase_ : Optional[Dict[str, int]] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : str , ): '''simple docstring''' super().__init__(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'''shortest_edge''': 256} SCREAMING_SNAKE_CASE_ : str = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE_ : int = get_size_dict(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = do_resize SCREAMING_SNAKE_CASE_ : int = size SCREAMING_SNAKE_CASE_ : List[Any] = resample SCREAMING_SNAKE_CASE_ : int = do_center_crop SCREAMING_SNAKE_CASE_ : List[Any] = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = do_rescale SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize SCREAMING_SNAKE_CASE_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') SCREAMING_SNAKE_CASE_ : int = get_resize_output_image_size(lowercase_ , size=size['''shortest_edge'''] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_) return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str]): '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : ImageInput , lowercase_ : Optional[bool] = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[float] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : int = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Any = get_size_dict(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[Any] = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Union[str, Any] = [to_numpy_array(lowercase_) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Tuple = [self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : int = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Optional[int] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] SCREAMING_SNAKE_CASE_ : Any = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] SCREAMING_SNAKE_CASE_ : Dict = {'''pixel_values''': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
91
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Optional[int] , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["""bs4"""] ) super().__init__(**__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = [] UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase :Optional[Any] = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase :Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : Any , __lowerCamelCase : Tuple ): UpperCamelCase :Any = BeautifulSoup(__lowerCamelCase , """html.parser""" ) UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Tuple = [] UpperCamelCase :Tuple = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase :Any = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = """""" for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __lowerCamelCase : Dict ): UpperCamelCase :Any = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): UpperCamelCase :Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__lowerCamelCase )}.""" ) UpperCamelCase :str = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: UpperCamelCase :Any = [html_strings] # Get nodes + xpaths UpperCamelCase :Union[str, Any] = [] UpperCamelCase :str = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase :int = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) UpperCamelCase :int = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict UpperCamelCase :Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase :Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
38
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def __a ( UpperCAmelCase="ro" , UpperCAmelCase="en" , UpperCAmelCase="wmt16" , UpperCAmelCase=None ) ->Tuple: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) A = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) A = datasets.load_dataset(a_ , a_ ) if save_dir is None: A = f"""{dataset}-{pair}""" A = Path(a_ ) save_dir.mkdir(exist_ok=a_ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A = "val" if split == "validation" else split A = save_dir.joinpath(f"""{fn}.source""" ) A = save_dir.joinpath(f"""{fn}.target""" ) A = src_path.open("""w+""" ) A = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A = x["translation"] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
367
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
191
'''simple docstring''' UpperCAmelCase_ : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : Any = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : Tuple = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : Tuple = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : int = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
200
0
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
import os def snake_case_ ( snake_case ) -> Dict: lowercase__: Optional[int] = len(grid[0] ) lowercase__: Any = len(snake_case ) lowercase__: Optional[Any] = 0 lowercase__: List[str] = 0 lowercase__: int = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case ): for j in range(n_rows - 3 ): lowercase__: List[str] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase__: Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase__: Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase__: Dict = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase__: Any = max( snake_case , snake_case , snake_case , snake_case ) if max_product > largest: lowercase__: Dict = max_product return largest def snake_case_ ( ) -> Optional[Any]: lowercase__: Optional[Any] = [] with open(os.path.dirname(snake_case ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) lowercase__: List[Any] = [[int(snake_case ) for i in grid[j]] for j in range(len(snake_case ) )] return largest_product(snake_case ) if __name__ == "__main__": print(solution())
196
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __a ( __UpperCamelCase ): __lowercase : Any = ['vqvae'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , mel=lowerCAmelCase__ , vqvae=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , lowerCAmelCase__ ) else 1_000 @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowercase__: Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCAmelCase__ ) lowercase__: Optional[int] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase__: Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase__: List[str] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCAmelCase__ , device=self.device , ) lowercase__: List[Any] = noise lowercase__: int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: int = self.mel.audio_slice_to_image(lowerCAmelCase__ ) lowercase__: int = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowercase__: str = (input_image / 255) * 2 - 1 lowercase__: Union[str, Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase__: Optional[int] = self.vqvae.encode(torch.unsqueeze(lowerCAmelCase__ , 0 ) ).latent_dist.sample( generator=lowerCAmelCase__ )[0] lowercase__: Dict = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase__: List[Any] = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler.timesteps[start_step - 1] ) lowercase__: str = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase__: Dict = int(mask_start_secs * pixels_per_second ) lowercase__: Tuple = int(mask_end_secs * pixels_per_second ) lowercase__: List[Any] = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCAmelCase__ ): lowercase__: Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )['sample'] else: lowercase__: Optional[Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ )['sample'] if isinstance(self.scheduler , lowerCAmelCase__ ): lowercase__: List[str] = self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , )['prev_sample'] else: lowercase__: int = self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ , )['prev_sample'] if mask is not None: if mask_start > 0: lowercase__: List[Any] = mask[:, step, :, :mask_start] if mask_end > 0: lowercase__: Optional[int] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase__: Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images lowercase__: Optional[Any] = self.vqvae.decode(lowerCAmelCase__ )['sample'] lowercase__: Dict = (images / 2 + 0.5).clamp(0 , 1 ) lowercase__: List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowercase__: int = (images * 255).round().astype('uint8' ) lowercase__: Optional[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCAmelCase__ , mode='RGB' ).convert('L' ) for _ in images) ) lowercase__: Dict = [self.mel.image_to_audio(lowerCAmelCase__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCAmelCase__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCAmelCase__ ) ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ ) lowercase__: List[str] = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowercase__: str = (sample / 255) * 2 - 1 lowercase__: str = torch.Tensor(lowerCAmelCase__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowercase__: Union[str, Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase__: Optional[Any] = self.scheduler.alphas_cumprod[t] lowercase__: str = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase__: str = 1 - alpha_prod_t lowercase__: int = self.unet(lowerCAmelCase__ , lowerCAmelCase__ )['sample'] lowercase__: int = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase__: Optional[int] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase__: Any = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> torch.Tensor: '''simple docstring''' lowercase__: Any = acos(torch.dot(torch.flatten(lowerCAmelCase__ ) , torch.flatten(lowerCAmelCase__ ) ) / torch.norm(lowerCAmelCase__ ) / torch.norm(lowerCAmelCase__ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCAmelCase__ ) + sin(alpha * theta ) * xa / sin(lowerCAmelCase__ )
196
1
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : str , __a : str ) -> Dict: _UpperCamelCase, _UpperCamelCase : Optional[Any] = text, pattern _UpperCamelCase, _UpperCamelCase : List[Any] = len(__a ), len(__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __SCREAMING_SNAKE_CASE ( self : int , __a : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __SCREAMING_SNAKE_CASE ( self : int ) -> list[int]: # searches pattern in text and returns index positions _UpperCamelCase : Dict = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCamelCase : List[str] = self.mismatch_in_text(__a ) if mismatch_index == -1: positions.append(__a ) else: _UpperCamelCase : Union[str, Any] = self.match_in_pattern(self.text[mismatch_index] ) _UpperCamelCase : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCamelCase__ = "ABAABA" lowerCamelCase__ = "AB" lowerCamelCase__ = BoyerMooreSearch(text, pattern) lowerCamelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
310
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1.0 , UpperCamelCase_ = None , ) -> Optional[int]: super().__init__() __lowercase : int = initial_learning_rate __lowercase : Any = warmup_steps __lowercase : Union[str, Any] = power __lowercase : str = decay_schedule_fn __lowercase : List[str] = name def __call__( self , UpperCamelCase_ ) -> str: with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowercase : Any = tf.cast(lowercase_ , tf.floataa ) __lowercase : Dict = tf.cast(self.warmup_steps , tf.floataa ) __lowercase : List[str] = global_step_float / warmup_steps_float __lowercase : int = self.initial_learning_rate * tf.math.pow(lowercase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowercase_ , ) def _lowerCamelCase ( self ) -> Any: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 0.9 , __UpperCamelCase = 0.999 , __UpperCamelCase = 1e-8 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = None , ): __lowercase : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE__ , ) if num_warmup_steps: __lowercase : Tuple = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE__ , decay_schedule_fn=SCREAMING_SNAKE_CASE__ , warmup_steps=SCREAMING_SNAKE_CASE__ , ) if weight_decay_rate > 0.0: __lowercase : Optional[int] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay_rate=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , epsilon=SCREAMING_SNAKE_CASE__ , clipnorm=SCREAMING_SNAKE_CASE__ , global_clipnorm=SCREAMING_SNAKE_CASE__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=SCREAMING_SNAKE_CASE__ , ) else: __lowercase : int = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , beta_a=SCREAMING_SNAKE_CASE__ , epsilon=SCREAMING_SNAKE_CASE__ , clipnorm=SCREAMING_SNAKE_CASE__ , global_clipnorm=SCREAMING_SNAKE_CASE__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ ( UpperCamelCase_ ): def __init__( self , UpperCamelCase_ = 0.0_0_1 , UpperCamelCase_ = 0.9 , UpperCamelCase_ = 0.9_9_9 , UpperCamelCase_ = 1E-7 , UpperCamelCase_ = False , UpperCamelCase_ = 0.0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "AdamWeightDecay" , **UpperCamelCase_ , ) -> List[str]: super().__init__(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) __lowercase : Tuple = weight_decay_rate __lowercase : List[Any] = include_in_weight_decay __lowercase : str = exclude_from_weight_decay @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ ) -> Dict: __lowercase : int = {'WarmUp': WarmUp} return super(lowercase_ , cls ).from_config(lowercase_ , custom_objects=lowercase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: super(lowercase_ , self )._prepare_local(lowercase_ , lowercase_ , lowercase_ ) __lowercase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ) -> Any: __lowercase : List[Any] = list(zip(*lowercase_ ) ) return super(lowercase_ , self ).apply_gradients(zip(lowercase_ , lowercase_ ) , name=lowercase_ , **lowercase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowercase : int = apply_state or {} __lowercase : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowercase : List[str] = self._fallback_apply_state(lowercase_ , lowercase_ ) __lowercase : Union[str, Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Union[str, Any]: __lowercase : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) __lowercase : Tuple = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_dense(lowercase_ , lowercase_ , **lowercase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Tuple: __lowercase : int = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) __lowercase : Dict = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_sparse(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Tuple = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return False return True class UpperCAmelCase_ ( UpperCamelCase_ ): def __init__( self ) -> List[str]: __lowercase : List[str] = [] __lowercase : Tuple = None @property def _lowerCamelCase ( self ) -> str: if self._accum_steps is None: __lowercase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _lowerCamelCase ( self ) -> Dict: if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , UpperCamelCase_ ) -> Tuple: if not self._gradients: __lowercase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowercase_ ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowercase_ ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(lowercase_ )}""" ) for accum_gradient, gradient in zip(self._gradients , lowercase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowercase_ ) self._accum_steps.assign_add(1 ) def _lowerCamelCase ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowercase_ ) )
249
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None ): '''simple docstring''' require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
199
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A : Optional[int] = False @skip_mps class __lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" a = StableDiffusionAttendAndExcitePipeline a = False a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def A ( cls : Dict): super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) @classmethod def A ( cls : Union[str, Any]): super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) def A ( self : str): torch.manual_seed(0) _A : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE , ) _A : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _A : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _A : str = CLIPTextModel(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _A : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : Tuple = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def A ( self : Tuple): _A : Optional[int] = 'cpu' _A : Dict = self.get_dummy_components() _A : int = self.pipeline_class(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE).images _A : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) _A : List[Any] = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) _A : str = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3) def A ( self : Any): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4) def A ( self : Optional[int]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def A ( self : List[Any]): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4) def A ( self : int): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def A ( self : Union[str, Any]): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4) def A ( self : Optional[int]): super().test_save_load_local(expected_max_difference=5e-4) def A ( self : int): super().test_save_load_optional_components(expected_max_difference=4e-4) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Dict): super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) @classmethod def A ( cls : Optional[Any]): super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) def A ( self : Any): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int): _A : Tuple = torch.manual_seed(51) _A : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa) pipe.to('cuda') _A : Optional[Any] = 'a painting of an elephant with glasses' _A : Any = [5, 7] _A : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE , token_indices=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] _A : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5e-1
227
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: UpperCamelCase__ : List[Any] = list(range(len(SCREAMING_SNAKE_CASE__ ) ) ) UpperCamelCase__ : Dict = [v / w for v, w in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : str = 0 UpperCamelCase__ : Optional[int] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in index: if weight[i] <= capacity: UpperCamelCase__ : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase__ : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
189
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
0
'''simple docstring''' import pytest _lowercase : Any = """__dummy_dataset1__""" _lowercase : Union[str, Any] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( A : int , A : str , A : Any ): '''simple docstring''' UpperCAmelCase = dataset_loading_script_name UpperCAmelCase = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=A ) UpperCAmelCase = script_dir / f"""{script_name}.py""" with open(A , '''w''' ) as f: f.write(A ) return str(A )
352
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__: __magic_name__ : List[str] __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self : Union[str, Any] )-> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__: __magic_name__ : Optional[List] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase = len(self.languages ) if self.languages else None def __call__( self : int )-> Optional[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
91
0
'''simple docstring''' from math import sqrt def _lowerCamelCase ( lowercase : int ) -> int: _a = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def _lowerCamelCase ( lowercase : int = 1_0000 ) -> int: _a = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
63
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE =[] def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ): if row >= len(__SCREAMING_SNAKE_CASE ): solution.append(__SCREAMING_SNAKE_CASE ) printboard(__SCREAMING_SNAKE_CASE ) print() return True for i in range(len(__SCREAMING_SNAKE_CASE ) ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = 1 solve(__SCREAMING_SNAKE_CASE , row + 1 ) lowercase_ : Dict = 0 return False def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) __SCREAMING_SNAKE_CASE =8 __SCREAMING_SNAKE_CASE =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
213
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = 8 # DPR tok __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(_A , exist_ok=_A ) __SCREAMING_SNAKE_CASE = os.path.join(_A , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(_A , exist_ok=_A ) __SCREAMING_SNAKE_CASE = os.path.join(_A , BART_VOCAB_FILES_NAMES['vocab_file'] ) __SCREAMING_SNAKE_CASE = os.path.join(_A , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def _A ( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _A ( self ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _A ( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _A ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = RagRetriever( _A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'dataset' ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset __SCREAMING_SNAKE_CASE = RagRetriever( _A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __SCREAMING_SNAKE_CASE = RagRetriever( _A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _A ) , ) return retriever def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) __SCREAMING_SNAKE_CASE = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(_A , open(_A , 'wb' ) ) __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) __SCREAMING_SNAKE_CASE = RagRetriever( _A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() retriever.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever() __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=_A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , _A ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(_A , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _A ( self ): '''simple docstring''' import torch __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() __SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]] __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever(_A , _A , prefix=retriever.config.generator.prefix , n_docs=_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_A , _A ) self.assertIsInstance(_A , _A ) self.assertIsInstance(_A , np.ndarray ) __SCREAMING_SNAKE_CASE = retriever( _A , _A , prefix=retriever.config.generator.prefix , n_docs=_A , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_A , torch.Tensor ) self.assertIsInstance(_A , torch.Tensor ) self.assertIsInstance(_A , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dpr_ctx_encoder_tokenizer() __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=_A ) retriever.set_ctx_encoder_tokenizer(_A ) __SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]] __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever(_A , _A , prefix=retriever.config.generator.prefix , n_docs=_A ) self.assertEqual( len(_A ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , _A ) # check for doc token related keys in dictionary.
118
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = LayoutLMTokenizer UpperCamelCase__ : Any = LayoutLMTokenizerFast UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = True def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _A ( self , **_A ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' __SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def _A ( self ): '''simple docstring''' pass
118
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _snake_case ( __A ): '''simple docstring''' A__ : Optional[Any] = "philschmid/bart-large-cnn-samsum" A__ : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) A__ : str = "summarizer" A__ : str = AutoTokenizer A__ : str = AutoModelForSeqaSeqLM A__ : Optional[int] = ["text"] A__ : Optional[int] = ["text"] def A__ ( self: str ,lowerCamelCase_: int ) -> Optional[int]: return self.pre_processor(_UpperCamelCase ,return_tensors="""pt""" ,truncation=_UpperCamelCase ) def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ) -> Tuple: return self.model.generate(**_UpperCamelCase )[0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Any: return self.pre_processor.decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase )
345
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" A_ : Optional[Any] = "Input must be a string of 8 numbers plus letter" A_ : str = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = f'''Expected string as input, found {type(_lowerCamelCase ).__name__}''' raise TypeError(_lowerCamelCase ) lowerCamelCase__ : Tuple = spanish_id.replace('-' , '' ).upper() if len(_lowerCamelCase ) != 9: raise ValueError(_lowerCamelCase ) try: lowerCamelCase__ : int = int(spanish_id_clean[0:8] ) lowerCamelCase__ : List[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(_lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case_ : str = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def A (__A : Union[str, Any] , __A : Dict ) -> Optional[Any]: """simple docstring""" inspect_dataset(__A , __A ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def A (__A : Optional[Any] , __A : List[str] ) -> Tuple: """simple docstring""" inspect_metric(__A , __A ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A (__A : Optional[Any] , __A : int , __A : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase_ = get_dataset_config_info(__A , config_name=__A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A (__A : List[Any] , __A : Optional[int] , __A : List[str] ) -> Optional[int]: """simple docstring""" with pytest.raises(__A ): get_dataset_config_info(__A , config_name=__A ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def A (__A : Any , __A : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ = get_dataset_config_names(__A ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def A (__A : List[str] , __A : List[str] , __A : int ) -> Any: """simple docstring""" UpperCAmelCase_ = get_dataset_infos(__A ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ = expected_configs[0] assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A (__A : Optional[Any] , __A : List[Any] , __A : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ = get_dataset_infos(__A ) assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A (__A : str , __A : List[str] , __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" with pytest.raises(__A ): get_dataset_split_names(__A , config_name=__A )
51
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ : List[Any] = data_utils.TransfoXLTokenizer snake_case_ : int = data_utils.TransfoXLCorpus snake_case_ : List[Any] = data_utils snake_case_ : int = data_utils def A (__A : Dict , __A : List[Any] , __A : Union[str, Any] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(__A , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(__A , __A ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__A , __A ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(__A ) UpperCAmelCase_ = os.path.abspath(__A ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = TransfoXLLMHeadModel(__A ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(__A , __A , __A ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) snake_case_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
51
1
"""simple docstring""" import heapq import sys import numpy as np _lowerCAmelCase : Any = tuple[int, int] class UpperCAmelCase_ : def __init__( self : str ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = set() def snake_case_ ( self : Optional[int] ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def snake_case_ ( self : List[Any] ): return len(self.elements ) == 0 def snake_case_ ( self : Dict , A : Any , A : str ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(A ) else: # update # print("update", item) _UpperCAmelCase : Optional[int] = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : str = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case_ ( self : List[Any] , A : str ): if item in self.set: self.set.remove(A ) _UpperCAmelCase : int = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) : Dict = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Union[str, Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case_ ( self : int ): return self.elements[0][1] def snake_case_ ( self : Any ): ((_UpperCAmelCase) , (_UpperCAmelCase)) : Any = heapq.heappop(self.elements ) self.set.remove(A ) return (priority, item) def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = np.array(SCREAMING_SNAKE_CASE__ ) return np.linalg.norm(a - b ) def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ) -> Optional[Any]: '''simple docstring''' return consistent_heuristic(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) // t def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ) -> Dict: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : dict[TPos, float] ) -> int: '''simple docstring''' _UpperCAmelCase : Tuple = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ans def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Optional[int] = "*" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase : Any = "#" _UpperCAmelCase : Optional[Any] = "-" _UpperCAmelCase : List[Any] = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) : List[Any] = x # print(x) _UpperCAmelCase : Optional[Any] = "-" _UpperCAmelCase : int = back_pointer[x] _UpperCAmelCase : Union[str, Any] = "-" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) _UpperCAmelCase : int = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE__ , end=" " ) _UpperCAmelCase : Optional[Any] = back_pointer[x] print(SCREAMING_SNAKE_CASE__ ) sys.exit() def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos ) -> List[Any]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: '''simple docstring''' for itera in range(SCREAMING_SNAKE_CASE__ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE__ ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) : int = s _UpperCAmelCase : List[Any] = (x - 1, y) _UpperCAmelCase : Any = (x + 1, y) _UpperCAmelCase : Tuple = (x, y + 1) _UpperCAmelCase : int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = -1 _UpperCAmelCase : int = float("inf" ) if valid(SCREAMING_SNAKE_CASE__ ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase : Union[str, Any] = g_function[s] + 1 _UpperCAmelCase : Union[str, Any] = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE__ ): if key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) <= Wa * key( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): open_list[j].put( SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCAmelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCAmelCase : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _lowerCAmelCase : Optional[int] = make_common_ground() _lowerCAmelCase : Union[str, Any] = blocks_blk # hyper parameters _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Any = 1 _lowerCAmelCase : int = 20 _lowerCAmelCase : int = 3 # one consistent and two other inconsistent # start and end destination _lowerCAmelCase : Union[str, Any] = (0, 0) _lowerCAmelCase : Tuple = (n - 1, n - 1) _lowerCAmelCase : Union[str, Any] = 1 def __snake_case ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Any = {start: 0, goal: float("inf" )} _UpperCAmelCase : Dict = {start: -1, goal: -1} _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = set() for i in range(SCREAMING_SNAKE_CASE__ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) _UpperCAmelCase : list[int] = [] _UpperCAmelCase : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , SCREAMING_SNAKE_CASE__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _UpperCAmelCase , _UpperCAmelCase : int = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_inad.append(SCREAMING_SNAKE_CASE__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _UpperCAmelCase : Optional[int] = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE__ ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
202
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCAmelCase : List[str] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __snake_case ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = torch_model.model.state_dict() _UpperCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase : Tuple = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Any = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Dict = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Optional[Any] = ["Adafactor", "global_step"] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = array return tf_weights def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = Path(SCREAMING_SNAKE_CASE__ ).parent.name _UpperCAmelCase : Tuple = task_specific_params[f'summarization_{dataset}']["max_position_embeddings"] _UpperCAmelCase : Dict = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model _UpperCAmelCase : Union[str, Any] = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase : Optional[int] = task_specific_params _UpperCAmelCase : str = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / "pytorch_model.bin" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.save_dir is None: _lowerCAmelCase : Tuple = Path(args.tf_ckpt_path).parent.name _lowerCAmelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
202
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Tuple: lowerCAmelCase = 0 @slow def _snake_case ( self ) -> int: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowercase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowercase_ ) , 0 ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self ) -> str: lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _snake_case ( self ) -> int: lowerCAmelCase = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , config=lowercase_ ) self.assertIsInstance(lowercase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowercase_ , """vocab.txt""" ) ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , tokenizer_type="""bert""" , use_fast=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowercase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowercase_ , """merges.txt""" ) ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , tokenizer_type="""gpt2""" , use_fast=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @require_tokenizers def _snake_case ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowercase_ , """vocab.txt""" ) ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , tokenizer_type="""bert""" ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowercase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowercase_ , """merges.txt""" ) ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , tokenizer_type="""gpt2""" ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[Any]: with pytest.raises(lowercase_ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def _snake_case ( self ) -> List[str]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(lowercase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowercase_ , lowercase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowercase_ ) else: self.assertEqual(tokenizer.do_lower_case , lowercase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def _snake_case ( self ) -> Any: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowercase_ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): lowerCAmelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def _snake_case ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase = TOKENIZER_MAPPING.values() lowerCAmelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowercase_ ) @require_tokenizers def _snake_case ( self ) -> Dict: self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) , lowercase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , lowercase_ ) @require_tokenizers def _snake_case ( self ) -> str: lowerCAmelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=lowercase_ ) lowerCAmelCase = """Hello, world. How are you?""" lowerCAmelCase = tokenizer.tokenize(lowercase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) lowerCAmelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=lowercase_ ) lowerCAmelCase = tokenizer.tokenize(lowercase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def _snake_case ( self ) -> str: lowerCAmelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(lowercase_ ) , lowercase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Optional[int]: # Check we can load the tokenizer config of an online model. lowerCAmelCase = get_tokenizer_config("""bert-base-cased""" ) lowerCAmelCase = config.pop("""_commit_hash""" , lowercase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowercase_ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase = get_tokenizer_config(lowercase_ ) self.assertDictEqual(lowercase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = get_tokenizer_config(lowercase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def _snake_case ( self ) -> Tuple: try: AutoConfig.register("""custom""" , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) lowerCAmelCase = CustomTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _snake_case ( self ) -> List[Any]: try: AutoConfig.register("""custom""" , lowercase_ ) # Can register in two steps AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowercase_ , fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowercase_ , slow_tokenizer_class=lowercase_ , fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_ , fast_tokenizer_class=lowercase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = BertTokenizerFast.from_pretrained(lowercase_ ) bert_tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = CustomTokenizerFast.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , trust_remote_code=lowercase_ , use_fast=lowercase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def _snake_case ( self ) -> Optional[int]: class lowercase ( SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = False class lowercase ( SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = NewTokenizer _SCREAMING_SNAKE_CASE = False try: AutoConfig.register("""custom""" , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoTokenizer.register(lowercase_ , fast_tokenizer_class=lowercase_ ) # If remote code is not set, the default is to use local lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> List[str]: lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCAmelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _snake_case ( self ) -> List[Any]: with self.assertRaisesRegex( lowercase_ , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def _snake_case ( self ) -> Optional[int]: with self.assertRaisesRegex( lowercase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ , revision="""aaaaaa""" ) def _snake_case ( self ) -> Tuple: # Make sure we have cached the tokenizer. lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : Tuple , *, __lowerCamelCase : int = 4 , __lowerCamelCase : int = 768 , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(__lowerCamelCase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens SCREAMING_SNAKE_CASE__ = nn.Linear( __lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.LayerNorm(__lowerCamelCase ) def lowercase_ ( self : str , *, __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ) -> Dict: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE__ = image_embeddings.shape[0] SCREAMING_SNAKE_CASE__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = classifier_free_guidance_embeddings.expand( __lowerCamelCase , -1 ) SCREAMING_SNAKE_CASE__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE__ = self.embedding_proj(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.clip_image_embeddings_project_to_time_embeddings(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE__ = self.clip_extra_context_tokens_proj(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens.reshape(__lowerCamelCase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE__ = self.encoder_hidden_states_proj(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.text_encoder_hidden_states_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
218
def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
218
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCamelCase__ = TypeVar("""T""") UpperCamelCase__ = Union[List[T], Tuple[T, ...]] UpperCamelCase__ = Union[T, List[T], Dict[str, T]] UpperCamelCase__ = Union[str, bytes, os.PathLike]
92
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int | float | str ): try: A__ = float(_lowerCamelCase ) except ValueError: raise ValueError("Please enter a valid number" ) A__ = decimal - int(_lowerCamelCase ) if fractional_part == 0: return int(_lowerCamelCase ), 1 else: A__ = len(str(_lowerCamelCase ).split("." )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__, A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__, A__ = divisor, remainder A__, A__ = numerator / divisor, denominator / divisor return int(_lowerCamelCase ), int(_lowerCamelCase ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
237
0
def _snake_case ( _snake_case : int ) -> Tuple: '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(lowerCamelCase_ ) _A = """""".join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( _snake_case : float = 99 ) -> Dict: '''simple docstring''' if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
358
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : "DiagonalGaussianDistribution" class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = True @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , act_fn=_UpperCAmelCase , ) _A = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = False _A = False # only relevant if vae tiling is enabled _A = self.config.sample_size _A = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A = 0.25 def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ): if isinstance(_UpperCAmelCase , (Encoder, Decoder) ): _A = value def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : bool = True ): _A = use_tiling def lowerCAmelCase_ ( self : Union[str, Any] ): self.enable_tiling(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = True def lowerCAmelCase_ ( self : str ): _A = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self : str ): _A = {} def fn_recursive_add_processors(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCAmelCase , 'set_processor' ): _A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _A = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , 'set_processor' ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _A = [self.encoder(_UpperCAmelCase ) for x_slice in x.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_slicing and z.shape[0] > 1: _A = [self._decode(_UpperCAmelCase ).sample for z_slice in z.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self._decode(_UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = min(a.shape[2] , b.shape[2] , _UpperCAmelCase ) for y in range(_UpperCAmelCase ): _A = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): _A = min(a.shape[3] , b.shape[3] , _UpperCAmelCase ) for x in range(_UpperCAmelCase ): _A = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A = [] for i in range(0 , x.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , x.shape[3] , _UpperCAmelCase ): _A = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A = [] for i in range(0 , z.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , z.shape[3] , _UpperCAmelCase ): _A = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[torch.Generator] = None , ): _A = sample _A = self.encode(_UpperCAmelCase ).latent_dist if sample_posterior: _A = posterior.sample(generator=_UpperCAmelCase ) else: _A = posterior.mode() _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
271
0
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' __lowercase =0.0 for coeff in reversed(lowercase__ ): __lowercase =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=__lowercase , ) assert hasattr(self , 'env' ) def snake_case ( self : Tuple , __lowercase : List[str] ): """simple docstring""" __lowercase =f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings __lowercase ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowercase , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowercase , py_version='py36' , ) def snake_case ( self : int , __lowercase : List[str] ): """simple docstring""" TrainingJobAnalytics(__lowercase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def snake_case ( self : Tuple , __lowercase : List[Any] ): """simple docstring""" __lowercase =self.create_estimator(__lowercase ) # run training estimator.fit() # result dataframe __lowercase =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __lowercase )
141
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): stooge(UpperCamelCase_ , 0 , len(UpperCamelCase_ ) - 1 ) return arr def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __SCREAMING_SNAKE_CASE = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCamelCase_ , UpperCamelCase_ , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCamelCase_ , i + t , (UpperCamelCase_) ) # Recursively sort first 2/3 elements stooge(UpperCamelCase_ , UpperCamelCase_ , (h - t) ) if __name__ == "__main__": __magic_name__ = input("Enter numbers separated by a comma:\n").strip() __magic_name__ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
255
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __magic_name__ = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = {} state_dict.pop("""pixel_mean""" , UpperCamelCase_ ) state_dict.pop("""pixel_std""" , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE = key.replace(UpperCamelCase_ , UpperCamelCase_ ) if re.match(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = int(re.match(UpperCamelCase_ , UpperCamelCase_ ).group(2 ) ) if layer_nb == 0: __SCREAMING_SNAKE_CASE = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: __SCREAMING_SNAKE_CASE = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: __SCREAMING_SNAKE_CASE = key.replace("""layers.2""" , """proj_out""" ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="ybelkada/segment-anything" ): __SCREAMING_SNAKE_CASE = hf_hub_download(UpperCamelCase_ , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __SCREAMING_SNAKE_CASE = SamConfig() elif "sam_vit_l" in model_name: __SCREAMING_SNAKE_CASE = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __SCREAMING_SNAKE_CASE = SamConfig( vision_config=UpperCamelCase_ , ) elif "sam_vit_h" in model_name: __SCREAMING_SNAKE_CASE = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __SCREAMING_SNAKE_CASE = SamConfig( vision_config=UpperCamelCase_ , ) __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = replace_keys(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SamModel(UpperCamelCase_ ) hf_model.load_state_dict(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = hf_model.to("""cuda""" ) __SCREAMING_SNAKE_CASE = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = [[[400, 650]]] __SCREAMING_SNAKE_CASE = [[1]] __SCREAMING_SNAKE_CASE = processor(images=np.array(UpperCamelCase_ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 __SCREAMING_SNAKE_CASE = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 __SCREAMING_SNAKE_CASE = ((75, 275, 1725, 850),) __SCREAMING_SNAKE_CASE = processor(images=np.array(UpperCamelCase_ ) , input_boxes=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. __SCREAMING_SNAKE_CASE = [[[400, 650], [800, 650]]] __SCREAMING_SNAKE_CASE = [[1, 1]] __SCREAMING_SNAKE_CASE = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() __magic_name__ = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __magic_name__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
255
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : str =AltDiffusionPipeline UpperCamelCase_ : List[str] =TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Any =TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : List[str] =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Optional[int] =TEXT_TO_IMAGE_IMAGE_PARAMS def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowercase= DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) __lowercase= AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __lowercase= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) __lowercase= CLIPTextModel(lowerCAmelCase ) __lowercase= XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __lowercase= 7_7 __lowercase= { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith('mps' ): __lowercase= torch.manual_seed(lowerCAmelCase ) else: __lowercase= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowercase= { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _A (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _A (self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() torch.manual_seed(0 ) __lowercase= RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __lowercase= RobertaSeriesModelWithTransformation(lowerCAmelCase ) __lowercase= text_encoder __lowercase= AltDiffusionPipeline(**lowerCAmelCase ) __lowercase= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 'A photo of an astronaut' __lowercase= alt_pipe(**lowerCAmelCase ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) __lowercase= RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __lowercase= RobertaSeriesModelWithTransformation(lowerCAmelCase ) __lowercase= text_encoder __lowercase= AltDiffusionPipeline(**lowerCAmelCase ) __lowercase= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= alt_pipe(**lowerCAmelCase ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): # make sure here that pndm scheduler skips prk __lowercase= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase ) __lowercase= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'A painting of a squirrel eating a burger' __lowercase= torch.manual_seed(0 ) __lowercase= alt_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='np' ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) __lowercase= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) __lowercase= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'A painting of a squirrel eating a burger' __lowercase= torch.manual_seed(0 ) __lowercase= alt_pipe([prompt] , generator=lowerCAmelCase , num_inference_steps=2 , output_type='numpy' ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
295
from __future__ import annotations def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= 2 __lowercase= [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase__ ) if n > 1: factors.append(lowercase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
295
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _a = logging.get_logger(__name__) _a = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _a = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _a = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _a = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _a = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _a = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _a = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _a = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _a = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _a = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _a = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _a = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _a = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = FLAX_MODEL_MAPPING _a = auto_class_update(FlaxAutoModel) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_PRETRAINING_MAPPING _a = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _a = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING _a = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _a = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _a = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _a = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _a = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _a = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ (_BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _a = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
23
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( A_ ): __lowerCamelCase = ["""audio_values""", """audio_mask"""] def __init__( self , __UpperCamelCase=2048 , __UpperCamelCase=1 , __UpperCamelCase=[16, 16] , __UpperCamelCase=128 , __UpperCamelCase=44100 , __UpperCamelCase=86 , __UpperCamelCase=2048 , __UpperCamelCase=0.0 , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , **snake_case_ , ) snake_case__ : Dict = spectrogram_length snake_case__ : Tuple = num_channels snake_case__ : Optional[int] = patch_size snake_case__ : Dict = feature_size // self.patch_size[1] snake_case__ : Dict = n_fft snake_case__ : Optional[Any] = sampling_rate // hop_length_to_sampling_rate snake_case__ : Dict = sampling_rate snake_case__ : Tuple = padding_value snake_case__ : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case_ , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=snake_case_ , norm='slaney' , mel_scale='slaney' , ).T def __a ( self , __UpperCamelCase ) -> np.ndarray: '''simple docstring''' snake_case__ : Optional[int] = spectrogram( snake_case_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) snake_case__ : Optional[int] = log_spec[:, :-1] snake_case__ : List[Any] = log_spec - 2_0.0 snake_case__ : Tuple = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , **__UpperCamelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case__ : List[str] = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) snake_case__ : Any = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): snake_case__ : Optional[int] = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis snake_case__ : Union[str, Any] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , snake_case_ ): snake_case__ : Dict = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask snake_case__ : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: snake_case__ : Any = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] snake_case__ : Optional[Any] = np.array(snake_case_ ).astype(np.floataa ) # convert into correct format for padding snake_case__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch snake_case__ : str = np.ones([len(snake_case_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) snake_case__ : Optional[int] = padded_audio_features * self.padding_value for i in range(len(snake_case_ ) ): snake_case__ : str = audio_features[i] snake_case__ : Optional[Any] = feature # return as BatchFeature if return_attention_mask: snake_case__ : Union[str, Any] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: snake_case__ : Any = {'audio_values': padded_audio_features} snake_case__ : Dict = BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) return encoded_inputs
143
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''feature_extractor'''] lowercase__ = '''TvltImageProcessor''' lowercase__ = '''TvltFeatureExtractor''' def __init__( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' super().__init__(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = image_processor A__ = feature_extractor def __call__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : Dict=False , snake_case_ : Union[str, Any]=False , *snake_case_ : List[str] , **snake_case_ : List[Any] , ) -> List[str]: '''simple docstring''' if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) A__ = None if images is not None: A__ = self.image_processor(snake_case_ , mask_pixel=snake_case_ , *snake_case_ , **snake_case_ ) if images_mixed is not None: A__ = self.image_processor(snake_case_ , is_mixed=snake_case_ , *snake_case_ , **snake_case_ ) if audio is not None: A__ = self.feature_extractor( snake_case_ , *snake_case_ , sampling_rate=snake_case_ , mask_audio=snake_case_ , **snake_case_ ) A__ = {} if audio is not None: output_dict.update(snake_case_ ) if images is not None: output_dict.update(snake_case_ ) if images_mixed_dict is not None: output_dict.update(snake_case_ ) return output_dict @property def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.image_processor.model_input_names A__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
247
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , __lowerCAmelCase ) a__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a__ = dataset_size < in_memory_max_size else: a__ = False a__ = is_small_dataset(__lowerCAmelCase ) assert result == expected
109
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
1
import flax.linen as nn import jax import jax.numpy as jnp class _A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : jnp.dtype = jnp.floataa def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a , __a , __a , __a = hidden_states.shape __a = jax.image.resize( __SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) __a = self.conv(__SCREAMING_SNAKE_CASE) return hidden_states class _A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : jnp.dtype = jnp.floataa def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.conv(__SCREAMING_SNAKE_CASE) return hidden_states class _A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int = None UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = None UpperCamelCase__ : jnp.dtype = jnp.floataa def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.in_channels if self.out_channels is None else self.out_channels __a = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __a = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a = nn.Dense(__SCREAMING_SNAKE_CASE , dtype=self.dtype) __a = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __a = nn.Dropout(self.dropout_prob) __a = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __a = None if use_nin_shortcut: __a = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=True): '''simple docstring''' __a = hidden_states __a = self.norma(__SCREAMING_SNAKE_CASE) __a = nn.swish(__SCREAMING_SNAKE_CASE) __a = self.conva(__SCREAMING_SNAKE_CASE) __a = self.time_emb_proj(nn.swish(__SCREAMING_SNAKE_CASE)) __a = jnp.expand_dims(jnp.expand_dims(__SCREAMING_SNAKE_CASE , 1) , 1) __a = hidden_states + temb __a = self.norma(__SCREAMING_SNAKE_CASE) __a = nn.swish(__SCREAMING_SNAKE_CASE) __a = self.dropout(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.conva(__SCREAMING_SNAKE_CASE) if self.conv_shortcut is not None: __a = self.conv_shortcut(__SCREAMING_SNAKE_CASE) return hidden_states + residual
49
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ): __a , __a = 9, 14 # noqa: F841 __a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __a = defaultdict(_UpperCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __a = mst(_UpperCAmelCase ) __a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __a = tuple(answer[:2] ) __a = tuple(edge[::-1] ) assert edge in result or reverse in result
49
1
'''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' SCREAMING_SNAKE_CASE_: Optional[int] =[{'type': 'code', 'content': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE_: List[Any] ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
106
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_: List[str] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={ 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Optional[Any] = """resnet""" a__ : Tuple = ["""basic""", """bottleneck"""] def __init__(self : List[Any] , __a : Any=3 , __a : Dict=64 , __a : Union[str, Any]=[256, 512, 1024, 2048] , __a : str=[3, 4, 6, 3] , __a : Optional[Any]="bottleneck" , __a : Tuple="relu" , __a : int=False , __a : Optional[int]=None , __a : str=None , **__a : Dict , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = layer_type UpperCAmelCase_ = hidden_act UpperCAmelCase_ = downsample_in_first_stage UpperCAmelCase_ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__a ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class __A ( UpperCamelCase__ ): a__ : int = version.parse("""1.11""" ) @property def _lowercase (self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase (self : str ): return 1E-3
106
1
import collections import importlib.util import os import re from pathlib import Path __UpperCAmelCase = 'src/transformers' # Matches is_xxx_available() __UpperCAmelCase = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __UpperCAmelCase = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __UpperCAmelCase = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __UpperCAmelCase = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __UpperCAmelCase = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __UpperCAmelCase = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __UpperCAmelCase = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __UpperCAmelCase = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __UpperCAmelCase = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __UpperCAmelCase = re.compile(R'^\s*try:') # Catches a line with else: __UpperCAmelCase = re.compile(R'^\s*else:') def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' if _re_test_backend.search(_a ) is None: return None UpperCAmelCase_ : int = [b[0] for b in _re_backend.findall(_a )] backends.sort() return "_and_".join(_a ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' with open(_a , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase_ : str = f.readlines() UpperCAmelCase_ : Optional[int] = 0 while line_index < len(_a ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_a ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ : List[str] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_a ): UpperCAmelCase_ : Tuple = _re_one_line_import_struct.search(_a ).groups()[0] UpperCAmelCase_ : Union[str, Any] = re.findall('\[([^\]]+)\]' , _a ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue UpperCAmelCase_ : List[str] = _re_import_struct_key_value.search(_a ) if single_line_import_search is not None: UpperCAmelCase_ : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_a ) > 0] objects.extend(_a ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ : int = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): UpperCAmelCase_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(_a ) is not None: objects.append(_re_import_struct_add_one.search(_a ).groups()[0] ) elif _re_import_struct_add_many.search(_a ) is not None: UpperCAmelCase_ : Any = _re_import_struct_add_many.search(_a ).groups()[0].split(', ' ) UpperCAmelCase_ : Any = [obj[1:-1] for obj in imports if len(_a ) > 0] objects.extend(_a ) elif _re_between_brackets.search(_a ) is not None: UpperCAmelCase_ : str = _re_between_brackets.search(_a ).groups()[0].split(', ' ) UpperCAmelCase_ : Tuple = [obj[1:-1] for obj in imports if len(_a ) > 0] objects.extend(_a ) elif _re_quote_object.search(_a ) is not None: objects.append(_re_quote_object.search(_a ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase_ : Tuple = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ : int = [] while ( line_index < len(_a ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): UpperCAmelCase_ : int = lines[line_index] UpperCAmelCase_ : Optional[int] = _re_import.search(_a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ : Union[str, Any] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_a ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): UpperCAmelCase_ : Dict = lines[line_index] UpperCAmelCase_ : Optional[int] = _re_import.search(_a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase_ : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase__ ( __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' def find_duplicates(__snake_case : Optional[int] ): return [k for k, v in collections.Counter(_a ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ : Any = [] for key in import_dict_objects.keys(): UpperCAmelCase_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCAmelCase_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ : List[Any] = '''base imports''' if key == '''none''' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = [] for root, _, files in os.walk(_a ): if "__init__.py" in files: UpperCAmelCase_ : Dict = os.path.join(_a , '__init__.py' ) UpperCAmelCase_ : Tuple = parse_init(_a ) if objects is not None: UpperCAmelCase_ : Union[str, Any] = analyze_results(*_a ) if len(_a ) > 0: UpperCAmelCase_ : List[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('\n'.join(_a ) ) if len(_a ) > 0: raise ValueError('\n\n'.join(_a ) ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = [] for path, directories, files in os.walk(_a ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(_a ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_a ) / folder).glob('*.py' ) ) ) == 0: continue UpperCAmelCase_ : Optional[Any] = str((Path(_a ) / folder).relative_to(_a ) ) UpperCAmelCase_ : Optional[Any] = short_path.replace(os.path.sep , '.' ) submodules.append(_a ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ : Optional[int] = str((Path(_a ) / fname).relative_to(_a ) ) UpperCAmelCase_ : Optional[int] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(_a ) return submodules __UpperCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(_a , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) UpperCAmelCase_ : str = spec.loader.load_module() UpperCAmelCase_ : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_a ) > 0: UpperCAmelCase_ : Optional[int] = '''\n'''.join(F"- {module}" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"{list_of_modules}\n" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
29
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Any = _readaa(_a ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Any = _readaa(_a ) lowerCAmelCase__ : Tuple = _readaa(_a ) lowerCAmelCase__ : List[Any] = _readaa(_a ) lowerCAmelCase__ : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) lowerCAmelCase__ : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , '''Please use tf.one_hot on tensors.''' ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = labels_dense.shape[0] lowerCAmelCase__ : Optional[Any] = numpy.arange(_a ) * num_classes lowerCAmelCase__ : str = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ : Optional[Any] = 1 return labels_one_hot @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a , _a=False , _a=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Optional[int] = _readaa(_a ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Union[str, Any] = _readaa(_a ) lowerCAmelCase__ : Tuple = bytestream.read(_a ) lowerCAmelCase__ : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class _a : @deprecated( _SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[Any]=dtypes.floataa , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : List[str]=None , )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase__ : int = 1_0000 lowerCAmelCase__ : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCAmelCase__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ : Any = images.astype(numpy.floataa ) lowerCAmelCase__ : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowerCAmelCase__ : Tuple = images lowerCAmelCase__ : Tuple = labels lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._images @property def UpperCAmelCase__( self : Tuple )-> Optional[int]: return self._labels @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._num_examples @property def UpperCAmelCase__( self : Tuple )-> Any: return self._epochs_completed def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : Optional[int]=True )-> List[str]: if fake_data: lowerCAmelCase__ : Dict = [1] * 784 lowerCAmelCase__ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) lowerCAmelCase__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.images[perma] lowerCAmelCase__ : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ : Any = self._num_examples - start lowerCAmelCase__ : List[str] = self._images[start : self._num_examples] lowerCAmelCase__ : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.images[perm] lowerCAmelCase__ : List[Any] = self.labels[perm] # Start next epoch lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Union[str, Any] = batch_size - rest_num_examples lowerCAmelCase__ : Any = self._index_in_epoch lowerCAmelCase__ : Optional[Any] = self._images[start:end] lowerCAmelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , '''Please write your own downloading logic.''' ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if not gfile.Exists(_a ): gfile.MakeDirs(_a ) lowerCAmelCase__ : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: lowerCAmelCase__ : Optional[Any] = f.size() print('''Successfully downloaded''' , _a , _a , '''bytes.''' ) return filepath @deprecated( _a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowerCamelCase_ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5_000 , _a=None , _a=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) lowerCAmelCase__ : Tuple = fake() lowerCAmelCase__ : Union[str, Any] = fake() lowerCAmelCase__ : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check lowerCAmelCase__ : Optional[Any] = DEFAULT_SOURCE_URL lowerCAmelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowerCAmelCase__ : Dict = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase__ : List[str] = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase__ : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase__ : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Optional[Any] = _extract_images(_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Any = _extract_labels(_a , one_hot=_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : str = _extract_images(_a ) lowerCAmelCase__ : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): lowerCAmelCase__ : Dict = ( '''Validation size should be between 0 and ''' f'{len(_a )}. Received: {validation_size}.' ) raise ValueError(_a ) lowerCAmelCase__ : List[str] = train_images[:validation_size] lowerCAmelCase__ : Any = train_labels[:validation_size] lowerCAmelCase__ : Optional[Any] = train_images[validation_size:] lowerCAmelCase__ : Optional[int] = train_labels[validation_size:] lowerCAmelCase__ : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase__ : List[str] = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
131
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase__ ( ): _A : Dict = ArgumentParser('Diffusers CLI tool' ,usage='diffusers-cli <command> [<args>]' ) _A : Tuple = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase ) # Let's go _A : Optional[Any] = parser.parse_args() if not hasattr(lowerCamelCase ,'func' ): parser.print_help() exit(1 ) # Run _A : Tuple = args.func(lowerCamelCase ) service.run() if __name__ == "__main__": main()
363
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaPriorPipeline a = ["prompt"] a = ["prompt", "negative_prompt"] a = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a = False @property def A ( self : List[str]): return 32 @property def A ( self : List[Any]): return 32 @property def A ( self : Dict): return self.time_input_dim @property def A ( self : Tuple): return self.time_input_dim * 4 @property def A ( self : Optional[int]): return 100 @property def A ( self : Dict): _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A ( self : Optional[Any]): torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE) @property def A ( self : List[Any]): torch.manual_seed(0) _A : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A : Any = PriorTransformer(**SCREAMING_SNAKE_CASE) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A : str = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A ( self : List[str]): torch.manual_seed(0) _A : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _A : Union[str, Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE) return model @property def A ( self : int): _A : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_resize=SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A ( self : Optional[Any]): _A : Optional[int] = self.dummy_prior _A : Dict = self.dummy_image_encoder _A : Dict = self.dummy_text_encoder _A : str = self.dummy_tokenizer _A : Optional[Any] = self.dummy_image_processor _A : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) _A : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A ( self : List[Any]): _A : str = 'cpu' _A : Tuple = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) _A : Any = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _A : str = output.image_embeds _A : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _A : Optional[int] = image[0, -10:] _A : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A : Dict = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def A ( self : Any): _A : Tuple = torch_device == 'cpu' _A : Optional[int] = True _A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE , relax_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , ) @skip_mps def A ( self : int): _A : Tuple = torch_device == 'cpu' _A : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , )
227
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _UpperCAmelCase ( a__): '''simple docstring''' a_ : int = [False] * len(a__) a_ : str = [-1] * len(a__) def dfs(a__ , a__): a_ : int = True a_ : List[Any] = c for u in graph[v]: if not visited[u]: dfs(a__ , 1 - c) for i in range(len(a__)): if not visited[i]: dfs(a__ , 0) for i in range(len(a__)): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __snake_case : Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
248
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = min(a__) # min() finds the minimum value a_ : List[str] = max(a__) # max() finds the maximum value a_ : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a_ : Tuple = 0 for count in range(a__): while holes[count] > 0: holes[count] -= 1 a_ : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__) print("""Sorted order is:""" , """ """.join(a__)) if __name__ == "__main__": main()
248
1
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' raise NotImplementedError() def _UpperCAmelCase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase = False ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Any = tokenizer lowercase_ : List[Any] = skip_prompt lowercase_ : Optional[Any] = decode_kwargs # variables used in the streaming process lowercase_ : Tuple = [] lowercase_ : List[Any] = 0 lowercase_ : Tuple = True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: lowercase_ : int = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase_ : str = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase_ : Optional[int] = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): lowercase_ : Optional[int] = text[self.print_len :] lowercase_ : str = [] lowercase_ : Tuple = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase_ : str = text[self.print_len :] self.print_len += len(__UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase_ : List[Any] = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(__UpperCamelCase ) self.on_finalized_text(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if len(self.token_cache ) > 0: lowercase_ : Any = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) lowercase_ : Optional[int] = text[self.print_len :] lowercase_ : Union[str, Any] = [] lowercase_ : Dict = 0 else: lowercase_ : Union[str, Any] = '' lowercase_ : Optional[int] = True self.on_finalized_text(__UpperCamelCase ,stream_end=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ) -> Union[str, Any]: '''simple docstring''' print(__UpperCamelCase ,flush=__UpperCamelCase ,end='' if not stream_end else None ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase = False ,__UpperCamelCase = None ,**__UpperCamelCase ) -> str: '''simple docstring''' super().__init__(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Tuple = Queue() lowercase_ : List[str] = None lowercase_ : Union[str, Any] = timeout def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ) -> List[str]: '''simple docstring''' self.text_queue.put(__UpperCamelCase ,timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal ,timeout=self.timeout ) def __iter__( self ) -> Union[str, Any]: '''simple docstring''' return self def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
361
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
0
from collections import defaultdict class __snake_case : def __init__( self , snake_case__ , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase : Optional[int] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(__lowerCAmelCase ) ) ] UpperCAmelCase : Any =defaultdict(__lowerCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase : Optional[Any] =(1 << len(__lowerCAmelCase )) - 1 def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase : int =self.count_ways_until(__lowerCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCAmelCase : Union[str, Any] =total_ways_util return self.dp[mask][task_no] def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' for i in range(len(__lowerCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__lowerCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
348
'''simple docstring''' def snake_case__ ( _A: str ) -> list[int]: '''simple docstring''' lowerCAmelCase = [0 for i in range(len(_A ) )] # initialize interval's left pointer and right pointer lowerCAmelCase , lowerCAmelCase = 0, 0 for i in range(1 , len(_A ) ): # case when current index is inside the interval if i <= right_pointer: lowerCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCAmelCase = min_edge while go_next(_A , _A , _A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCAmelCase , lowerCAmelCase = i, i + z_result[i] - 1 return z_result def snake_case__ ( _A: int , _A: list[int] , _A: str ) -> bool: '''simple docstring''' return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]] def snake_case__ ( _A: str , _A: str ) -> int: '''simple docstring''' lowerCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
272
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib snake_case : int = get_logger() snake_case : Optional[dict] = None class _snake_case ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): super().__init__(features=snake_case__ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case__ , snake_case__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) a :Tuple = device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a :List[str] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) a :Tuple = str(jax.devices()[0] ) a :Optional[int] = jnp_array_kwargs @staticmethod def SCREAMING_SNAKE_CASE__ ( ): import jax return {str(snake_case__ ): device for device in jax.devices()} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): import jax import jax.numpy as jnp if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case__ , axis=0 ) return column def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): import jax import jax.numpy as jnp if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a :Tuple = {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a :Union[str, Any] = {'dtype': jnp.intaa} else: a :Optional[Any] = {'dtype': jnp.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a :Optional[Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): a :List[Any] = np.asarray(snake_case__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a :Union[str, Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case__ , '''__array__''' ) and not isinstance(snake_case__ , jax.Array ): a :Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Union[str, Any] = self.numpy_arrow_extractor().extract_row(snake_case__ ) a :List[str] = self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = self.numpy_arrow_extractor().extract_column(snake_case__ ) a :List[Any] = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) a :int = self.recursive_tensorize(snake_case__ ) a :Dict = self._consolidate(snake_case__ ) return column def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[int] = self.numpy_arrow_extractor().extract_batch(snake_case__ ) a :Union[str, Any] = self.python_features_decoder.decode_batch(snake_case__ ) a :int = self.recursive_tensorize(snake_case__ ) for column_name in batch: a :List[Any] = self._consolidate(batch[column_name] ) return batch
353
from ...configuration_utils import PretrainedConfig class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'bert-generation' def __init__( self , _lowerCamelCase=5_0358 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Optional[int] = vocab_size a :Tuple = hidden_size a :Any = num_hidden_layers a :Any = num_attention_heads a :List[Any] = hidden_act a :Tuple = intermediate_size a :Any = hidden_dropout_prob a :int = attention_probs_dropout_prob a :Dict = max_position_embeddings a :int = initializer_range a :Union[str, Any] = layer_norm_eps a :str = position_embedding_type a :int = use_cache
281
0
"""simple docstring""" _a = 8.314_4598 def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a = 300 _a = 28 _a = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
194
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
1
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "" for i in table: res += inp[i - 1] return res def lowerCamelCase_ ( lowerCamelCase__ ): return data[1:] + data[0] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "" for i in range(len(lowerCamelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int("0b" + data[0] + data[-1] , 2 ) lowerCamelCase_ = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = message[:4] lowerCamelCase_ = message[4:] lowerCamelCase_ = apply_table(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = xor(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = apply_sbox(lowerCamelCase__ , temp[:4] ) # noqa: E741 lowerCamelCase_ = apply_sbox(lowerCamelCase__ , temp[4:] ) lowerCamelCase_ = "0" * (2 - len(lowerCamelCase__ )) + l # noqa: E741 lowerCamelCase_ = "0" * (2 - len(lowerCamelCase__ )) + r lowerCamelCase_ = apply_table(l + r , lowerCamelCase__ ) lowerCamelCase_ = xor(lowerCamelCase__ , lowerCamelCase__ ) return temp + right if __name__ == "__main__": __A =input('''Enter 10 bit key: ''') __A =input('''Enter 8 bit message: ''') __A =[6, 3, 7, 4, 8, 5, 1_0, 9] __A =[3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __A =[2, 4, 3, 1] __A =[2, 6, 3, 1, 4, 8, 5, 7] __A =[4, 1, 3, 5, 7, 2, 8, 6] __A =[4, 1, 2, 3, 2, 3, 4, 1] __A =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A =apply_table(key, paa_table) __A =temp[:5] __A =temp[5:] __A =left_shift(left) __A =left_shift(right) __A =apply_table(left + right, pa_table) __A =left_shift(left) __A =left_shift(right) __A =left_shift(left) __A =left_shift(right) __A =apply_table(left + right, pa_table) # encryption __A =apply_table(message, IP) __A =function(expansion, sa, sa, keya, temp) __A =temp[4:] + temp[:4] __A =function(expansion, sa, sa, keya, temp) __A =apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption __A =apply_table(CT, IP) __A =function(expansion, sa, sa, keya, temp) __A =temp[4:] + temp[:4] __A =function(expansion, sa, sa, keya, temp) __A =apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A ={ '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
47
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __snake_case = {'''facebook/blenderbot_small-90M''': 5_12} def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Optional[int] =set() UpperCAmelCase : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : List[Any] =char UpperCAmelCase : Optional[int] =set(_A ) return pairs class __snake_case ( lowerCAmelCase__ ): __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case__ , snake_case__ , snake_case__="__start__" , snake_case__="__end__" , snake_case__="__unk__" , snake_case__="__null__" , **snake_case__ , ) -> List[Any]: '''simple docstring''' super().__init__(unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , **__lowerCAmelCase ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Optional[int] =json.load(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] ={v: k for k, v in self.encoder.items()} with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : Any =merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : Optional[int] =[tuple(merge.split() ) for merge in merges] UpperCAmelCase : List[str] =dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) UpperCAmelCase : str ={} @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase : str =re.sub('''([.,!?()])''' , r''' \1''' , __lowerCAmelCase ) UpperCAmelCase : List[Any] =re.sub('''(\')''' , r''' \1 ''' , __lowerCAmelCase ) UpperCAmelCase : List[Any] =re.sub(r'''\s{2,}''' , ''' ''' , __lowerCAmelCase ) if "\n" in token: UpperCAmelCase : int =token.replace('''\n''' , ''' __newln__''' ) UpperCAmelCase : Dict =token.split(''' ''' ) UpperCAmelCase : Union[str, Any] =[] for token in tokens: if not len(__lowerCAmelCase ): continue UpperCAmelCase : Optional[Any] =token.lower() UpperCAmelCase : Any =tuple(__lowerCAmelCase ) UpperCAmelCase : List[Any] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCAmelCase : str =get_pairs(__lowerCAmelCase ) if not pairs: words.append(__lowerCAmelCase ) continue while True: UpperCAmelCase : Union[str, Any] =min(__lowerCAmelCase , key=lambda snake_case__ : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Any =bigram UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Tuple =0 while i < len(__lowerCAmelCase ): try: UpperCAmelCase : Optional[int] =word.index(__lowerCAmelCase , __lowerCAmelCase ) new_word.extend(word[i:j] ) UpperCAmelCase : Optional[Any] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Optional[int] =tuple(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =new_word if len(__lowerCAmelCase ) == 1: break else: UpperCAmelCase : Tuple =get_pairs(__lowerCAmelCase ) UpperCAmelCase : List[Any] ='''@@ '''.join(__lowerCAmelCase ) UpperCAmelCase : Any =word[:-4] UpperCAmelCase : List[Any] =word words.append(__lowerCAmelCase ) return " ".join(__lowerCAmelCase ) def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : int =[] UpperCAmelCase : int =re.findall(r'''\S+\n?''' , __lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int =token.lower() return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' return self.decoder.get(__lowerCAmelCase , self.unk_token ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' '''.join(__lowerCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str: '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[Any] =os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : int =os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) UpperCAmelCase : Tuple =0 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : str =token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
348
'''simple docstring''' def snake_case__ ( _A: str ) -> list[int]: '''simple docstring''' lowerCAmelCase = [0 for i in range(len(_A ) )] # initialize interval's left pointer and right pointer lowerCAmelCase , lowerCAmelCase = 0, 0 for i in range(1 , len(_A ) ): # case when current index is inside the interval if i <= right_pointer: lowerCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCAmelCase = min_edge while go_next(_A , _A , _A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCAmelCase , lowerCAmelCase = i, i + z_result[i] - 1 return z_result def snake_case__ ( _A: int , _A: list[int] , _A: str ) -> bool: '''simple docstring''' return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]] def snake_case__ ( _A: str , _A: str ) -> int: '''simple docstring''' lowerCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
272
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A : str = IFInpaintingSuperResolutionPipeline A : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) A : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCAmelCase ( self ) -> List[Any]: return self._get_superresolution_dummy_components() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): snake_case_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: snake_case_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) snake_case_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCAmelCase ( self ) -> List[Any]: super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self ) -> Tuple: self._test_save_load_local() def _lowerCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
363
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Optional[int] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ['input_ids', 'attention_mask'] A : Dict = GPTaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = kwargs.pop("add_bos_token" , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) snake_case_ : int = add_prefix_space snake_case_ : str = pre_tok_class(**_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = add_prefix_space def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: snake_case_ : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: snake_case_ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] return input_ids
36
0
"""simple docstring""" import operator as op __A : str = "scaler.pt" __A : List[Any] = "pytorch_model" __A : Tuple = "random_states" __A : List[Any] = "optimizer" __A : str = "scheduler" __A : int = "pytorch_model.bin" __A : Union[str, Any] = "pytorch_model.bin.index.json" __A : Union[str, Any] = "model.safetensors" __A : List[Any] = "model.safetensors.index.json" __A : Any = "1.10.2" __A : List[Any] = "py38" __A : Dict = "4.17.0" __A : Union[str, Any] = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __A : List[str] = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __A : Any = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __A : Optional[Any] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __A : Optional[int] = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __A : List[str] = "2.0.1" __A : List[Any] = ["pdsh", "standard", "openmpi", "mvapich"] __A : int = ["default", "reduce-overhead", "max-autotune"] __A : Optional[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A : int = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __A : Union[str, Any] = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __A : Dict = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
260
"""simple docstring""" from __future__ import annotations from cmath import sqrt def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) snake_case = b * b - 4 * a * c snake_case = (-b + sqrt(_UpperCamelCase )) / (2 * a) snake_case = (-b - sqrt(_UpperCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case ,snake_case = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
150
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] = 200_0000 )-> int: '''simple docstring''' UpperCAmelCase__ : Tuple = [0] UpperCAmelCase__ : Dict = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase__ : Any = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase__ : List[Any] = 0 # an estimate of b, using the quadratic formula UpperCAmelCase__ : Dict = 42 # the largest integer less than b_estimate UpperCAmelCase__ : int = 42 # the largest integer less than b_estimate UpperCAmelCase__ : Any = 42 # the triangle number corresponding to b_floor UpperCAmelCase__ : Tuple = 42 # the triangle number corresponding to b_ceil UpperCAmelCase__ : List[Any] = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase__ : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase__ : Union[str, Any] = floor(__snake_case ) UpperCAmelCase__ : Tuple = ceil(__snake_case ) UpperCAmelCase__ : Optional[Any] = triangle_numbers[b_floor] UpperCAmelCase__ : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ : Dict = triangle_b_first_guess * triangle_a UpperCAmelCase__ : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ : int = triangle_b_second_guess * triangle_a UpperCAmelCase__ : List[str] = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
362
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = None , **snake_case , ): lowercase = path_or_paths lowercase = split if split or isinstance(snake_case , snake_case ) else 'train' lowercase = features lowercase = cache_dir lowercase = keep_in_memory lowercase = streaming lowercase = num_proc lowercase = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): pass class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = None , **snake_case , ): lowercase = features lowercase = cache_dir lowercase = keep_in_memory lowercase = streaming lowercase = num_proc lowercase = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): pass
195
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = test_results.split(' ' ) lowercase = 0 lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(__SCREAMING_SNAKE_CASE ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = {} lowercase = None lowercase = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , __SCREAMING_SNAKE_CASE ): lowercase = True lowercase = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowercase = line lowercase = False return failures class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = title lowercase = doc_test_results['time_spent'].split(',' )[0] lowercase = doc_test_results['success'] lowercase = doc_test_results['failures'] lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase = doc_test_results @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [self._time_spent] lowercase = 0 for time in time_spent: lowercase = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(snake_case ) == 1: lowercase = [0, 0, time_parts[0]] lowercase , lowercase , lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowercase , lowercase , lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(snake_case )}h{int(snake_case )}m{int(snake_case )}s''' @property def SCREAMING_SNAKE_CASE__ ( self ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE__ ( self ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def SCREAMING_SNAKE_CASE__ ( self ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 40 lowercase = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(snake_case , snake_case )} lowercase = '' for category, failures in category_failures.items(): if len(snake_case ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(snake_case ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(snake_case ) @staticmethod def SCREAMING_SNAKE_CASE__ ( ): lowercase = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(snake_case )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowercase = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' lowercase = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = '' for key, value in failures.items(): lowercase = value[:200] + ' [Truncated]' if len(snake_case ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' lowercase = job_name lowercase = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowercase = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE__ ( self ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowercase = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowercase = sorted(self.doc_test_results.items() , key=lambda snake_case : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowercase = F'''*Num failures* :{len(job_result['failed'] )} \n''' lowercase = job_result['failures'] lowercase = self.get_reply_blocks(snake_case , snake_case , snake_case , text=snake_case ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'''Results for {job}''' , blocks=snake_case , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def UpperCAmelCase_ ( ): lowercase = os.environ['GITHUB_RUN_ID'] lowercase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowercase = requests.get(__SCREAMING_SNAKE_CASE ).json() lowercase = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowercase = math.ceil((result['total_count'] - 100) / 100 ) for i in range(__SCREAMING_SNAKE_CASE ): lowercase = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , __SCREAMING_SNAKE_CASE ) return {} def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = {} if os.path.exists(__SCREAMING_SNAKE_CASE ): lowercase = os.listdir(__SCREAMING_SNAKE_CASE ) for file in files: try: with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , encoding='utf-8' ) as f: lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}.''' ) from e return _artifact def UpperCAmelCase_ ( ): class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = name lowercase = [] def __str__( self ): return self.name def SCREAMING_SNAKE_CASE__ ( self , snake_case ): self.paths.append({'name': self.name, 'path': path} ) lowercase = {} lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: lowercase = directory if artifact_name not in _available_artifacts: lowercase = Artifact(__SCREAMING_SNAKE_CASE ) _available_artifacts[artifact_name].add_path(__SCREAMING_SNAKE_CASE ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase = get_job_links() UpperCAmelCase = retrieve_available_artifacts() UpperCAmelCase = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase = github_actions_job_links.get('''run_doctests''') UpperCAmelCase = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] UpperCAmelCase = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = handle_test_results(artifact['''stats''']) UpperCAmelCase = failed UpperCAmelCase = success UpperCAmelCase = time_spent[1:-1] + ''', ''' UpperCAmelCase = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): UpperCAmelCase = line.replace('''FAILED ''', '''''') UpperCAmelCase = line.split()[0].replace('''\n''', '''''') if "::" in line: UpperCAmelCase , UpperCAmelCase = line.split('''::''') else: UpperCAmelCase , UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase = all_failures[test] if test in all_failures else '''N/A''' UpperCAmelCase = failure break UpperCAmelCase = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
195
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'AutoImageProcessor' lowercase__ = 'AutoTokenizer' def __init__( self , __a=None , __a=None , **__a) -> Dict: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) _UpperCamelCase = self.image_processor _UpperCamelCase = False def __call__( self , *__a , **__a) -> Dict: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a) _UpperCamelCase = kwargs.pop('''images''' , __a) _UpperCamelCase = kwargs.pop('''text''' , __a) if len(__a) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''') if images is not None: _UpperCamelCase = self.image_processor(__a , *__a , **__a) if text is not None: _UpperCamelCase = self.tokenizer(__a , **__a) if text is None: return inputs elif images is None: return encodings else: _UpperCamelCase = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , *__a , **__a) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @contextmanager def UpperCAmelCase ( self) -> int: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''') _UpperCamelCase = True _UpperCamelCase = self.tokenizer yield _UpperCamelCase = self.image_processor _UpperCamelCase = False def UpperCAmelCase ( self , __a , __a=False , __a=None) -> Dict: '''simple docstring''' if added_vocab is None: _UpperCamelCase = self.tokenizer.get_added_vocab() _UpperCamelCase = {} while tokens: _UpperCamelCase = re.search(R'''<s_(.*?)>''' , __a , re.IGNORECASE) if start_token is None: break _UpperCamelCase = start_token.group(1) _UpperCamelCase = re.search(RF'''</s_{key}>''' , __a , re.IGNORECASE) _UpperCamelCase = start_token.group() if end_token is None: _UpperCamelCase = tokens.replace(__a , '''''') else: _UpperCamelCase = end_token.group() _UpperCamelCase = re.escape(__a) _UpperCamelCase = re.escape(__a) _UpperCamelCase = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , __a , re.IGNORECASE) if content is not None: _UpperCamelCase = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCamelCase = self.tokenajson(__a , is_inner_value=__a , added_vocab=__a) if value: if len(__a) == 1: _UpperCamelCase = value[0] _UpperCamelCase = value else: # leaf nodes _UpperCamelCase = [] for leaf in content.split(R'''<sep/>'''): _UpperCamelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCamelCase = leaf[1:-2] # for categorical special tokens output[key].append(__a) if len(output[key]) == 1: _UpperCamelCase = output[key][0] _UpperCamelCase = tokens[tokens.find(__a) + len(__a) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__a , added_vocab=__a) if len(__a): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
100
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> Any: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
100
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=3_2 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=4 , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : List[str] = True A__ : Optional[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__UpperCamelCase ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCamelCase_ = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase_ = model(__UpperCamelCase )[0] UpperCamelCase_ = 5_0_0_0_0 UpperCamelCase_ = (1, 6, vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
122
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase_ : def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return None class lowercase_ : def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return None class lowercase_ ( unittest.TestCase ): A__ : Union[str, Any] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , """tf""" , 1_2 , **__UpperCamelCase ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase , """pt""" , 1_2 , **__UpperCamelCase ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import BertModel UpperCamelCase_ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__UpperCamelCase ) ) vocab_file.flush() UpperCamelCase_ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase_ = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase , """pt""" , 1_2 , __UpperCamelCase ) @require_tf @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_ = self._test_export(__UpperCamelCase , """tf""" , 1_2 , **__UpperCamelCase ) UpperCamelCase_ = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def lowerCamelCase_ ( self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_ = self._test_export(__UpperCamelCase , """pt""" , 1_2 , **__UpperCamelCase ) UpperCamelCase_ = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase_ = Path(__UpperCamelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import BertModel UpperCamelCase_ = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , """pt""" ) @require_tf @require_tokenizers @slow def lowerCamelCase_ ( self ): """simple docstring""" from transformers import TFBertModel UpperCamelCase_ = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) UpperCamelCase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCamelCase , __UpperCamelCase , """tf""" ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FeatureExtractionPipeline(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = infer_shapes(__UpperCamelCase , __UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] , __UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ["""input_ids""", """attention_mask""", """token_type_ids"""] UpperCamelCase_ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} UpperCamelCase_ , UpperCamelCase_ = ensure_valid_input(FuncContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) , set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase_ , UpperCamelCase_ = ensure_valid_input(FuncNonContiguousArgs() , __UpperCamelCase , __UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) , 1 ) self.assertEqual(len(__UpperCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
122
1
from string import ascii_uppercase UpperCamelCase__ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCamelCase__ = dict(enumerate(ascii_uppercase)) def _UpperCamelCase (a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = len(a__ ) UpperCamelCase__ = 0 while True: if x == i: UpperCamelCase__ = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def _UpperCamelCase (a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = """""" UpperCamelCase__ = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase__ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _UpperCamelCase (a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = """""" UpperCamelCase__ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase__ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = """THE GERMAN ATTACK""" UpperCamelCase__ = """SECRET""" UpperCamelCase__ = generate_key(a__ , a__ ) UpperCamelCase__ = cipher_text(a__ , a__ ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
1
def UpperCamelCase_( ) -> Dict: _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = 1 while len(lowerCamelCase_ ) < 1e6: constant.append(str(lowerCamelCase_ ) ) i += 1 _lowercase : int = ''.join(lowerCamelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowerCAmelCase : Any = """bart""" _lowerCAmelCase : int = True @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' if LOAD_DENSE_INDEX: UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) UpperCAmelCase__ : Tuple = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) UpperCAmelCase__ : Dict = qar_model.eval() else: UpperCAmelCase__ , UpperCAmelCase__ : Dict = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) UpperCAmelCase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) UpperCAmelCase__ : int = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) UpperCAmelCase__ : Tuple = sas_model.eval() else: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> str: '''simple docstring''' if LOAD_DENSE_INDEX: UpperCAmelCase__ : List[Any] = faiss.StandardGpuResources() UpperCAmelCase__ : Any = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] UpperCAmelCase__ : Optional[int] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) UpperCAmelCase__ : Union[str, Any] = faiss.IndexFlatIP(128 ) UpperCAmelCase__ : Any = faiss.index_cpu_to_gpu(snake_case , 1 , snake_case ) wikiaab_gpu_index_flat.add(snake_case ) # TODO fix for larger GPU else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = (None, None) UpperCAmelCase__ : int = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) UpperCAmelCase__ : Any = elia["train_eli5"] UpperCAmelCase__ : List[Any] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) UpperCAmelCase__ : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case ) return (elia_train, eli5_train_q_index) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = load_indexes() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = load_models() _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_train_data() def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : str=10 )-> List[str]: '''simple docstring''' UpperCAmelCase__ : str = embed_questions_for_retrieval([question] , snake_case , snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : Any = eli5_train_q_index.search(snake_case , snake_case ) UpperCAmelCase__ : List[str] = [elia_train[int(snake_case )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Tuple="wiki40b" , snake_case : Dict="dense" , snake_case : Optional[int]=10 )-> Any: '''simple docstring''' if source == "none": UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase__ , UpperCAmelCase__ : int = query_qa_dense_index( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) else: UpperCAmelCase__ , UpperCAmelCase__ : Any = query_es_index( snake_case , snake_case , index_name="english_wiki40b_snippets_100w" , n_results=snake_case , ) UpperCAmelCase__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] UpperCAmelCase__ : str = "question: {} context: {}".format(snake_case , snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case : None), } ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[int] , snake_case : Any , snake_case : Dict=64 , snake_case : Any=256 , snake_case : Optional[Any]=False , snake_case : Optional[int]=2 , snake_case : Optional[Any]=0.95 , snake_case : Dict=0.8 )-> Optional[Any]: '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : List[str] = qa_sas_generate( snake_case , snake_case , snake_case , num_answers=1 , num_beams=snake_case , min_len=snake_case , max_len=snake_case , do_sample=snake_case , temp=snake_case , top_p=snake_case , top_k=snake_case , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _lowerCAmelCase : Dict = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _lowerCAmelCase : Union[str, Any] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowerCAmelCase : Optional[Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _lowerCAmelCase : int = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _lowerCAmelCase : Union[str, Any] = st.sidebar.checkbox("""Demo options""") if demo_options: _lowerCAmelCase : str = st.sidebar.selectbox( """""", action_list, index=3, ) _lowerCAmelCase : List[str] = action_list.index(action_st) _lowerCAmelCase : int = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _lowerCAmelCase : int = show_type == """Show full text of passages""" else: _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Any = True _lowerCAmelCase : str = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _lowerCAmelCase : Union[str, Any] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _lowerCAmelCase : Any = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _lowerCAmelCase : Union[str, Any] = """wiki40b""" _lowerCAmelCase : Any = """dense""" _lowerCAmelCase : Tuple = """beam""" _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Any = 64 _lowerCAmelCase : Optional[int] = 256 _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = st.sidebar.checkbox("""Generation options""") if generate_options: _lowerCAmelCase : str = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _lowerCAmelCase : Tuple = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _lowerCAmelCase : List[str] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _lowerCAmelCase : int = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowerCAmelCase : str = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowerCAmelCase : int = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowerCAmelCase : Dict = None # start main text _lowerCAmelCase : Optional[Any] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _lowerCAmelCase : Union[str, Any] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowerCAmelCase : Optional[int] = st.text_input("""Enter your question here:""", """""") else: _lowerCAmelCase : Optional[Any] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _lowerCAmelCase , _lowerCAmelCase : Optional[int] = make_support(question, source=wiki_source, method="""dense""", n_results=10) _lowerCAmelCase , _lowerCAmelCase : int = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _lowerCAmelCase : Any = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowerCAmelCase : int = support_list[:10] _lowerCAmelCase : Any = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _lowerCAmelCase , _lowerCAmelCase : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _lowerCAmelCase : List[Any] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _lowerCAmelCase : int = res[1].strip() if sec_titles == "": _lowerCAmelCase : int = """[{}]({})""".format(res[0], wiki_url) else: _lowerCAmelCase : Any = sec_titles.split(""" & """) _lowerCAmelCase : Tuple = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _lowerCAmelCase : int = find_nearest_training(question) _lowerCAmelCase : Optional[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _lowerCAmelCase : str = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _lowerCAmelCase : Union[str, Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
298
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) ) class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = sr_ratios _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = downsampling_rates _lowerCAmelCase = num_attention_heads _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple: _lowerCAmelCase = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase: Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase: Tuple = True _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Optional[Any] = False def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = SegformerModelTester(self ) _lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowercase__ ( self : Optional[int] ) -> int: pass def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _lowerCAmelCase = len(__snake_case ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase__ ( self : int ) -> List[str]: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = model(**__snake_case ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Tuple ) -> Dict: pass @slow def lowercase__ ( self : str ) -> Optional[int]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) ) @slow def lowercase__ ( self : Any ) -> str: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = outputs.logits.detach().cpu() _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) _lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
70
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """lxmert""" lowerCAmelCase_ = {} def __init__( self , A_=30522 , A_=768 , A_=12 , A_=9500 , A_=1600 , A_=400 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=9 , A_=5 , A_=5 , A_=2048 , A_=4 , A_=6.67 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=True , A_=True , **A_ , )-> int: '''simple docstring''' UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = num_qa_labels UpperCamelCase = num_object_labels UpperCamelCase = num_attr_labels UpperCamelCase = l_layers UpperCamelCase = x_layers UpperCamelCase = r_layers UpperCamelCase = visual_feat_dim UpperCamelCase = visual_pos_dim UpperCamelCase = visual_loss_normalizer UpperCamelCase = task_matched UpperCamelCase = task_mask_lm UpperCamelCase = task_obj_predict UpperCamelCase = task_qa UpperCamelCase = visual_obj_loss UpperCamelCase = visual_attr_loss UpperCamelCase = visual_feat_loss UpperCamelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**A_ )
251
'''simple docstring''' from __future__ import annotations from statistics import mean def A_( A : list[int] , A : list[int] , A : int): UpperCamelCase = [0] * no_of_processes UpperCamelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(A): UpperCamelCase = burst_time[i] UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: UpperCamelCase = [] UpperCamelCase = -1 for i in range(A): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(A) if len(A) > 0: UpperCamelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: UpperCamelCase = i total_time += burst_time[target_process] completed += 1 UpperCamelCase = 0 UpperCamelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def A_( A : list[int] , A : int , A : list[int]): UpperCamelCase = [0] * no_of_processes for i in range(A): UpperCamelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowerCAmelCase : int = 4 lowerCAmelCase : Any = [2, 5, 3, 7] lowerCAmelCase : int = [0, 0, 0, 0] lowerCAmelCase : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase : Optional[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
251
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : List[str] = parent __A : int = 13 __A : Optional[int] = 7 __A : int = True __A : List[str] = True __A : str = True __A : int = True __A : int = 99 __A : str = 32 __A : Tuple = 2 __A : int = 4 __A : str = 37 __A : List[str] = """gelu""" __A : Tuple = 0.1 __A : Tuple = 0.1 __A : Optional[Any] = 512 __A : Union[str, Any] = 16 __A : Optional[Any] = 2 __A : Union[str, Any] = 0.02 __A : Union[str, Any] = 3 __A : Tuple = 4 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : List[Any] = None if self.use_input_mask: __A : int = random_attention_mask([self.batch_size, self.seq_length]) __A : Any = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Dict = None __A : List[Any] = None __A : Dict = None if self.use_labels: __A : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : int = ids_tensor([self.batch_size] , self.num_choices) __A : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFRoFormerModel(config=_UpperCAmelCase) __A : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __A : int = [input_ids, input_mask] __A : Tuple = model(_UpperCAmelCase) __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = True __A : Any = TFRoFormerForCausalLM(config=_UpperCAmelCase) __A : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __A : Dict = model(_UpperCAmelCase)["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = TFRoFormerForMaskedLM(config=_UpperCAmelCase) __A : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __A : Optional[int] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = self.num_labels __A : Optional[int] = TFRoFormerForSequenceClassification(config=_UpperCAmelCase) __A : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __A : Tuple = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_choices __A : List[Any] = TFRoFormerForMultipleChoice(config=_UpperCAmelCase) __A : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Any = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = self.num_labels __A : Tuple = TFRoFormerForTokenClassification(config=_UpperCAmelCase) __A : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFRoFormerForQuestionAnswering(config=_UpperCAmelCase) __A : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __A : Optional[int] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() ( __A ) : Any = config_and_inputs __A : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFRoFormerModelTester(self) __A : Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base') self.assertIsNotNone(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base') __A : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[Any] = model(_UpperCAmelCase)[0] # TODO Replace vocab size __A : Tuple = 5_0000 __A : Optional[int] = [1, 6, vocab_size] self.assertEqual(output.shape , _UpperCAmelCase) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. __A : Dict = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = 1E-4 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = tf.constant([[4, 10]]) __A : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6) __A : Optional[Any] = emba(input_ids.shape) __A : Union[str, Any] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]) tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ]) __A : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512) emba([2, 16, 512]) __A : Union[str, Any] = emba.weight[:3, :5] tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = 1E-4 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __A : int = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __A : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64) __A : List[Any] = embed_positions([2, 16, 768])[None, None, :, :] __A : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Any = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ]) __A : Dict = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ]) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance)
190
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str __UpperCamelCase : int def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> list[str]: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _a : List[Any] =all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a : BWTTransformDict ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _a : List[str] =int(_UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _a : Optional[int] =[""""""] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _a : int =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A__: Any = '''Provide a string that I will generate its BWT transform: ''' A__: Union[str, Any] = input(entry_msg).strip() A__: Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) A__: Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
276
0
import datasets from .evaluate import evaluate lowerCAmelCase__ :List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase__ :Any = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase__ :int = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _UpperCAmelCase = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _UpperCAmelCase = evaluate(dataset=__lowercase , predictions=__lowercase ) return score
359
from importlib import import_module from .logging import get_logger lowerCAmelCase__ :Optional[Any] = get_logger(__name__) class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" _UpperCAmelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = module._original_module if isinstance(_SCREAMING_SNAKE_CASE , _PatchedModuleObj ) else module class __a : _a : Any = [] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = obj _UpperCAmelCase = target _UpperCAmelCase = new _UpperCAmelCase = target.split('.' )[0] _UpperCAmelCase = {} _UpperCAmelCase = attrs or [] def __enter__( self ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_SCREAMING_SNAKE_CASE ) ): try: _UpperCAmelCase = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase = getattr(self.obj , _SCREAMING_SNAKE_CASE ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_SCREAMING_SNAKE_CASE , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase = obj_attr # patch at top level setattr(self.obj , _SCREAMING_SNAKE_CASE , _PatchedModuleObj(_SCREAMING_SNAKE_CASE , attrs=self.attrs ) ) _UpperCAmelCase = getattr(self.obj , _SCREAMING_SNAKE_CASE ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _PatchedModuleObj(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , attrs=self.attrs ) ) _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # finally set the target attribute setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase = getattr(import_module('.'.join(_SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _SCREAMING_SNAKE_CASE ) is attr_value: _UpperCAmelCase = getattr(self.obj , _SCREAMING_SNAKE_CASE ) setattr(self.obj , _SCREAMING_SNAKE_CASE , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase = globals()['__builtins__'][target_attr] setattr(self.obj , _SCREAMING_SNAKE_CASE , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , _SCREAMING_SNAKE_CASE , self.original.pop(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
185
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : jnp.ndarray @flax_register_to_config class A__ ( nn.Module , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 4 lowerCAmelCase__ : int = 4 lowerCAmelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCAmelCase__ : Union[bool, Tuple[bool]] = False lowerCAmelCase__ : Tuple[int] = (320, 640, 1280, 1280) lowerCAmelCase__ : int = 2 lowerCAmelCase__ : Union[int, Tuple[int]] = 8 lowerCAmelCase__ : Optional[Union[int, Tuple[int]]] = None lowerCAmelCase__ : int = 1280 lowerCAmelCase__ : float = 0.0 lowerCAmelCase__ : bool = False lowerCAmelCase__ : jnp.dtype = jnp.floataa lowerCAmelCase__ : bool = True lowerCAmelCase__ : int = 0 lowerCAmelCase__ : bool = False def a__ ( self : int , _UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) __lowercase = jnp.ones((1,) , dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(_UpperCAmelCase ) __lowercase = {'params': params_rng, 'dropout': dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowercase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) __lowercase = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowercase = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) __lowercase = down_blocks # mid __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __lowercase = [] __lowercase = list(reversed(_UpperCAmelCase ) ) __lowercase = list(reversed(_UpperCAmelCase ) ) __lowercase = list(reversed(_UpperCAmelCase ) ) __lowercase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __lowercase = output_channel __lowercase = reversed_block_out_channels[i] __lowercase = reversed_block_out_channels[min(i + 1 , len(_UpperCAmelCase ) - 1 )] __lowercase = i == len(_UpperCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __lowercase = FlaxCrossAttnUpBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowercase = FlaxUpBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_UpperCAmelCase ) __lowercase = output_channel __lowercase = up_blocks # out __lowercase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: """simple docstring""" if not isinstance(_UpperCAmelCase , jnp.ndarray ): __lowercase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(_UpperCAmelCase , 0 ) __lowercase = self.time_proj(_UpperCAmelCase ) __lowercase = self.time_embedding(_UpperCAmelCase ) # 2. pre-process __lowercase = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) __lowercase = self.conv_in(_UpperCAmelCase ) # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase , __lowercase = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: __lowercase , __lowercase = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __lowercase = () for down_block_res_sample, down_block_additional_residual in zip( _UpperCAmelCase , _UpperCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __lowercase = new_down_block_res_samples # 4. mid __lowercase = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __lowercase = down_block_res_samples[-(self.layers_per_block + 1) :] __lowercase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = up_block( _UpperCAmelCase , temb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train , ) else: __lowercase = up_block(_UpperCAmelCase , temb=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train ) # 6. post-process __lowercase = self.conv_norm_out(_UpperCAmelCase ) __lowercase = nn.silu(_UpperCAmelCase ) __lowercase = self.conv_out(_UpperCAmelCase ) __lowercase = jnp.transpose(_UpperCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_UpperCAmelCase )
325
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ ( unittest.TestCase): def __init__( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=7 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Dict=18 , UpperCamelCase__ : List[Any]=30 , UpperCamelCase__ : Optional[int]=400 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[int] = min_resolution SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE : Optional[int] = do_resize SCREAMING_SNAKE_CASE : str = size SCREAMING_SNAKE_CASE : List[str] = apply_ocr def __A ( self : Optional[Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaImageProcessingTester(self ) @property def __A ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''apply_ocr''' ) ) def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __A ( self : List[str] ): '''simple docstring''' pass def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , UpperCamelCase__ ) self.assertIsInstance(encoding.boxes , UpperCamelCase__ ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE : Dict = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE : Dict = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Any = image_processing(UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE : Optional[int] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCamelCase__ ) self.assertListEqual(encoding.boxes , UpperCamelCase__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE : str = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
258
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.txt'} __UpperCamelCase : Tuple = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : Union[str, Any] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def A ( _lowercase ): with open(_lowercase , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Union[str, Any]="<cls>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any="<eos>" , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_vocab_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE : List[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE : Union[str, Any] = unk_token SCREAMING_SNAKE_CASE : Any = cls_token SCREAMING_SNAKE_CASE : List[str] = pad_token SCREAMING_SNAKE_CASE : List[str] = mask_token SCREAMING_SNAKE_CASE : Any = eos_token SCREAMING_SNAKE_CASE : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' return text.split() def __A ( self : List[str] , UpperCamelCase__ : Dict=False ): '''simple docstring''' return len(self._id_to_token ) def __A ( self : Optional[Any] ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __A ( self : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __A ( self : Union[str, Any] , UpperCamelCase__ : List , UpperCamelCase__ : Optional[List] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE : List[str] = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCamelCase__ ) + [1] return mask def __A ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = os.path.join(UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __A ( self : Dict ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : Union[List[str], List[AddedToken]] , UpperCamelCase__ : bool = False ): '''simple docstring''' return super()._add_tokens(UpperCamelCase__ , special_tokens=UpperCamelCase__ )
258
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=2 , lowercase=24 , lowercase=16 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , lowercase=2 , lowercase=2 , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[int] = num_mel_bins _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Dict = scope _lowerCamelCase : List[str] = frequency_stride _lowerCamelCase : int = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCamelCase : str = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCamelCase : Optional[Any] = frequency_out_dimension * time_out_dimension _lowerCamelCase : Dict = num_patches + 2 def A_ ( self ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Dict = self.get_config() return config, input_values, labels def A_ ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = ASTModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self ): _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : List[Any] = config_and_inputs _lowerCamelCase : int = {'input_values': input_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A_ ( self ): _lowerCamelCase : Union[str, Any] = ASTModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : int = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(lowercase ) _lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ['input_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) @slow def A_ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = ASTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _snake_case ( ): _lowerCamelCase : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) _lowerCamelCase, _lowerCamelCase : Dict = torchaudio.load(lowercase__ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = self.default_feature_extractor _lowerCamelCase : str = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(lowercase ) _lowerCamelCase : List[str] = self.default_feature_extractor _lowerCamelCase, _lowerCamelCase : List[Any] = prepare_audio() _lowerCamelCase : Union[str, Any] = audio.squeeze().numpy() _lowerCamelCase : Dict = feature_extractor(lowercase , sampling_rate=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _lowerCamelCase : int = model(**lowercase ) # verify the logits _lowerCamelCase : Dict = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowercase ) _lowerCamelCase : Optional[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
96
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
0
"""simple docstring""" from maths.prime_check import is_prime def __lowercase ( _a ): if not isinstance(_a , _a ): snake_case_ : List[Any] = f"Input value of [number={number}] must be an integer" raise TypeError(_a ) if is_prime(_a ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
155
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ : str = Text( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , **lowercase_ , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: snake_case_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
155
1