code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from math import factorial, pi def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 30 ) -> float: if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) UpperCAmelCase__ : Dict = float(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 30 ) -> float: if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) UpperCAmelCase__ : Union[str, Any] = float(lowerCAmelCase__ ) UpperCAmelCase__ : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
181
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') UpperCamelCase__ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: UpperCamelCase__ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
181
1
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = 0 lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = {} def a__ (self, lowerCamelCase_ ): '''simple docstring''' if vertex not in self.adjacency: lowerCamelCase__ : Optional[Any] = {} self.num_vertices += 1 def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return lowerCamelCase__ : List[Any] = weight lowerCamelCase__ : Optional[int] = weight def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_edges() for edge in edges: lowerCamelCase__ : Tuple = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[Any] = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase__ : Optional[int] = edges[i][2] + 1 for edge in edges: lowerCamelCase__ : int = edge lowerCamelCase__ : Any = weight lowerCamelCase__ : Any = weight def __str__(self ): '''simple docstring''' lowerCamelCase__ : str = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase__ : List[Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ (self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def a__ (lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[Any] = Graph() if vertices is None: lowerCamelCase__ : Any = [] if edges is None: lowerCamelCase__ : Any = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = {} lowerCamelCase__ : List[Any] = {} def __len__(self ): '''simple docstring''' return len(self.parent ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = item lowerCamelCase__ : Union[str, Any] = 0 return item def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: lowerCamelCase__ : int = self.find(self.parent[item] ) return self.parent[item] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.find(lowerCamelCase_ ) lowerCamelCase__ : Dict = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase__ : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase__ : Union[str, Any] = roota return roota return None @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = graph.num_vertices lowerCamelCase__ : Optional[Any] = Graph.UnionFind() lowerCamelCase__ : Optional[Any] = [] while num_components > 1: lowerCamelCase__ : Optional[int] = {} for vertex in graph.get_vertices(): lowerCamelCase__ : Union[str, Any] = -1 lowerCamelCase__ : Tuple = graph.get_edges() for edge in edges: lowerCamelCase__ : Optional[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase__ : List[str] = edge lowerCamelCase__ : List[str] = union_find.find(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase__ : Any = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_, lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase__ : Union[str, Any] = num_components - 1 lowerCamelCase__ : Union[str, Any] = Graph.build(edges=lowerCamelCase_ ) return mst
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Union[str, Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
118
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''char''' lowerCamelCase__ = '''bpe''' lowerCamelCase__ = '''wp''' A : Tuple = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''char_tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = '''MgpstrTokenizer''' def __init__( self : Optional[Any] , __magic_name__ : Tuple=None , __magic_name__ : int=None , **__magic_name__ : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained("gpt2" ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : Dict , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=None , **__magic_name__ : Tuple ) -> int: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None: SCREAMING_SNAKE_CASE_ = self.char_tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings["input_ids"] return inputs def __A ( self : Tuple , __magic_name__ : int ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sequences SCREAMING_SNAKE_CASE_ = char_preds.size(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._decode_helper(__magic_name__ , "char" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._decode_helper(__magic_name__ , "bpe" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._decode_helper(__magic_name__ , "wp" ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE_ = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE_ = scores.index(max(__magic_name__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = final_strs SCREAMING_SNAKE_CASE_ = final_scores SCREAMING_SNAKE_CASE_ = char_strs SCREAMING_SNAKE_CASE_ = bpe_strs SCREAMING_SNAKE_CASE_ = wp_strs return out def __A ( self : int , __magic_name__ : List[Any] , __magic_name__ : str ) -> Any: if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE_ = self.char_decode SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = "[s]" elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE_ = self.bpe_decode SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = "#" elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE_ = self.wp_decode SCREAMING_SNAKE_CASE_ = 102 SCREAMING_SNAKE_CASE_ = "[SEP]" else: raise ValueError(F'''Format {format} is not supported.''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] SCREAMING_SNAKE_CASE_ = pred_logits.size(0 ) SCREAMING_SNAKE_CASE_ = pred_logits.size(1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pred_logits.topk(1 , dim=-1 , largest=__magic_name__ , sorted=__magic_name__ ) SCREAMING_SNAKE_CASE_ = preds_index.view(-1 , __magic_name__ )[:, 1:] SCREAMING_SNAKE_CASE_ = decoder(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.nn.functional.softmax(__magic_name__ , dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE_ = preds_max_prob[:, 1:] for index in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = preds_str[index].find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE_ = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE_ = pred_index.index(__magic_name__ ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE_ = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__magic_name__ ) conf_scores.append(__magic_name__ ) return dec_strs, conf_scores def __A ( self : Any , __magic_name__ : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__magic_name__ )] return decode_strs def __A ( self : Any , __magic_name__ : Union[str, Any] ) -> Tuple: return self.bpe_tokenizer.batch_decode(__magic_name__ ) def __A ( self : str , __magic_name__ : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__magic_name__ )] return decode_strs
118
1
"""simple docstring""" import math def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float ) -> float: if ( not isinstance(lowerCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float ) -> float: if ( not isinstance(lowerCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple: lowerCamelCase_ : Optional[Any] =namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
209
0
'''simple docstring''' def _A ( ): lowercase__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ = 6 lowercase__ = 1 lowercase__ = 1901 lowercase__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
164
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A = "sshleifer/mar_enro_6_3_student" class A ( __UpperCAmelCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() lowercase__ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase__ , ) lowercase__ = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def A__ ( self ) -> str: '''simple docstring''' MarianMTModel.from_pretrained(lowerCamelCase__ ) @slow @require_torch_gpu def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowercase__ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase__ = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase__ = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationModule.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() lowercase__ = main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A ( __UpperCAmelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' lowercase__ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowercase__ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowercase__ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = bash_script.replace("""--fp16""" , """""" ) lowercase__ = 6 lowercase__ = ( ["""distillation.py"""] + bash_script.split() + [ F'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", F'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationDistiller.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase__ = distill_main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
164
1
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : str ) -> set[str]: """simple docstring""" lowerCAmelCase, lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ), [start] while stack: lowerCAmelCase = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored UpperCAmelCase = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
367
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __snake_case( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_=1 , A_=False , **A_ ) -> Optional[int]: super().__init__(**A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = d_embed lowerCAmelCase = d_proj lowerCAmelCase = cutoffs + [vocab_size] lowerCAmelCase = [0] + self.cutoffs lowerCAmelCase = div_val lowerCAmelCase = self.cutoffs[0] lowerCAmelCase = len(self.cutoffs ) - 1 lowerCAmelCase = self.shortlist_size + self.n_clusters lowerCAmelCase = keep_order lowerCAmelCase = [] lowerCAmelCase = [] def __snake_case ( self , A_ ) -> int: if self.n_clusters > 0: lowerCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=A_ , name="""cluster_weight""" ) lowerCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=A_ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=A_ , name=f'out_projs_._{i}' , ) self.out_projs.append(A_ ) else: self.out_projs.append(A_ ) lowerCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._weight' , ) lowerCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase, lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase = self.d_embed // (self.div_val**i) lowerCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=A_ , name=f'out_projs_._{i}' ) self.out_projs.append(A_ ) lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._weight' , ) lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(A_ ) @staticmethod def __snake_case ( A_ , A_ , A_ , A_=None ) -> List[Any]: lowerCAmelCase = x if proj is not None: lowerCAmelCase = tf.einsum("""ibd,ed->ibe""" , A_ , A_ ) return tf.einsum("""ibd,nd->ibn""" , A_ , A_ ) + b @staticmethod def __snake_case ( A_ , A_ ) -> Dict: lowerCAmelCase = shape_list(A_ ) lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(A_ , A_ ) def __snake_case ( self , A_ , A_ , A_=True , A_=False ) -> Tuple: lowerCAmelCase = 0 if self.n_clusters == 0: lowerCAmelCase = self._logit(A_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=A_ , logits=A_ ) lowerCAmelCase = tf.nn.log_softmax(A_ , axis=-1 ) else: lowerCAmelCase = shape_list(A_ ) lowerCAmelCase = [] lowerCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase, lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase = (target >= l_idx) & (target < r_idx) lowerCAmelCase = tf.where(A_ ) lowerCAmelCase = tf.boolean_mask(A_ , A_ ) - l_idx if self.div_val == 1: lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase = self.out_layers[i][0] lowerCAmelCase = self.out_layers[i][1] if i == 0: lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase = self._logit(A_ , A_ , A_ , self.out_projs[0] ) lowerCAmelCase = tf.nn.log_softmax(A_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = self._gather_logprob(A_ , A_ ) else: lowerCAmelCase = self._logit(A_ , A_ , A_ , self.out_projs[i] ) lowerCAmelCase = tf.nn.log_softmax(A_ ) lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(A_ ) if target is not None: lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = self._gather_logprob(A_ , A_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(A_ , -cur_logprob , shape_list(A_ ) ) lowerCAmelCase = tf.concat(A_ , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase = tf.reduce_mean(A_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(A_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(A_ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
187
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase : Optional[Any] = """src/diffusers""" # Matches is_xxx_available() lowerCAmelCase : str = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCAmelCase : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCAmelCase : Union[str, Any] = """ {0} = None """ lowerCAmelCase : List[str] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCAmelCase : List[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = _re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def A_ ( ): with open(os.path.join(_UpperCAmelCase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 SCREAMING_SNAKE_CASE_: Optional[int] = {} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE_: List[str] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_: str = [] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE_: List[Any] = lines[line_index] SCREAMING_SNAKE_CASE_: Optional[int] = _re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: Any = objects else: line_index += 1 return backend_specific_objects def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase=None ): if backend_specific_objects is None: SCREAMING_SNAKE_CASE_: Optional[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE_: Optional[Any] = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE_: Tuple = "[" + ", ".join(f"\"{b}\"" for b in backend.split("_and_" ) ) + "]" SCREAMING_SNAKE_CASE_: Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) SCREAMING_SNAKE_CASE_: Any = dummy_file return dummy_files def A_ ( _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE_: int = {"torch": "pt"} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE_: Dict = os.path.join(_UpperCAmelCase , "utils" ) SCREAMING_SNAKE_CASE_: List[Any] = { backend: os.path.join(_UpperCAmelCase , f"dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py" ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE_: Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: Tuple = f.read() else: SCREAMING_SNAKE_CASE_: Optional[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
13
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A_, A_ ) def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : Dict = nn.Linear(A_, A_, bias=A_ ) _lowerCamelCase : str = emb.weight.data return lin_layer def snake_case_ ( A_ : str, A_ : Optional[int]="facebook/mbart-large-en-ro", A_ : Union[str, Any]=False, A_ : List[str]=False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.load(A_, map_location='''cpu''' )['''model'''] remove_ignore_keys_(A_ ) _lowerCamelCase : int = state_dict['''encoder.embed_tokens.weight'''].shape[0] _lowerCamelCase : Any = MBartConfig.from_pretrained(A_, vocab_size=A_ ) if mbart_aa and finetuned: _lowerCamelCase : Any = '''relu''' _lowerCamelCase : Optional[int] = state_dict['''decoder.embed_tokens.weight'''] _lowerCamelCase : Any = MBartForConditionalGeneration(A_ ) model.model.load_state_dict(A_ ) if finetuned: _lowerCamelCase : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
72
0
import numpy class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def UpperCAmelCase ( self ) -> numpy.ndarray: _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase ( self ) -> None: _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def snake_case ( snake_case__ :Optional[int]) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value)) def snake_case ( snake_case__ :Dict) -> numpy.ndarray: return (value) * (1 - (value)) def snake_case ( ) -> int: _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
361
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
81
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
266
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''], model_result['''ss'''] ): __A = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sgugger/tiny-distilbert-classification''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, only_pretrain_model=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, torchscript=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''', '''Cant do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, fpaa=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` __A = None __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''', '''Can\'t do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, save_to_csv=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(_lowerCamelCase, '''inf_time.csv''' ), train_memory_csv_file=os.path.join(_lowerCamelCase, '''train_mem.csv''' ), inference_memory_csv_file=os.path.join(_lowerCamelCase, '''inf_mem.csv''' ), train_time_csv_file=os.path.join(_lowerCamelCase, '''train_time.csv''' ), env_info_csv_file=os.path.join(_lowerCamelCase, '''env.csv''' ), multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''env.csv''' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : List[Any] ): self.assertTrue(hasattr(_lowerCamelCase, '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(_lowerCamelCase, '''log.txt''' ), log_print=_lowerCamelCase, trace_memory_line_by_line=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''log.txt''' ) ).exists() )
266
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCamelCase ( snake_case__ ): '''simple docstring''' def __init__( self , __a , __a=None , __a=None , __a=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(_A , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_A )] ) @property def snake_case ( self ): return self.base_dist.mean * self.scale + self.loc @property def snake_case ( self ): return self.base_dist.variance * self.scale**2 @property def snake_case ( self ): return self.variance.sqrt() class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , **__a ): super().__init__(**_A ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(_A , _A ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def snake_case ( self , __a ): __lowerCAmelCase = [proj(_A ) for proj in self.proj] return self.domain_map(*_A ) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCAmelCase = function def snake_case ( self , __a , *__a ): return self.function(_A , *_A ) class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : type __UpperCAmelCase : int __UpperCAmelCase : Dict[str, int] def __init__( self , __a = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def snake_case ( self , __a ): if self.dim == 1: return self.distribution_class(*_A ) else: return Independent(self.distribution_class(*_A ) , 1 ) def snake_case ( self , __a , __a = None , __a = None , ): __lowerCAmelCase = self._base_distribution(_A ) if loc is None and scale is None: return distr else: return AffineTransformed(_A , loc=_A , scale=_A , event_dim=self.event_dim ) @property def snake_case ( self ): return () if self.dim == 1 else (self.dim,) @property def snake_case ( self ): return len(self.event_shape ) @property def snake_case ( self ): return 0.0 def snake_case ( self , __a ): return ParameterProjection( in_features=_A , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def snake_case ( self , *__a ): raise NotImplementedError() @staticmethod def snake_case ( __a ): return (x + torch.sqrt(torch.square(_A ) + 4.0 )) / 2.0 class _UpperCamelCase ( snake_case__ ): '''simple docstring''' __UpperCAmelCase : Dict[str, int] ={"df": 1, "loc": 1, "scale": 1} __UpperCAmelCase : type =StudentT @classmethod def snake_case ( cls , __a , __a , __a ): __lowerCAmelCase = cls.squareplus(_A ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(_A ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCamelCase ( snake_case__ ): '''simple docstring''' __UpperCAmelCase : Dict[str, int] ={"loc": 1, "scale": 1} __UpperCAmelCase : type =Normal @classmethod def snake_case ( cls , __a , __a ): __lowerCAmelCase = cls.squareplus(_A ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCamelCase ( snake_case__ ): '''simple docstring''' __UpperCAmelCase : Dict[str, int] ={"total_count": 1, "logits": 1} __UpperCAmelCase : type =NegativeBinomial @classmethod def snake_case ( cls , __a , __a ): __lowerCAmelCase = cls.squareplus(_A ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def snake_case ( self , __a ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=_A , logits=_A ) else: return Independent(self.distribution_class(total_count=_A , logits=_A ) , 1 ) def snake_case ( self , __a , __a = None , __a = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
364
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = JukeboxTokenizer lowerCamelCase__ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def A ( self : str ) -> Tuple: import torch UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCAmelCase : Optional[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase : List[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Optional[Any] ) -> str: import torch UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCAmelCase : str = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase : Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __a = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __a = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Any = bs[:] UpperCAmelCase_ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : int = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = set() UpperCAmelCase_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Union[str, Any] = char return pairs class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE="replace" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else bos_token UpperCAmelCase_ : Any = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else eos_token UpperCAmelCase_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else sep_token UpperCAmelCase_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else cls_token UpperCAmelCase_ : Any = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else unk_token UpperCAmelCase_ : int = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) with open(_SCREAMING_SNAKE_CASE ,encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : Tuple = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Optional[int] = errors # how to handle errors in decoding UpperCAmelCase_ : Optional[int] = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_SCREAMING_SNAKE_CASE ,encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : Tuple = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def a__ ( self ) -> int: return len(self.encoder ) def a__ ( self ) -> Optional[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> int: if token in self.cache: return self.cache[token] UpperCAmelCase_ : int = tuple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCAmelCase_ : Dict = min(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = bigram UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Any = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCAmelCase_ : Dict = word.index(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Tuple = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[Any] = tuple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCAmelCase_ : Optional[int] = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = ''' '''.join(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = word return word def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Dict = [] for token in re.findall(self.pat ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_SCREAMING_SNAKE_CASE ).split(''' ''' ) ) return bpe_tokens def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.encoder.get(_SCREAMING_SNAKE_CASE ,self.encoder.get(self.unk_token ) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.decoder.get(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Optional[Any] = ''''''.join(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Tuple = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_SCREAMING_SNAKE_CASE ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_SCREAMING_SNAKE_CASE ,ensure_ascii=_SCREAMING_SNAKE_CASE ) + '''\n''' ) UpperCAmelCase_ : Optional[Any] = 0 with open(_SCREAMING_SNAKE_CASE ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : List[str] = token_index writer.write(''' '''.join(_SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 return vocab_file, merge_file def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE ,token_ids_a=_SCREAMING_SNAKE_CASE ,already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): UpperCAmelCase_ : List[Any] = ''' ''' + text return (text, kwargs)
235
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __a = logging.getLogger(__name__) if __name__ == "__main__": __a = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30_522, type=int) __a = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: __a = pickle.load(fp) logger.info('Counting occurrences for MLM.') __a = Counter() for tk_ids in data: counter.update(tk_ids) __a = [0] * args.vocab_size for k, v in counter.items(): __a = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
235
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = random.Random() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[str]=None ) -> str: if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Union[str, Any]=4_00 , _UpperCAmelCase : List[str]=20_00 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Any=1_60_00 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=80 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Optional[int]=64 , _UpperCAmelCase : Union[str, Any]="hann_window" , _UpperCAmelCase : Tuple=80 , _UpperCAmelCase : Union[str, Any]=76_00 , _UpperCAmelCase : List[Any]=1e-1_0 , _UpperCAmelCase : str=True , ) -> str: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = feature_size __lowercase = padding_value __lowercase = sampling_rate __lowercase = do_normalize __lowercase = num_mel_bins __lowercase = hop_length __lowercase = win_length __lowercase = win_function __lowercase = fmin __lowercase = fmax __lowercase = mel_floor __lowercase = return_attention_mask def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def a__ ( self : List[str] , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=False ) -> List[str]: """simple docstring""" def _flatten(_UpperCAmelCase : Union[str, Any] ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __lowercase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs def a__ ( self : Union[str, Any] , _UpperCAmelCase : Any=False , _UpperCAmelCase : str=False ) -> str: """simple docstring""" if equal_length: __lowercase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Any = SpeechTaFeatureExtractor def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = SpeechTaFeatureExtractionTester(self ) def a__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> int: """simple docstring""" self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __lowercase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __lowercase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test batched __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = ['longest', 'max_length', 'do_not_pad'] __lowercase = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = range(8_00 , 14_00 , 2_00 ) __lowercase = [floats_list((1, x) )[0] for x in lengths] __lowercase = ['longest', 'max_length', 'do_not_pad'] __lowercase = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='max_length' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='longest' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=20_00 , padding='longest' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(1_00 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(audio_target=_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values __lowercase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' ).input_values __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowercase = np.asarray(_UpperCAmelCase ) __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' ).input_values __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCAmelCase ) __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCAmelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np' )[input_name] __lowercase = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_UpperCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(_UpperCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_UpperCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(_UpperCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(_UpperCAmelCase ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> List[Any]: """simple docstring""" from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __lowercase = ds.sort('id' ).select(range(_UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , _UpperCAmelCase , atol=1e-6 ) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(audio_target=_UpperCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _UpperCAmelCase , atol=1e-4 ) )
325
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCamelCase__ = HfArgumentParser(InitializationArguments) UpperCamelCase__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCamelCase__ = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) UpperCamelCase__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCamelCase__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
87
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Dict = """speech_to_text_2""" snake_case : List[Any] = ["""past_key_values"""] snake_case : List[str] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __lowerCAmelCase=10000 , __lowerCAmelCase=6 , __lowerCAmelCase=2048 , __lowerCAmelCase=4 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=256 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=2 , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=1024 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = decoder_layers UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ = max_target_positions super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
87
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] =(DPMSolverSDEScheduler,) UpperCamelCase__ : Tuple =1_0 def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowerCamelCase__ ) return config def __lowercase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.scheduler_classes[0] __UpperCamelCase : Dict =self.get_scheduler_config() __UpperCamelCase : Union[str, Any] =scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase : Dict =self.dummy_model() __UpperCamelCase : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase : Tuple =sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase : Union[str, Any] =scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : int =scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =output.prev_sample __UpperCamelCase : List[Any] =torch.sum(torch.abs(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.scheduler_classes[0] __UpperCamelCase : int =self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase : Optional[Any] =scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase : Optional[Any] =self.dummy_model() __UpperCamelCase : Tuple =self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase : List[Any] =sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase : List[Any] =scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =output.prev_sample __UpperCamelCase : int =torch.sum(torch.abs(lowerCamelCase__ ) ) __UpperCamelCase : Dict =torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.scheduler_classes[0] __UpperCamelCase : str =self.get_scheduler_config() __UpperCamelCase : Tuple =scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) __UpperCamelCase : str =self.dummy_model() __UpperCamelCase : Any =self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase : Tuple =scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : int =scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =output.prev_sample __UpperCamelCase : List[Any] =torch.sum(torch.abs(lowerCamelCase__ ) ) __UpperCamelCase : Any =torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.scheduler_classes[0] __UpperCamelCase : Optional[int] =self.get_scheduler_config() __UpperCamelCase : Optional[Any] =scheduler_class(**lowerCamelCase__ , use_karras_sigmas=lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) __UpperCamelCase : Tuple =self.dummy_model() __UpperCamelCase : Optional[Any] =self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma __UpperCamelCase : int =sample.to(lowerCamelCase__ ) for t in scheduler.timesteps: __UpperCamelCase : List[str] =scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =output.prev_sample __UpperCamelCase : Optional[int] =torch.sum(torch.abs(lowerCamelCase__ ) ) __UpperCamelCase : Union[str, Any] =torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
71
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case ) }
277
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Any = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : str = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : str = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Any = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : str = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Tuple = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Tuple = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] )
103
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def UpperCamelCase ( snake_case__ : int ) -> List[Any]: UpperCamelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : str = val def UpperCamelCase ( snake_case__ : str , snake_case__ : Union[str, Any] ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) UpperCamelCase : Tuple = qkv_bias def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : str = 364 if 'coco' in model_name else 224 UpperCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase : List[Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase : int = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase : int = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase : Any = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=None , snake_case__ : int=False ) -> List[Any]: UpperCamelCase : str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase : int = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) UpperCamelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase : List[Any] = original_model.state_dict() UpperCamelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): UpperCamelCase : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase : Tuple = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase : Union[str, Any] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase : Dict = key.replace('t5' , 'language' ) UpperCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) UpperCamelCase , UpperCamelCase : Any = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase : List[str] = load_demo_image() UpperCamelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase : Any = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) UpperCamelCase : Any = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : Optional[int] = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase : Tuple = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase : str = hf_model(snake_case__ , snake_case__ ).logits else: UpperCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase : Optional[int] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type UpperCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase : Optional[int] = '' UpperCamelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) UpperCamelCase : str = original_model.generate({'image': original_pixel_values} ) UpperCamelCase : str = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) UpperCamelCase : Optional[int] = input_ids.shape[1] UpperCamelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) UpperCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : int ='''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase__ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : str=None , __lowercase : List[Any]=None , __lowercase : Dict=None , __lowercase : int=None , __lowercase : Union[str, Any]=None , __lowercase : Dict=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: __UpperCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : List[Any] , __A : List[str]=1_3 , __A : str=7 , __A : Any=True , __A : Optional[Any]=False , __A : Optional[int]=9_9 , __A : str=1_6 , __A : List[str]=2 , __A : str=4 , __A : str=4 , __A : Optional[Any]="gelu" , __A : Dict=0.1 , __A : Optional[Any]=0.1 , __A : Tuple=3_2 , __A : Dict=2 , __A : Tuple=1 , __A : List[str]=0 , __A : Optional[int]=0.02 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = initializer_range def _lowerCamelCase ( self : Dict ): __UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase = shift_tokens_right(__A , 1 , 2 ) __UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__A , ) __UpperCamelCase = prepare_blenderbot_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self : List[str] , __A : Dict , __A : Tuple , __A : Optional[int] ): __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(__A ) __UpperCamelCase = model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __A , __A ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __A , decoder_attention_mask=__A , past_key_values=__A , decoder_position_ids=__A , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __A , decoder_attention_mask=__A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__A , ) __UpperCamelCase = model.decode(__A , __A ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowerCamelCase ( self : Optional[int] , __A : List[Any] , __A : Union[str, Any] , __A : Any ): __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(__A ) __UpperCamelCase = model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __A , __A ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __A , decoder_attention_mask=__A , past_key_values=__A , decoder_position_ids=__A , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__A , decoder_position_ids=__A , ) __UpperCamelCase = model.decode(__A , __A , decoder_attention_mask=__A ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =99 def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self : List[str] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_config_and_data() __UpperCamelCase = FlaxBlenderbotSmallForConditionalGeneration(__A ) __UpperCamelCase = lm_model(input_ids=__A ) __UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , __A ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __UpperCamelCase = FlaxBlenderbotSmallForConditionalGeneration(__A ) __UpperCamelCase = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) __UpperCamelCase = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase = lm_model(input_ids=__A , decoder_input_ids=__A ) __UpperCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , __A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) __UpperCamelCase = shift_tokens_right(__A , 1 , 2 ) __UpperCamelCase = np.equal(__A , 1 ).astype(np.floataa ).sum() __UpperCamelCase = np.equal(__A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case ( __lowerCamelCase , unittest.TestCase , __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Tuple =( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] =(FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self : int ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__A , __A , __A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__A , __A , __A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(__A , __A ) __UpperCamelCase = model_class(__A ) @jax.jit def encode_jitted(__A : List[str] , __A : List[str]=None , **__A : Dict ): return model.encode(input_ids=__A , attention_mask=__A ) with self.subTest('JIT Enabled' ): __UpperCamelCase = encode_jitted(**__A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) ) for jitted_output, output in zip(__A , __A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self : str ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(__A ) __UpperCamelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __UpperCamelCase = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__A : List[Any] , __A : Tuple , __A : List[Any] ): return model.decode( decoder_input_ids=__A , decoder_attention_mask=__A , encoder_outputs=__A , ) with self.subTest('JIT Enabled' ): __UpperCamelCase = decode_jitted(**__A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) ) for jitted_output, output in zip(__A , __A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self : str ): for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase = model(__A ) self.assertIsNotNone(__A )
53
'''simple docstring''' import random def lowercase__ ( __lowercase : list , __lowercase : Optional[Any] ) -> tuple: """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def lowercase__ ( __lowercase : list , __lowercase : int ) -> Dict: """simple docstring""" if index >= len(__lowercase ) or index < 0: return None __UpperCamelCase = items[random.randint(0 , len(__lowercase ) - 1 )] __UpperCamelCase = 0 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = _partition(__lowercase , __lowercase ) __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
53
1
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') snake_case__ : Any = int(input('''Enter number: ''').strip()) print(f'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
274
'''simple docstring''' from sklearn.metrics import fa_score import datasets snake_case__ : str = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case__ : int = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case__ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=1 , snake_case_="binary" , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = fa_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ ) return {"f1": float(snake_case_ ) if score.size == 1 else score}
274
1
def _a ( ) -> Tuple: """simple docstring""" lowerCamelCase__ : List[Any] = 0 for i in range(1 , 1001 ): total += i**i return str(UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
142
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = "vit_msn" def __init__( self : Optional[Any] , A : Dict=7_6_8 , A : Union[str, Any]=1_2 , A : Optional[Any]=1_2 , A : List[Any]=3_0_7_2 , A : List[str]="gelu" , A : Optional[int]=0.0 , A : int=0.0 , A : int=0.02 , A : Tuple=1e-06 , A : int=2_2_4 , A : Union[str, Any]=1_6 , A : Dict=3 , A : Optional[Any]=True , **A : Optional[Any] , ) ->Dict: super().__init__(**A ) lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Any = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Tuple = qkv_bias
142
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def UpperCamelCase ( snake_case__ : int ) -> List[Any]: UpperCamelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : str = val def UpperCamelCase ( snake_case__ : str , snake_case__ : Union[str, Any] ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) UpperCamelCase : Tuple = qkv_bias def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : str = 364 if 'coco' in model_name else 224 UpperCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase : List[Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase : int = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase : int = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase : Any = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=None , snake_case__ : int=False ) -> List[Any]: UpperCamelCase : str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase : int = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) UpperCamelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase : List[Any] = original_model.state_dict() UpperCamelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): UpperCamelCase : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase : Tuple = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase : Union[str, Any] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase : Dict = key.replace('t5' , 'language' ) UpperCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) UpperCamelCase , UpperCamelCase : Any = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase : List[str] = load_demo_image() UpperCamelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase : Any = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) UpperCamelCase : Any = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : Optional[int] = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase : Tuple = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase : str = hf_model(snake_case__ , snake_case__ ).logits else: UpperCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase : Optional[int] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type UpperCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase : Optional[int] = '' UpperCamelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) UpperCamelCase : str = original_model.generate({'image': original_pixel_values} ) UpperCamelCase : str = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) UpperCamelCase : Optional[int] = input_ids.shape[1] UpperCamelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) UpperCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCAmelCase = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 10_00, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 10_00, "block_out_channels": [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase = { "sample_size": 2_56, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __UpperCAmelCase = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } __UpperCAmelCase = { "num_train_timesteps": 1_51, "sigma_min": 0.002, "sigma_max": 80.0, } def A__ ( __lowerCamelCase ): if isinstance(__lowerCamelCase, __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.skip_connection.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3, dim=0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3, dim=0 ) SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.norm.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.norm.bias'''] SCREAMING_SNAKE_CASE_ = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE_ = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE_ = checkpoint['''label_emb.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE_ = unet_config['''down_block_types'''] SCREAMING_SNAKE_CASE_ = unet_config['''layers_per_block'''] SCREAMING_SNAKE_CASE_ = unet_config['''attention_head_dim'''] SCREAMING_SNAKE_CASE_ = unet_config['''block_out_channels'''] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = channels_list[0] for i, layer_type in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = channels_list[i] SCREAMING_SNAKE_CASE_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE_ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE_ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, has_skip=__lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE_ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE_ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, has_skip=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = F'''down_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE_ = F'''input_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE_ = convert_attention( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE_ = F'''down_blocks.{i}.downsamplers.0''' SCREAMING_SNAKE_CASE_ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) current_layer += 1 SCREAMING_SNAKE_CASE_ = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE_ = '''mid_block.resnets.0''' SCREAMING_SNAKE_CASE_ = '''middle_block.0''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''mid_block.attentions.0''' SCREAMING_SNAKE_CASE_ = '''middle_block.1''' SCREAMING_SNAKE_CASE_ = convert_attention(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''mid_block.resnets.1''' SCREAMING_SNAKE_CASE_ = '''middle_block.2''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = unet_config['''up_block_types'''] for i, layer_type in enumerate(__lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE_ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE_ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, has_skip=__lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE_ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE_ = F'''output_blocks.{current_layer-1}.1''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE_ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE_ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, has_skip=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = F'''up_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE_ = F'''output_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE_ = convert_attention( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE_ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE_ = F'''output_blocks.{current_layer-1}.2''' SCREAMING_SNAKE_CASE_ = convert_resnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE_ = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE_ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = strabool(args.class_cond) __UpperCAmelCase = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __UpperCAmelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCAmelCase = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __UpperCAmelCase = None __UpperCAmelCase = con_pt_to_diffuser(args.unet_path, unet_config) __UpperCAmelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCAmelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCAmelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __UpperCAmelCase = CMStochasticIterativeScheduler(**scheduler_config) __UpperCAmelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # noqa: E741 '''simple docstring''' while r - l > 1: A_ : List[Any] = (l + r) // 2 if v[m] >= key: A_ : Dict = m else: A_ : List[Any] = m # noqa: E741 return r def a ( lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 0: return 0 A_ : Tuple = [0] * len(lowerCamelCase__ ) A_ : Any = 1 A_ : Dict = v[0] for i in range(1 , len(lowerCamelCase__ ) ): if v[i] < tail[0]: A_ : List[Any] = v[i] elif v[i] > tail[length - 1]: A_ : Any = v[i] length += 1 else: A_ : Tuple = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
135
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
135
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCAmelCase__ : Dict = args.log_outputs lowerCAmelCase__ : List[str] = "_".join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowerCAmelCase__ : int = load_metric('wer' ) lowerCAmelCase__ : str = load_metric('cer' ) # compute metrics lowerCAmelCase__ : List[Any] = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowerCAmelCase__ : str = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowerCAmelCase__ : List[str] = F'''WER: {wer_result}\nCER: {cer_result}''' print(SCREAMING_SNAKE_CASE_ ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase__ : Optional[Any] = F'''log_{dataset_id}_predictions.txt''' lowerCAmelCase__ : Tuple = F'''log_{dataset_id}_targets.txt''' with open(SCREAMING_SNAKE_CASE_ , 'w' ) as p, open(SCREAMING_SNAKE_CASE_ , 'w' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(SCREAMING_SNAKE_CASE_ , with_indices=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCAmelCase__ : List[str] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase__ : List[str] = re.sub(SCREAMING_SNAKE_CASE_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase__ : Dict = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: lowerCAmelCase__ : List[str] = " ".join(text.split(SCREAMING_SNAKE_CASE_ ) ) return text def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase__ : Dict = feature_extractor.sampling_rate # resample audio lowerCAmelCase__ : Any = dataset.cast_column('audio' , Audio(sampling_rate=SCREAMING_SNAKE_CASE_ ) ) # load eval pipeline if args.device is None: lowerCAmelCase__ : int = 0 if torch.cuda.is_available() else -1 lowerCAmelCase__ : Union[str, Any] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase__ : List[Any] = prediction["text"] lowerCAmelCase__ : int = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowerCAmelCase__ : List[str] = dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `\'en\'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `\'test\'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCamelCase__ = parser.parse_args() main(args)
212
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="llama" a : List[str] =["past_key_values"] def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = num_key_value_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Any = rms_norm_eps lowerCAmelCase : List[Any] = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) lowerCAmelCase : Optional[Any] = self.rope_scaling.get("type" , snake_case__ ) lowerCAmelCase : int = self.rope_scaling.get("factor" , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
108
0
'''simple docstring''' from __future__ import annotations A__ : Tuple =8.9_8_8e9 # units = N * m^s * C^-2 def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: """simple docstring""" _lowerCAmelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: _lowerCAmelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _lowerCAmelCase = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _lowerCAmelCase = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _lowerCAmelCase = (COULOMBS_CONSTANT * charge_product / abs(__SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if not (isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _lowerCAmelCase = i _lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
220
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): _lowerCAmelCase : Tuple = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : str = TensorFlowBenchmark(__a) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "sgugger/tiny-distilbert-classification" _lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, only_pretrain_model=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a) _lowerCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "sshleifer/tiny-gpt2" _lowerCAmelCase : Dict = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : int = AutoConfig.from_pretrained(__a) _lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : str = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : List[str] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__a, configs=[config]) _lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "sshleifer/tiny-gpt2" _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], use_xla=__a, multi_process=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, save_to_csv=__a, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(__a, "inf_time.csv"), inference_memory_csv_file=os.path.join(__a, "inf_mem.csv"), env_info_csv_file=os.path.join(__a, "env.csv"), multi_process=__a, ) _lowerCAmelCase : List[str] = TensorFlowBenchmark(__a) benchmark.run() self.assertTrue(Path(os.path.join(__a, "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "env.csv")).exists()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__a): self.assertTrue(hasattr(__a, "sequential")) self.assertTrue(hasattr(__a, "cumulative")) self.assertTrue(hasattr(__a, "current")) self.assertTrue(hasattr(__a, "total")) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(__a, "log.txt"), log_print=__a, trace_memory_line_by_line=__a, eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : Tuple = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(__a, "log.txt")).exists())
36
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = TextToVideoSDPipeline a__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS a__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ : int = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase :Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase :Optional[Any] = CLIPTextModel(__lowercase) __UpperCamelCase :Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Optional[int]: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :List[Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Optional[int] = self.get_dummy_components() __UpperCamelCase :Dict = TextToVideoSDPipeline(**__lowercase) __UpperCamelCase :Any = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :int = '''np''' __UpperCamelCase :List[str] = sd_pipe(**__lowercase).frames __UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __UpperCamelCase :str = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=3E-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=1E-2) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''') def UpperCamelCase__ ( self) -> str: pass def UpperCamelCase__ ( self) -> List[str]: return super().test_progress_bar() @slow @skip_mps class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''') __UpperCamelCase :List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Optional[Any] = '''Spiderman is surfing''' __UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=25 , output_type='''pt''').frames __UpperCamelCase :Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''') __UpperCamelCase :Union[str, Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Union[str, Any] = '''Spiderman is surfing''' __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''pt''').frames __UpperCamelCase :Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
43
"""simple docstring""" class __snake_case : def __init__( self , lowercase , lowercase=None , lowercase=None) -> List[str]: '''simple docstring''' a__: Dict = data a__: List[Any] = previous a__: Any = next_node def __str__( self) -> str: '''simple docstring''' return f'{self.data}' def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self.data def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return self.next def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return self.previous class __snake_case : def __init__( self , lowercase) -> Dict: '''simple docstring''' a__: List[Any] = head def __iter__( self) -> List[Any]: '''simple docstring''' return self def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if not self.current: raise StopIteration else: a__: Dict = self.current.get_data() a__: Optional[Any] = self.current.get_next() return value class __snake_case : def __init__( self) -> Dict: '''simple docstring''' a__: List[Any] = None # First node in list a__: Optional[int] = None # Last node in list def __str__( self) -> Optional[Any]: '''simple docstring''' a__: Dict = self.head a__: Optional[Any] = [] while current is not None: nodes.append(current.get_data()) a__: str = current.get_next() return " ".join(str(lowercase) for node in nodes) def __contains__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Optional[int] = self.head while current: if current.get_data() == value: return True a__: Dict = current.get_next() return False def __iter__( self) -> int: '''simple docstring''' return LinkedListIterator(self.head) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: a__: Optional[Any] = node a__: Optional[Any] = node else: self.insert_before_node(self.head , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: self.set_head(lowercase) else: self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = Node(lowercase) if self.head is None: self.set_head(lowercase) else: self.set_tail(lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Union[str, Any] = node a__: Optional[Any] = node.previous if node.get_previous() is None: a__: Tuple = node_to_insert else: a__: int = node_to_insert a__: Optional[int] = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Optional[int] = node a__: Tuple = node.next if node.get_next() is None: a__: Optional[int] = node_to_insert else: a__: Any = node_to_insert a__: str = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Any = 1 a__: Tuple = Node(lowercase) a__: Tuple = self.head while node: if current_position == position: self.insert_before_node(lowercase , lowercase) return current_position += 1 a__: List[Any] = node.next self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> Node: '''simple docstring''' a__: Tuple = self.head while node: if node.get_data() == item: return node a__: List[str] = node.get_next() raise Exception('Node not found') def lowerCamelCase_ ( self , lowercase) -> Any: '''simple docstring''' if (node := self.get_node(lowercase)) is not None: if node == self.head: a__: Any = self.head.get_next() if node == self.tail: a__: List[Any] = self.tail.get_previous() self.remove_node_pointers(lowercase) @staticmethod def lowerCamelCase_ ( lowercase) -> None: '''simple docstring''' if node.get_next(): a__: Any = node.previous if node.get_previous(): a__: List[str] = node.next a__: int = None a__: Union[str, Any] = None def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self.head is None def __a ( ) ->None: pass if __name__ == "__main__": import doctest doctest.testmod()
290
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCamelCase : List[str] = '''base_with_context''' def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : Tuple = weights[f'layers_{lyr_num}'] lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : Any = ly_weight['''attention'''] lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : Tuple = weights[f'layers_{lyr_num}'] lowerCAmelCase__ : int = ly_weight['''attention'''] lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=A_ ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase__ : List[Any] = weights[f'layers_{lyr_num}'] lowerCAmelCase__ : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = ly_weight['''self_attention'''] lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase__ : List[str] = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase__ : int = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase__ : Dict = jnp.tree_util.tree_map(onp.array , A_ ) lowerCAmelCase__ : List[str] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCAmelCase__ : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCAmelCase__ : int = inference.parse_training_gin_file(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = inference.InferenceModel(args.checkpoint_path , A_ ) lowerCAmelCase__ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCAmelCase__ : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCAmelCase__ : Optional[int] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCAmelCase__ : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase__ : List[Any] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , A_ ) lowerCAmelCase__ : List[str] = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , A_ ) lowerCAmelCase__ : str = load_decoder(ta_checkpoint['''target''']['''decoder'''] , A_ ) lowerCAmelCase__ : Any = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCAmelCase__ : Any = SpectrogramDiffusionPipeline( notes_encoder=A_ , continuous_encoder=A_ , decoder=A_ , scheduler=A_ , melgan=A_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __UpperCamelCase : List[str] = parser.parse_args() main(args)
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase : List[Any] = 1.054571817e-34 # unit of ℏ : J * s _lowerCAmelCase : Tuple = 3e8 # unit of c : m * s^-1 def __snake_case ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: A_ : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: A_ : Tuple = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: A_ : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : int=13 , UpperCAmelCase : Dict=7 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=99 , UpperCAmelCase : int=32 , UpperCAmelCase : List[Any]=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : int=64 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=2 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Tuple=1 , ) -> List[Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : List[Any] = use_input_mask lowerCamelCase__ : str = use_token_type_ids lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Tuple = type_vocab_size lowerCamelCase__ : Any = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = num_labels lowerCamelCase__ : Tuple = num_choices lowerCamelCase__ : Optional[int] = scope lowerCamelCase__ : int = q_groups lowerCamelCase__ : List[Any] = k_groups lowerCamelCase__ : Optional[int] = v_groups lowerCamelCase__ : Any = post_attention_groups lowerCamelCase__ : Union[str, Any] = intermediate_groups lowerCamelCase__ : Dict = output_groups def A_ ( self : int ) -> List[Any]: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : List[str] ) -> Union[str, Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A_ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Union[str, Any]: lowerCamelCase__ : str = SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> List[str]: lowerCamelCase__ : List[Any] = SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : str ) -> str: lowerCamelCase__ : int = SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : int = model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Any: lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Any = SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : int = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self.num_labels lowerCamelCase__ : int = SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str ) -> Dict: lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Union[str, Any] = SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Any = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[Any] = config_and_inputs lowerCamelCase__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = False def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : List[Any] = SqueezeBertModelTester(self ) lowerCamelCase__ : Dict = ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A_ ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def A_ ( self : List[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def A_ ( self : int ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def A_ ( self : Any ) -> Any: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Any ) -> Tuple: lowerCamelCase__ : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) lowerCamelCase__ : Optional[int] = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) lowerCamelCase__ : Any = model(UpperCAmelCase )[0] lowerCamelCase__ : Dict = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
45
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) lowerCamelCase__ : str = len(bin(_UpperCAmelCase )[3:] ) lowerCamelCase__ : Dict = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] lowerCamelCase__ : Optional[int] = ( ( '1' + '0' * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Tuple = MobileBertTokenizer lowerCAmelCase : Any = MobileBertTokenizerFast lowerCAmelCase : Tuple = True lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = filter_non_english lowerCAmelCase : Tuple = 'google/mobilebert-uncased' def __lowercase ( self : List[str] ): super().setUp() _a : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _a : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowercase ( self : Dict ,_UpperCAmelCase : List[Any] ): _a : Union[str, Any] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Any ): _a : List[str] = self.tokenizer_class(self.vocab_file ) _a : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[9, 6, 7, 12, 10, 11] ) def __lowercase ( self : Dict ): if not self.test_rust_tokenizer: return _a : Dict = self.get_tokenizer() _a : Optional[Any] = self.get_rust_tokenizer() _a : List[Any] = 'UNwant\u00E9d,running' _a : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : str = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Any = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : List[str] = self.get_rust_tokenizer() _a : Tuple = tokenizer.encode(_UpperCAmelCase ) _a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) # With lower casing _a : List[str] = self.get_tokenizer(do_lower_case=_UpperCAmelCase ) _a : Tuple = self.get_rust_tokenizer(do_lower_case=_UpperCAmelCase ) _a : int = 'UNwant\u00E9d,running' _a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : int = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : List[str] = rust_tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : str = self.get_rust_tokenizer() _a : Tuple = tokenizer.encode(_UpperCAmelCase ) _a : Tuple = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : List[str] ): _a : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase ( self : Tuple ): _a : str = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Optional[Any] ): _a : Optional[int] = BasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowercase ( self : Any ): _a : str = BasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : str ): _a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Union[str, Any] ): _a : List[str] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Optional[Any] ): _a : List[str] = BasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : List[str] ): _a : Any = BasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : List[str] ): _a : List[str] = BasicTokenizer(do_lower_case=_UpperCAmelCase ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase ( self : Optional[Any] ): _a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _a : Dict = {} for i, token in enumerate(_UpperCAmelCase ): _a : Tuple = i _a : Union[str, Any] = WordpieceTokenizer(vocab=_UpperCAmelCase ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def __lowercase ( self : Optional[Any] ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase ( self : int ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase ( self : str ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __lowercase ( self : int ): _a : List[str] = self.get_tokenizer() _a : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def __lowercase ( self : Dict ): _a : List[Any] = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _a : Any = tokenizer.encode('sequence builders' ,add_special_tokens=_UpperCAmelCase ) _a : Tuple = tokenizer.encode('multi-sequence build' ,add_special_tokens=_UpperCAmelCase ) _a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _a : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ,_UpperCAmelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __lowercase ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : int = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Union[str, Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _a : List[str] = tokenizer_r.encode_plus( _UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ,return_offsets_mapping=_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,) _a : Optional[int] = tokenizer_r.do_lower_case if hasattr(_UpperCAmelCase ,'do_lower_case' ) else False _a : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def __lowercase ( self : Optional[Any] ): _a : List[str] = ['的', '人', '有'] _a : str = ''.join(_UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Optional[int] = True _a : Dict = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[int] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Tuple = tokenizer_p.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : int = tokenizer_r.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : int = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _a : Dict = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Any = False _a : Tuple = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Union[str, Any] = tokenizer_r.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer_p.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : str = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _a : List[str] = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". _a : int = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_UpperCAmelCase ) ] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase )
89
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = 0 if start < end: __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase , __lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ ) return count def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = 0 __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase = start - 1 for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowerCAmelCase = new_pivot_index + 1 __lowerCAmelCase = a[new_pivot_index] __lowerCAmelCase = a[index] __lowerCAmelCase = temp __lowerCAmelCase = a[new_pivot_index + 1] __lowerCAmelCase = a[end] __lowerCAmelCase = temp return new_pivot_index + 1, count UpperCamelCase__ = TemporaryFile() UpperCamelCase__ = 100 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation UpperCamelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array UpperCamelCase__ = np.load(outfile) UpperCamelCase__ = len(M) - 1 UpperCamelCase__ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
92
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _lowerCAmelCase ( lowercase , lowercase , lowercase=[] ) -> List[Any]: __lowerCAmelCase = size[0] - overlap_pixels * 2 __lowerCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 __lowerCAmelCase = np.pad(__snake_case , mode="""linear_ramp""" , pad_width=__snake_case , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Any: return max(__snake_case , min(__snake_case , __snake_case ) ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Tuple: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: __lowerCAmelCase = list(__snake_case ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase = clamp_rect(__snake_case , [0, 0] , [image_size[0], image_size[1]] ) return rect def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Dict: __lowerCAmelCase = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__snake_case , (original_slice, 0) ) return result def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase = tile.crop(__snake_case ) return tile def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = n % d return n - divisor class _UpperCAmelCase ( lowerCamelCase__ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 3_50,): '''simple docstring''' super().__init__( vae=__SCREAMING_SNAKE_CASE,text_encoder=__SCREAMING_SNAKE_CASE,tokenizer=__SCREAMING_SNAKE_CASE,unet=__SCREAMING_SNAKE_CASE,low_res_scheduler=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE,max_noise_level=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice),x * tile_size ), min(image.size[1] - (tile_size + original_image_slice),y * tile_size ), min(image.size[0],(x + 1) * tile_size ), min(image.size[1],(y + 1) * tile_size ), ) __lowerCAmelCase = add_overlap_rect(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,image.size ) __lowerCAmelCase = image.crop(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase = max(0,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = squeeze_tile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = to_input.size __lowerCAmelCase = to_input.resize((tile_size, tile_size),Image.BICUBIC ) __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).__call__(image=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ).images[0] __lowerCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4),Image.BICUBIC ) __lowerCAmelCase = unsqueeze_tile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4),Image.BICUBIC ) __lowerCAmelCase = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) __lowerCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]),tile_border * 4,remove_borders=__SCREAMING_SNAKE_CASE ),mode="""L""",) final_image.paste( __SCREAMING_SNAKE_CASE,(crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4),__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 75,__SCREAMING_SNAKE_CASE = 9.0,__SCREAMING_SNAKE_CASE = 50,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = 1_28,__SCREAMING_SNAKE_CASE = 32,__SCREAMING_SNAKE_CASE = 32,): '''simple docstring''' __lowerCAmelCase = Image.new("""RGB""",(image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase = tcx * tcy __lowerCAmelCase = 0 for y in range(__SCREAMING_SNAKE_CASE ): for x in range(__SCREAMING_SNAKE_CASE ): self._process_tile( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,prompt=__SCREAMING_SNAKE_CASE,num_inference_steps=__SCREAMING_SNAKE_CASE,guidance_scale=__SCREAMING_SNAKE_CASE,noise_level=__SCREAMING_SNAKE_CASE,negative_prompt=__SCREAMING_SNAKE_CASE,num_images_per_prompt=__SCREAMING_SNAKE_CASE,eta=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,latents=__SCREAMING_SNAKE_CASE,) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" __lowerCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(__snake_case , revision="""fp16""" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowercase ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save("""diffusers_library_progress.jpg""" ) __lowerCAmelCase = pipe(image=__snake_case , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__snake_case ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
356
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =MvpTokenizer a : int =MvpTokenizerFast a : Any =True a : int =filter_roberta_detectors def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,max_length=len(__SCREAMING_SNAKE_CASE ),padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""",__SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""",__SCREAMING_SNAKE_CASE ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE,max_length=32,padding="""max_length""",return_tensors="""pt""" ) self.assertEqual(32,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""],padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape,(2, 10_24) ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization."""] __lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,text_target=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """A, <mask> AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ),sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ),sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ),) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Union[str, Any] = logging.get_logger(__name__) __snake_case :Any = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''switch_transformers''' UpperCamelCase__ : Optional[Any] = ['''past_key_values'''] UpperCamelCase__ : Optional[Any] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str=32_128 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.01 , __SCREAMING_SNAKE_CASE : Dict="float32" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : int=128 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : int=1E-6 , __SCREAMING_SNAKE_CASE : Dict=0.0_01 , __SCREAMING_SNAKE_CASE : List[str]=0.0_01 , __SCREAMING_SNAKE_CASE : List[Any]=1.0 , __SCREAMING_SNAKE_CASE : Optional[int]="relu" , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' __a = vocab_size __a = d_model __a = d_kv __a = d_ff __a = num_sparse_encoder_layers __a = num_layers __a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __a = self.num_layers // self.num_sparse_encoder_layers else: __a = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __a = self.num_decoder_layers // self.num_sparse_decoder_layers else: __a = self.num_decoder_layers # HACK: this will create 0 sparse layers __a = num_heads __a = num_experts __a = expert_capacity __a = router_bias __a = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}') __a = router_dtype __a = router_ignore_padding_tokens __a = relative_attention_num_buckets __a = relative_attention_max_distance __a = dropout_rate __a = layer_norm_epsilon __a = initializer_factor __a = feed_forward_proj __a = use_cache __a = add_router_probs __a = router_z_loss_coef __a = router_aux_loss_coef __a = self.feed_forward_proj.split('''-''') __a = act_info[-1] __a = act_info[0] == '''gated''' if len(__SCREAMING_SNAKE_CASE) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": __a = '''gelu_new''' super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
49
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=1000 , ): '''simple docstring''' __a : Optional[Any] = parent __a : int = batch_size __a : Any = num_channels __a : Optional[int] = image_size __a : Dict = patch_size __a : int = is_training __a : Union[str, Any] = use_input_mask __a : Optional[int] = use_token_type_ids __a : Dict = use_labels __a : str = vocab_size __a : List[Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = type_sequence_label_size __a : Optional[int] = initializer_range __a : Any = coordinate_size __a : List[Any] = shape_size __a : Optional[int] = num_labels __a : Dict = num_choices __a : Union[str, Any] = scope __a : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __a : Optional[int] = text_seq_length __a : Any = (image_size // patch_size) ** 2 + 1 __a : Dict = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __a : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a : List[Any] = bbox[i, j, 3] __a : Tuple = bbox[i, j, 1] __a : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __a : int = bbox[i, j, 2] __a : Dict = bbox[i, j, 0] __a : int = tmp_coordinate __a : Optional[int] = tf.constant(__a ) __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_input_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __a : str = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __a : Optional[Any] = None __a : Optional[int] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __a : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Dict = TFLayoutLMvaModel(config=__a ) # text + image __a : List[Any] = model(__a , pixel_values=__a , training=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , training=__a , ) __a : Optional[int] = model(__a , bbox=__a , pixel_values=__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __a : Any = model(__a , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __a : str = model({'pixel_values': pixel_values} , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = self.num_labels __a : Dict = TFLayoutLMvaForSequenceClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : str = self.num_labels __a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[Any] = 2 __a : Any = TFLayoutLMvaForQuestionAnswering(config=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , training=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Dict = config_and_inputs __a : Any = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) A_ = False A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' return True def __UpperCAmelCase ( self , __a , __a , __a=False ): '''simple docstring''' __a : str = copy.deepcopy(__a ) if model_class in get_values(__a ): __a : str = { k: tf.tile(tf.expand_dims(__a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __a : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __a : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = TFLayoutLMvaModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) if getattr(__a , 'hf_compute_loss' , __a ): # The number of elements in the loss should be the same as the number of elements in the label __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__a )[0] ] __a : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : Dict = prepared_for_class.pop('input_ids' ) __a : Tuple = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __a : Union[str, Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __a : List[Any] = -100 __a : List[str] = tf.convert_to_tensor(__a ) __a : Any = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = model(__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __a : Tuple = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) # Get keys that were added with the _prepare_for_class function __a : Dict = prepared_for_class.keys() - inputs_dict.keys() __a : Any = inspect.signature(model.call ).parameters __a : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __a : List[Any] = {0: 'input_ids'} for label_key in label_keys: __a : List[Any] = signature_names.index(__a ) __a : Union[str, Any] = label_key __a : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __a : Union[str, Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __a : Optional[Any] = prepared_for_class[value] __a : str = tuple(__a ) # Send to model __a : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Any = type self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a , __a , __a , __a , __a , __a , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[Any] = TFLayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __a : Tuple = self.default_image_processor __a : List[Any] = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ).pixel_values __a : Union[str, Any] = tf.constant([[1, 2]] ) __a : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __a : Tuple = model(input_ids=__a , bbox=__a , pixel_values=__a , training=__a ) # verify the logits __a : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __a ) __a : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
27
0
"""simple docstring""" import numpy as np def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return np.where(vector > 0 ,lowercase ,(alpha * (np.exp(lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : Tuple = """sew-d""" def __init__( self , __snake_case=32 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case=2 , __snake_case=512 , __snake_case=256 , __snake_case=True , __snake_case=True , __snake_case=("p2c", "c2p") , __snake_case="layer_norm" , __snake_case="gelu_python" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.1 , __snake_case=0.02 , __snake_case=1e-7 , __snake_case=1e-5 , __snake_case="group" , __snake_case="gelu" , __snake_case=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __snake_case=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __snake_case=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __snake_case=False , __snake_case=128 , __snake_case=16 , __snake_case=True , __snake_case=0.05 , __snake_case=10 , __snake_case=2 , __snake_case=0.0 , __snake_case=10 , __snake_case=0 , __snake_case="mean" , __snake_case=False , __snake_case=False , __snake_case=256 , __snake_case=0 , __snake_case=1 , __snake_case=2 , **__snake_case , ): super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) _SCREAMING_SNAKE_CASE : int = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_norm _SCREAMING_SNAKE_CASE : List[Any] = feat_extract_activation _SCREAMING_SNAKE_CASE : List[Any] = list(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = list(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = list(__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = conv_bias _SCREAMING_SNAKE_CASE : Dict = num_conv_pos_embeddings _SCREAMING_SNAKE_CASE : Union[str, Any] = num_conv_pos_embedding_groups _SCREAMING_SNAKE_CASE : Tuple = len(self.conv_dim ) _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[Any] = squeeze_factor _SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = position_buckets _SCREAMING_SNAKE_CASE : str = share_att_key _SCREAMING_SNAKE_CASE : Any = relative_attention _SCREAMING_SNAKE_CASE : Any = norm_rel_ebd _SCREAMING_SNAKE_CASE : Optional[Any] = list(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout _SCREAMING_SNAKE_CASE : List[Any] = attention_dropout _SCREAMING_SNAKE_CASE : Dict = activation_dropout _SCREAMING_SNAKE_CASE : Tuple = feat_proj_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = final_dropout _SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps _SCREAMING_SNAKE_CASE : Any = feature_layer_norm_eps _SCREAMING_SNAKE_CASE : List[Any] = initializer_range _SCREAMING_SNAKE_CASE : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _SCREAMING_SNAKE_CASE : Optional[int] = apply_spec_augment _SCREAMING_SNAKE_CASE : Dict = mask_time_prob _SCREAMING_SNAKE_CASE : Optional[Any] = mask_time_length _SCREAMING_SNAKE_CASE : Optional[Any] = mask_time_min_masks _SCREAMING_SNAKE_CASE : Dict = mask_feature_prob _SCREAMING_SNAKE_CASE : Any = mask_feature_length _SCREAMING_SNAKE_CASE : Tuple = mask_feature_min_masks # ctc loss _SCREAMING_SNAKE_CASE : Tuple = ctc_loss_reduction _SCREAMING_SNAKE_CASE : Dict = ctc_zero_infinity # sequence classification _SCREAMING_SNAKE_CASE : Tuple = use_weighted_layer_sum _SCREAMING_SNAKE_CASE : Tuple = classifier_proj_size @property def UpperCAmelCase_ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
200
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="resnet50" , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=True , __snake_case=True , ): _SCREAMING_SNAKE_CASE : Tuple = parent _SCREAMING_SNAKE_CASE : Optional[int] = out_indices if out_indices is not None else [4] _SCREAMING_SNAKE_CASE : str = stage_names _SCREAMING_SNAKE_CASE : List[str] = out_features _SCREAMING_SNAKE_CASE : int = backbone _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels _SCREAMING_SNAKE_CASE : int = use_pretrained_backbone _SCREAMING_SNAKE_CASE : Optional[Any] = is_training def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = (TimmBackbone,) if is_torch_available() else () A_ : Tuple = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} A_ : Optional[Any] = False A_ : List[Any] = False A_ : Dict = False A_ : int = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = TimmBackboneModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """resnet18""" _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-18""" _SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(__snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case , out_indices=[1, 2, 3] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoBackbone.from_pretrained(__snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[str] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality _SCREAMING_SNAKE_CASE : str = self.all_model_classes[0] _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(**__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models _SCREAMING_SNAKE_CASE : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _SCREAMING_SNAKE_CASE : str = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(**__snake_case )
200
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def UpperCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[str] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f"{test_file} instead." ) lowerCAmelCase_ : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) lowerCAmelCase_ : str = components[:-1] + [test_fn.replace('.py' , '' )] lowerCAmelCase_ : List[str] = '.'.join(lowerCAmelCase__ ) return test_module_path def UpperCamelCase_ ( lowerCAmelCase__ : Any ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = get_module_path(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = importlib.import_module(lowerCAmelCase__ ) return test_module def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Optional[Any] = get_test_module(lowerCAmelCase__ ) for attr in dir(lowerCAmelCase__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # sort with class names return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x.__name__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[Any] = get_test_module(lowerCAmelCase__ ) for attr in dir(lowerCAmelCase__ ): lowerCAmelCase_ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCAmelCase_ : Optional[Any] = getattr(lowerCAmelCase__ , 'all_model_classes' , [] ) if len(lowerCAmelCase__ ) > 0: test_classes.append(lowerCAmelCase__ ) # sort with class names return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x.__name__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Any = get_test_classes(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x.__name__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Any = test_class() if hasattr(lowerCAmelCase__ , 'setUp' ): test.setUp() lowerCAmelCase_ : str = None if hasattr(lowerCAmelCase__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCAmelCase_ : int = test.model_tester.__class__ return model_tester def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Optional[int] = get_test_classes(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCAmelCase__ ) # sort with class names return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x.__name__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = get_test_classes_for_model(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = [] for test_class in test_classes: lowerCAmelCase_ : Optional[int] = get_model_tester_from_test_class(lowerCAmelCase__ ) if tester_class is not None: tester_classes.append(lowerCAmelCase__ ) # sort with class names return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x.__name__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Dict = get_test_classes(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = {test_class: get_model_tester_from_test_class(lowerCAmelCase__ ) for test_class in test_classes} return test_tester_mapping def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = get_model_classes(lowerCAmelCase__ ) lowerCAmelCase_ : str = { model_class: get_test_classes_for_model(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in model_classes } return model_test_mapping def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" lowerCAmelCase_ : Optional[Any] = get_model_classes(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { model_class: get_tester_classes_for_model(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in model_classes } return model_to_tester_mapping def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> Any: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return o elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return o.__name__ elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_json(lowerCAmelCase__ ) for x in o] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {to_json(lowerCAmelCase__ ): to_json(lowerCAmelCase__ ) for k, v in o.items()} else: return o
289
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase__ : str = logging.get_logger(__name__) def UpperCamelCase_ ( lowerCAmelCase__ : bool , lowerCAmelCase__ : bool ) -> List[Any]: """simple docstring""" def run_func(lowerCAmelCase__ : int ): @wraps(lowerCAmelCase__ ) def run_in_eager_mode(*lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : int ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) @wraps(lowerCAmelCase__ ) @tf.function(experimental_compile=lowerCAmelCase__ ) def run_in_graph_mode(*lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> ["tf.Tensor"]: """simple docstring""" lowerCAmelCase_ : Dict = random.Random() lowerCAmelCase_ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = "TensorFlow" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return tf.__version__ def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): # initialize GPU on separate process lowerCAmelCase_ : List[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : List[str] = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_inference ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Any = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_train ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Optional[Any] = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_inference ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Optional[int] = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_train ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Any = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase_ : Union[str, Any] = ( hasattr(SCREAMING_SNAKE_CASE_ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase_ : Any = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase_ : Any = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase_ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase_ : str = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowerCAmelCase_ : List[Any] = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase_ : Tuple = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase_ : Dict = ( hasattr(SCREAMING_SNAKE_CASE_ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase_ : Optional[Any] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase_ : int = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase_ : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase_ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowerCAmelCase_ : int = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase_ : Optional[Any] = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : Optional[int] = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients lowerCAmelCase_ : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(SCREAMING_SNAKE_CASE_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase_ : Dict = timeit.repeat( SCREAMING_SNAKE_CASE_ , repeat=self.args.repeat , number=1_0 , ) return min(SCREAMING_SNAKE_CASE_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) lowerCAmelCase_ : Union[str, Any] = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) lowerCAmelCase_ : Tuple = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() lowerCAmelCase_ : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase_ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = meminfo.used lowerCAmelCase_ : int = Memory(SCREAMING_SNAKE_CASE_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) lowerCAmelCase_ : Optional[int] = None else: lowerCAmelCase_ : Union[str, Any] = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = Memory(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase_ : List[Any] = stop_memory_tracing(SCREAMING_SNAKE_CASE_ ) if memory is None: lowerCAmelCase_ : Union[str, Any] = summary.total else: lowerCAmelCase_ : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
289
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "geglu" , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : str = "layer_norm" , __lowerCamelCase : bool = False , ): super().__init__() UpperCamelCase :List[Any] = only_cross_attention UpperCamelCase :Dict = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' UpperCamelCase :Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCamelCase :Tuple = AdaLayerNorm(snake_case_ , snake_case_ ) elif self.use_ada_layer_norm_zero: UpperCamelCase :Union[str, Any] = AdaLayerNormZero(snake_case_ , snake_case_ ) else: UpperCamelCase :Optional[int] = nn.LayerNorm(snake_case_ , elementwise_affine=snake_case_ ) UpperCamelCase :List[Any] = Attention( query_dim=snake_case_ , heads=snake_case_ , dim_head=snake_case_ , dropout=snake_case_ , bias=snake_case_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=snake_case_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCamelCase :List[str] = ( AdaLayerNorm(snake_case_ , snake_case_ ) if self.use_ada_layer_norm else nn.LayerNorm(snake_case_ , elementwise_affine=snake_case_ ) ) UpperCamelCase :int = Attention( query_dim=snake_case_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=snake_case_ , dim_head=snake_case_ , dropout=snake_case_ , bias=snake_case_ , upcast_attention=snake_case_ , ) # is self-attn if encoder_hidden_states is none else: UpperCamelCase :Dict = None UpperCamelCase :Tuple = None # 3. Feed-forward UpperCamelCase :int = nn.LayerNorm(snake_case_ , elementwise_affine=snake_case_ ) UpperCamelCase :Any = FeedForward(snake_case_ , dropout=snake_case_ , activation_fn=snake_case_ , final_dropout=snake_case_ ) # let chunk size default to None UpperCamelCase :Any = None UpperCamelCase :List[str] = 0 def _A ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ): # Sets chunk feed-forward UpperCamelCase :Dict = chunk_size UpperCamelCase :List[Any] = dim def _A ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , __lowerCamelCase : Dict[str, Any] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCamelCase :List[str] = self.norma(snake_case_ , snake_case_ ) elif self.use_ada_layer_norm_zero: UpperCamelCase :Tuple = self.norma( snake_case_ , snake_case_ , snake_case_ , hidden_dtype=hidden_states.dtype ) else: UpperCamelCase :str = self.norma(snake_case_ ) UpperCamelCase :int = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCamelCase :List[str] = self.attna( snake_case_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=snake_case_ , **snake_case_ , ) if self.use_ada_layer_norm_zero: UpperCamelCase :Any = gate_msa.unsqueeze(1 ) * attn_output UpperCamelCase :Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCamelCase :List[Any] = ( self.norma(snake_case_ , snake_case_ ) if self.use_ada_layer_norm else self.norma(snake_case_ ) ) UpperCamelCase :Optional[Any] = self.attna( snake_case_ , encoder_hidden_states=snake_case_ , attention_mask=snake_case_ , **snake_case_ , ) UpperCamelCase :str = attn_output + hidden_states # 3. Feed-forward UpperCamelCase :Tuple = self.norma(snake_case_ ) if self.use_ada_layer_norm_zero: UpperCamelCase :List[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) UpperCamelCase :Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCamelCase :int = torch.cat( [self.ff(snake_case_ ) for hid_slice in norm_hidden_states.chunk(snake_case_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCamelCase :int = self.ff(snake_case_ ) if self.use_ada_layer_norm_zero: UpperCamelCase :Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output UpperCamelCase :Any = ff_output + hidden_states return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 4 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : str = "geglu" , __lowerCamelCase : bool = False , ): super().__init__() UpperCamelCase :Optional[Any] = int(dim * mult ) UpperCamelCase :Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCamelCase :Optional[Any] = GELU(snake_case_ , snake_case_ ) if activation_fn == "gelu-approximate": UpperCamelCase :Dict = GELU(snake_case_ , snake_case_ , approximate="""tanh""" ) elif activation_fn == "geglu": UpperCamelCase :int = GEGLU(snake_case_ , snake_case_ ) elif activation_fn == "geglu-approximate": UpperCamelCase :Tuple = ApproximateGELU(snake_case_ , snake_case_ ) UpperCamelCase :int = nn.ModuleList([] ) # project in self.net.append(snake_case_ ) # project dropout self.net.append(nn.Dropout(snake_case_ ) ) # project out self.net.append(nn.Linear(snake_case_ , snake_case_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(snake_case_ ) ) def _A ( self : Tuple , __lowerCamelCase : Optional[Any] ): for module in self.net: UpperCamelCase :List[Any] = module(snake_case_ ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : str = "none" ): super().__init__() UpperCamelCase :Optional[int] = nn.Linear(snake_case_ , snake_case_ ) UpperCamelCase :Union[str, Any] = approximate def _A ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): if gate.device.type != "mps": return F.gelu(snake_case_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _A ( self : Union[str, Any] , __lowerCamelCase : Dict ): UpperCamelCase :Tuple = self.proj(snake_case_ ) UpperCamelCase :Tuple = self.gelu(snake_case_ ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): super().__init__() UpperCamelCase :Optional[Any] = nn.Linear(snake_case_ , dim_out * 2 ) def _A ( self : Union[str, Any] , __lowerCamelCase : int ): if gate.device.type != "mps": return F.gelu(snake_case_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _A ( self : List[str] , __lowerCamelCase : Dict ): UpperCamelCase :List[str] = self.proj(snake_case_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(snake_case_ ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ): super().__init__() UpperCamelCase :List[str] = nn.Linear(snake_case_ , snake_case_ ) def _A ( self : Any , __lowerCamelCase : Optional[int] ): UpperCamelCase :Tuple = self.proj(snake_case_ ) return x * torch.sigmoid(1.702 * x ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): super().__init__() UpperCamelCase :Dict = nn.Embedding(snake_case_ , snake_case_ ) UpperCamelCase :Union[str, Any] = nn.SiLU() UpperCamelCase :List[Any] = nn.Linear(snake_case_ , embedding_dim * 2 ) UpperCamelCase :Tuple = nn.LayerNorm(snake_case_ , elementwise_affine=snake_case_ ) def _A ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): UpperCamelCase :Optional[int] = self.linear(self.silu(self.emb(snake_case_ ) ) ) UpperCamelCase :Any = torch.chunk(snake_case_ , 2 ) UpperCamelCase :str = self.norm(snake_case_ ) * (1 + scale) + shift return x class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): super().__init__() UpperCamelCase :Union[str, Any] = CombinedTimestepLabelEmbeddings(snake_case_ , snake_case_ ) UpperCamelCase :str = nn.SiLU() UpperCamelCase :Optional[int] = nn.Linear(snake_case_ , 6 * embedding_dim , bias=snake_case_ ) UpperCamelCase :Tuple = nn.LayerNorm(snake_case_ , elementwise_affine=snake_case_ , eps=1E-6 ) def _A ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None ): UpperCamelCase :Union[str, Any] = self.linear(self.silu(self.emb(snake_case_ , snake_case_ , hidden_dtype=snake_case_ ) ) ) UpperCamelCase :Optional[int] = emb.chunk(6 , dim=1 ) UpperCamelCase :Optional[Any] = self.norm(snake_case_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : float = 1E-5 ): super().__init__() UpperCamelCase :Optional[int] = num_groups UpperCamelCase :List[str] = eps if act_fn is None: UpperCamelCase :List[Any] = None else: UpperCamelCase :Tuple = get_activation(snake_case_ ) UpperCamelCase :int = nn.Linear(snake_case_ , out_dim * 2 ) def _A ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): if self.act: UpperCamelCase :List[str] = self.act(snake_case_ ) UpperCamelCase :Any = self.linear(snake_case_ ) UpperCamelCase :Tuple = emb[:, :, None, None] UpperCamelCase :Optional[int] = emb.chunk(2 , dim=1 ) UpperCamelCase :Dict = F.group_norm(snake_case_ , self.num_groups , eps=self.eps ) UpperCamelCase :List[Any] = x * (1 + scale) + shift return x
38
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ =getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1_0_2_4 , lowerCAmelCase__ : Union[str, Any]="val" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]="summarization" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int="" , **lowerCAmelCase__ : int , ): __a : List[Any] = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=lowerCAmelCase__ ) __a : Tuple = Path(lowerCAmelCase__ ) __a : Dict = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase__ ) __a : Dict = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: __a : str = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params __a : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __a : Dict = num_return_sequences __a : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __a : Dict = tokenizer.model_max_length if prefix is None: __a : Dict = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __a : List[Any] = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1_0_2_4 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __a : Tuple = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) __a : List[Any] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) __a : List[Any] = [] for batch in tqdm(lowerCAmelCase__ ): __a : Any = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) __a : int = batch['''ids'''] if num_return_sequences > 1: __a : List[str] = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def __UpperCamelCase ( ): __a : str = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=lowerCAmelCase__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=lowerCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=lowerCAmelCase__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '''--type_path''' , type=lowerCAmelCase__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=lowerCAmelCase__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=lowerCAmelCase__ , default=6_0_0 , required=lowerCAmelCase__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--prefix''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __a : int = time.time() __a , __a : Tuple = parser.parse_known_args() __a : Optional[int] = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) __a : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. __a : Dict = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __a : Optional[Any] = {} if args.src_lang is not None: __a : int = args.src_lang if args.tgt_lang is not None: __a : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) __a , __a : Tuple = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: __a : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) __a : List[str] = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) __a : int = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: __a : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return __a : Any = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(lowerCAmelCase__ ) as f: __a : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __a : str = '''translation''' in args.task __a : List[str] = calculate_bleu if calc_bleu else calculate_rouge __a : Any = '''bleu''' if calc_bleu else '''rouge''' __a : Dict = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Dict = len(lowerCAmelCase__ ) __a : str = time.time() - start_time __a : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __a : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics __a : Optional[int] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] ): __a : Optional[int] = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) __a : Tuple = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) __a : Tuple = [x['''pred'''] for x in records] return preds def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): # WAIT FOR lots of .json files __a : Tuple = time.time() logger.info('''waiting for all nodes to finish''' ) __a : Optional[int] = None while (time.time() - start_wait) < timeout: __a : Optional[int] = list(save_dir.glob('''rank_*.json''' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __a : Tuple = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
216
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
1
"""simple docstring""" from math import sqrt def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 for i in range(1, int(sqrt(__snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(__snake_case ): total += i + n // i elif i == sqrt(__snake_case ): total += i return total - n def lowerCamelCase__ ( __snake_case = 1_00_00 ) -> int: """simple docstring""" _UpperCamelCase = sum( i for i in range(1, __snake_case ) if sum_of_divisors(sum_of_divisors(__snake_case ) ) == i and sum_of_divisors(__snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
194
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'time_series_transformer' __UpperCAmelCase : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = [1, 2, 3, 4, 5, 6, 7] , _a = "mean" , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 32 , _a = 32 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = True , _a = "gelu" , _a = 64 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a=True , **_a , ): # time series specific configuration __a = prediction_length __a = context_length or prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a = cardinality else: __a = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(_a ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache super().__init__(is_encoder_decoder=_a , **_a ) @property def __UpperCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
370
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): snake_case : int = set() snake_case : Tuple = [] def parse_line(__lowerCamelCase : Optional[Any] ): for line in fp: if isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : Tuple = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(__lowerCamelCase ) > 0: snake_case : List[str] = "\n".join(__lowerCamelCase ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(__lowerCamelCase ) buffer.clear() continue else: snake_case : Tuple = line.strip() buffer.append(__lowerCamelCase ) if from_gh: for filename in os.listdir(__lowerCamelCase ): snake_case : List[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isdir(__lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(__lowerCamelCase ) as fp: parse_line(__lowerCamelCase ) else: try: with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(__lowerCamelCase ) as fp: parse_line(__lowerCamelCase ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : str ): snake_case : Union[str, Any] = set() snake_case : List[Any] = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__lowerCamelCase , __lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): return values.split("," ) __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCamelCase = extract_warnings(args.output_dir, args.targets) __lowerCamelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
59
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
0
from random import randint from tempfile import TemporaryFile import numpy as np def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = 0 if start < end: _UpperCAmelCase = randint(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = a[end] _UpperCAmelCase = a[pivot] _UpperCAmelCase = temp _UpperCAmelCase , _UpperCAmelCase = _in_place_partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += _in_place_quick_sort(_UpperCAmelCase , _UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(_UpperCAmelCase , p + 1 , _UpperCAmelCase ) return count def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = randint(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = a[end] _UpperCAmelCase = a[pivot] _UpperCAmelCase = temp _UpperCAmelCase = start - 1 for index in range(_UpperCAmelCase , _UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _UpperCAmelCase = new_pivot_index + 1 _UpperCAmelCase = a[new_pivot_index] _UpperCAmelCase = a[index] _UpperCAmelCase = temp _UpperCAmelCase = a[new_pivot_index + 1] _UpperCAmelCase = a[end] _UpperCAmelCase = temp return new_pivot_index + 1, count UpperCAmelCase__ = TemporaryFile() UpperCAmelCase__ = 100 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ = 0, 1 # mean and standard deviation UpperCAmelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ = np.load(outfile) UpperCAmelCase__ = len(M) - 1 UpperCAmelCase__ = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
290
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : str) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , **A : Dict) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , A) @require_ftfy def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = 'xa\u0303y' + ' ' + 'x\xe3y' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"{text_of_1_token} {text_of_1_token}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (0, len(A))) self.assertEqual( encoding.offset_mapping[1] , (len(A) + 1, len(A) + 1 + len(A)) , ) _UpperCAmelCase = F" {text}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A) + 1, 1 + len(A) + 1 + len(A)) , ) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" with self.assertRaises(A) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer') self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.')) @require_ftfy def _lowerCamelCase ( self : int) -> int: """simple docstring""" super().test_tokenization_python_rust_equals() def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" pass
290
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase_ = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase_ = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __lowerCamelCase ( a_ : Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE :Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a_ )[0] @deprecated(a_ , '''Please use tf.data to implement this functionality.''' ) def __lowerCamelCase ( a_ : Optional[Any] ) -> int: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a_ ) as bytestream: __SCREAMING_SNAKE_CASE :Optional[int] = _readaa(a_ ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = _readaa(a_ ) __SCREAMING_SNAKE_CASE :List[Any] = _readaa(a_ ) __SCREAMING_SNAKE_CASE :List[str] = _readaa(a_ ) __SCREAMING_SNAKE_CASE :Any = bytestream.read(rows * cols * num_images ) __SCREAMING_SNAKE_CASE :List[str] = numpy.frombuffer(a_ , dtype=numpy.uinta ) __SCREAMING_SNAKE_CASE :List[str] = data.reshape(a_ , a_ , a_ , 1 ) return data @deprecated(a_ , '''Please use tf.one_hot on tensors.''' ) def __lowerCamelCase ( a_ : Any , a_ : Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE :int = labels_dense.shape[0] __SCREAMING_SNAKE_CASE :Union[str, Any] = numpy.arange(a_ ) * num_classes __SCREAMING_SNAKE_CASE :Any = numpy.zeros((num_labels, num_classes) ) __SCREAMING_SNAKE_CASE :Optional[int] = 1 return labels_one_hot @deprecated(a_ , '''Please use tf.data to implement this functionality.''' ) def __lowerCamelCase ( a_ : Tuple , a_ : Optional[int]=False , a_ : List[str]=10 ) -> List[Any]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a_ ) as bytestream: __SCREAMING_SNAKE_CASE :str = _readaa(a_ ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __SCREAMING_SNAKE_CASE :Any = _readaa(a_ ) __SCREAMING_SNAKE_CASE :int = bytestream.read(a_ ) __SCREAMING_SNAKE_CASE :str = numpy.frombuffer(a_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a_ , a_ ) return labels class _SCREAMING_SNAKE_CASE: @deprecated( SCREAMING_SNAKE_CASE__ ,'''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' ,) def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=dtypes.floataa ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __SCREAMING_SNAKE_CASE :int = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __SCREAMING_SNAKE_CASE :int = 1_00_00 __SCREAMING_SNAKE_CASE :Optional[int] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __SCREAMING_SNAKE_CASE :int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __SCREAMING_SNAKE_CASE :List[str] = images.reshape( images.shape[0] ,images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __SCREAMING_SNAKE_CASE :Optional[int] = images.astype(numpy.floataa ) __SCREAMING_SNAKE_CASE :Optional[int] = numpy.multiply(SCREAMING_SNAKE_CASE__ ,1.0 / 2_5_5.0 ) __SCREAMING_SNAKE_CASE :Any = images __SCREAMING_SNAKE_CASE :Optional[int] = labels __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :Any = 0 @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return self._images @property def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return self._labels @property def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._epochs_completed def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ) -> List[str]: """simple docstring""" if fake_data: __SCREAMING_SNAKE_CASE :List[Any] = [1] * 7_84 __SCREAMING_SNAKE_CASE :Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __SCREAMING_SNAKE_CASE :Any = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __SCREAMING_SNAKE_CASE :List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.images[perma] __SCREAMING_SNAKE_CASE :Optional[int] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __SCREAMING_SNAKE_CASE :List[Any] = self._num_examples - start __SCREAMING_SNAKE_CASE :Optional[int] = self._images[start : self._num_examples] __SCREAMING_SNAKE_CASE :Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __SCREAMING_SNAKE_CASE :Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.images[perm] __SCREAMING_SNAKE_CASE :List[str] = self.labels[perm] # Start next epoch __SCREAMING_SNAKE_CASE :str = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = batch_size - rest_num_examples __SCREAMING_SNAKE_CASE :Dict = self._index_in_epoch __SCREAMING_SNAKE_CASE :Optional[int] = self._images[start:end] __SCREAMING_SNAKE_CASE :int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) ,axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) ,axis=0 ), ) else: self._index_in_epoch += batch_size __SCREAMING_SNAKE_CASE :Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a_ , '''Please write your own downloading logic.''' ) def __lowerCamelCase ( a_ : int , a_ : Dict , a_ : Any ) -> Tuple: if not gfile.Exists(a_ ): gfile.MakeDirs(a_ ) __SCREAMING_SNAKE_CASE :int = os.path.join(a_ , a_ ) if not gfile.Exists(a_ ): urllib.request.urlretrieve(a_ , a_ ) # noqa: S310 with gfile.GFile(a_ ) as f: __SCREAMING_SNAKE_CASE :Dict = f.size() print('''Successfully downloaded''' , a_ , a_ , '''bytes.''' ) return filepath @deprecated( a_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __lowerCamelCase ( a_ : Tuple , a_ : List[Any]=False , a_ : str=False , a_ : Optional[Any]=dtypes.floataa , a_ : List[Any]=True , a_ : Optional[Any]=50_00 , a_ : Optional[Any]=None , a_ : Dict=DEFAULT_SOURCE_URL , ) -> int: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a_ , one_hot=a_ , dtype=a_ , seed=a_ ) __SCREAMING_SNAKE_CASE :str = fake() __SCREAMING_SNAKE_CASE :Optional[Any] = fake() __SCREAMING_SNAKE_CASE :Any = fake() return _Datasets(train=a_ , validation=a_ , test=a_ ) if not source_url: # empty string check __SCREAMING_SNAKE_CASE :Any = DEFAULT_SOURCE_URL __SCREAMING_SNAKE_CASE :Union[str, Any] = '''train-images-idx3-ubyte.gz''' __SCREAMING_SNAKE_CASE :str = '''train-labels-idx1-ubyte.gz''' __SCREAMING_SNAKE_CASE :Dict = '''t10k-images-idx3-ubyte.gz''' __SCREAMING_SNAKE_CASE :Union[str, Any] = '''t10k-labels-idx1-ubyte.gz''' __SCREAMING_SNAKE_CASE :Tuple = _maybe_download( a_ , a_ , source_url + train_images_file ) with gfile.Open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Union[str, Any] = _extract_images(a_ ) __SCREAMING_SNAKE_CASE :Any = _maybe_download( a_ , a_ , source_url + train_labels_file ) with gfile.Open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Any = _extract_labels(a_ , one_hot=a_ ) __SCREAMING_SNAKE_CASE :Tuple = _maybe_download( a_ , a_ , source_url + test_images_file ) with gfile.Open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Dict = _extract_images(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = _maybe_download( a_ , a_ , source_url + test_labels_file ) with gfile.Open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Optional[Any] = _extract_labels(a_ , one_hot=a_ ) if not 0 <= validation_size <= len(a_ ): __SCREAMING_SNAKE_CASE :Tuple = ( '''Validation size should be between 0 and ''' f'''{len(a_ )}. Received: {validation_size}.''' ) raise ValueError(a_ ) __SCREAMING_SNAKE_CASE :Any = train_images[:validation_size] __SCREAMING_SNAKE_CASE :List[str] = train_labels[:validation_size] __SCREAMING_SNAKE_CASE :Optional[Any] = train_images[validation_size:] __SCREAMING_SNAKE_CASE :Optional[Any] = train_labels[validation_size:] __SCREAMING_SNAKE_CASE :Tuple = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __SCREAMING_SNAKE_CASE :List[Any] = _DataSet(a_ , a_ , **a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = _DataSet(a_ , a_ , **a_ ) __SCREAMING_SNAKE_CASE :str = _DataSet(a_ , a_ , **a_ ) return _Datasets(train=a_ , validation=a_ , test=a_ )
191
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" if class_cond: __SCREAMING_SNAKE_CASE :str = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Optional[Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :List[str] = None __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Any = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = 0 __SCREAMING_SNAKE_CASE :Any = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE :int = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ,shape=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = latents return inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> int: """simple docstring""" if type(SCREAMING_SNAKE_CASE__ ) == str: __SCREAMING_SNAKE_CASE :int = torch.device(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = randn_tensor(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ) return latents def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.get_inputs() __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Dict = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.get_inputs() __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :int = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
191
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__a , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _A (__a , __a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = _distribute_shards(**__a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def _A (__a , __a , __a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = _split_gen_kwargs(__a , __a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def _A (__a , __a ) -> Union[str, Any]: """simple docstring""" if expected is RuntimeError: with pytest.raises(__a ): _number_of_shards_in_gen_kwargs(__a ) else: SCREAMING_SNAKE_CASE_ : Any = _number_of_shards_in_gen_kwargs(__a ) assert out == expected
318
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , *__a : int , **__a : str ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
"""simple docstring""" def A__ ( UpperCamelCase ): A = generate_pascal_triangle(UpperCamelCase ) for row_idx in range(UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [] for current_row_idx in range(UpperCamelCase ): A = populate_current_row(UpperCamelCase , UpperCamelCase ) triangle.append(UpperCamelCase ) return triangle def A__ ( UpperCamelCase , UpperCamelCase ): A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A, A = 1, 1 for current_col_idx in range(1 , UpperCamelCase ): calculate_current_element( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return current_row def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): A = triangle[current_row_idx - 1][current_col_idx - 1] A = triangle[current_row_idx - 1][current_col_idx] A = above_to_left_elt + above_to_right_elt def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [[1]] for row_index in range(1 , UpperCamelCase ): A = [0] + result[-1] + [0] A = row_index + 1 # Calculate the number of distinct elements in a row A = sum(divmod(UpperCamelCase , 2 ) ) A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A = row_first_half + row_second_half result.append(UpperCamelCase ) return result def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: A = F"{func.__name__}({value})" A = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
292
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Dict = 'convbert' def __init__(self : Dict , __UpperCAmelCase : int=3_0_5_2_2 , __UpperCAmelCase : str=7_6_8 , __UpperCAmelCase : Optional[Any]=1_2 , __UpperCAmelCase : int=1_2 , __UpperCAmelCase : Tuple=3_0_7_2 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Dict=5_1_2 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : List[str]=1E-12 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=7_6_8 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=9 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = embedding_size UpperCAmelCase__ = head_ratio UpperCAmelCase__ = conv_kernel_size UpperCAmelCase__ = num_groups UpperCAmelCase__ = classifier_dropout class A ( UpperCAmelCase_ ): @property def lowercase_ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
143
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase__ = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = PegasusTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is""" f""" {type(__UpperCAmelCase )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
143
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case : Tuple = logging.get_logger('transformers.models.speecht5') __snake_case : Any = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } __snake_case : Union[str, Any] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } __snake_case : Union[str, Any] = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } __snake_case : Dict = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } __snake_case : Optional[int] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } __snake_case : Union[str, Any] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } __snake_case : Tuple = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } __snake_case : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } __snake_case : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : Optional[int] = [] __snake_case : str = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] __snake_case : Any = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] __snake_case : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] __snake_case : Dict = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Dict: for attribute in key.split("." ): __lowerCAmelCase : Tuple = getattr(__snake_case ,__snake_case ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(__snake_case ,__snake_case ).shape else: __lowerCAmelCase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase : Optional[int] = value elif weight_type == "weight_g": __lowerCAmelCase : Tuple = value elif weight_type == "weight_v": __lowerCAmelCase : str = value elif weight_type == "bias": __lowerCAmelCase : int = value elif weight_type == "running_mean": __lowerCAmelCase : List[Any] = value elif weight_type == "running_var": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "num_batches_tracked": __lowerCAmelCase : Union[str, Any] = value else: __lowerCAmelCase : List[str] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _lowercase ( __snake_case ,__snake_case ) -> Optional[int]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCAmelCase , __lowerCAmelCase : Any = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> int: __lowerCAmelCase : Optional[Any] = [] if task == "s2t": __lowerCAmelCase : List[str] = hf_model.speechta.encoder.prenet.feature_encoder __lowerCAmelCase : Tuple = MAPPING_S2T __lowerCAmelCase : List[Any] = IGNORE_KEYS_S2T elif task == "t2s": __lowerCAmelCase : Any = None __lowerCAmelCase : List[Any] = MAPPING_T2S __lowerCAmelCase : Optional[int] = IGNORE_KEYS_T2S elif task == "s2s": __lowerCAmelCase : str = hf_model.speechta.encoder.prenet.feature_encoder __lowerCAmelCase : Any = MAPPING_S2S __lowerCAmelCase : Any = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__snake_case ,__snake_case ): logger.info(F"""{name} was ignored""" ) continue __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == "group" ,) __lowerCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCAmelCase , __lowerCAmelCase : List[str] = key.split(".*." ) if prefix in name and suffix in name: __lowerCAmelCase : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: __lowerCAmelCase : Tuple = name.split(__snake_case )[0].split("." )[-2] __lowerCAmelCase : int = mapped_key.replace("*" ,__snake_case ) if "weight_g" in name: __lowerCAmelCase : List[str] = "weight_g" elif "weight_v" in name: __lowerCAmelCase : List[Any] = "weight_v" elif "bias" in name: __lowerCAmelCase : List[str] = "bias" elif "weight" in name: __lowerCAmelCase : List[str] = "weight" elif "running_mean" in name: __lowerCAmelCase : Optional[Any] = "running_mean" elif "running_var" in name: __lowerCAmelCase : Optional[int] = "running_var" elif "num_batches_tracked" in name: __lowerCAmelCase : Optional[int] = "num_batches_tracked" else: __lowerCAmelCase : Dict = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: __lowerCAmelCase : Any = full_name.split("conv_layers." )[-1] __lowerCAmelCase : List[str] = name.split("." ) __lowerCAmelCase : int = int(items[0] ) __lowerCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCAmelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=None ,) -> Tuple: if config_path is not None: __lowerCAmelCase : int = SpeechTaConfig.from_pretrained(__snake_case ) else: __lowerCAmelCase : Union[str, Any] = SpeechTaConfig() if task == "s2t": __lowerCAmelCase : int = config.max_text_positions __lowerCAmelCase : Tuple = SpeechTaForSpeechToText(__snake_case ) elif task == "t2s": __lowerCAmelCase : Optional[Any] = 1_876 __lowerCAmelCase : Optional[int] = 600 __lowerCAmelCase : Any = config.max_speech_positions __lowerCAmelCase : str = SpeechTaForTextToSpeech(__snake_case ) elif task == "s2s": __lowerCAmelCase : str = 1_876 __lowerCAmelCase : Optional[int] = config.max_speech_positions __lowerCAmelCase : Union[str, Any] = SpeechTaForSpeechToSpeech(__snake_case ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCAmelCase : Any = SpeechTaTokenizer(__snake_case ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCAmelCase : Tuple = AddedToken("<mask>" ,lstrip=__snake_case ,rstrip=__snake_case ) __lowerCAmelCase : Union[str, Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) __lowerCAmelCase : List[str] = SpeechTaFeatureExtractor() __lowerCAmelCase : List[Any] = SpeechTaProcessor(tokenizer=__snake_case ,feature_extractor=__snake_case ) processor.save_pretrained(__snake_case ) __lowerCAmelCase : List[Any] = torch.load(__snake_case ) recursively_load_weights(fairseq_checkpoint["model"] ,__snake_case ,__snake_case ) model.save_pretrained(__snake_case ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __snake_case : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
269
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Any = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'mctct' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=8065 , _SCREAMING_SNAKE_CASE: str=1536 , _SCREAMING_SNAKE_CASE: str=36 , _SCREAMING_SNAKE_CASE: Optional[Any]=6144 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=384 , _SCREAMING_SNAKE_CASE: Optional[Any]=920 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-5 , _SCREAMING_SNAKE_CASE: List[Any]=0.3 , _SCREAMING_SNAKE_CASE: Optional[Any]="relu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.3 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: List[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1 , _SCREAMING_SNAKE_CASE: Tuple=0.3 , _SCREAMING_SNAKE_CASE: Dict=1 , _SCREAMING_SNAKE_CASE: int=(7,) , _SCREAMING_SNAKE_CASE: str=(3,) , _SCREAMING_SNAKE_CASE: Union[str, Any]=80 , _SCREAMING_SNAKE_CASE: Tuple=1 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Tuple="sum" , _SCREAMING_SNAKE_CASE: List[str]=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : str = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Dict = attention_head_dim __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Tuple = layerdrop __lowerCAmelCase : str = hidden_act __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : str = pad_token_id __lowerCAmelCase : Optional[int] = bos_token_id __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : Any = conv_glu_dim __lowerCAmelCase : Optional[int] = conv_dropout __lowerCAmelCase : Union[str, Any] = num_conv_layers __lowerCAmelCase : Optional[int] = input_feat_per_channel __lowerCAmelCase : Union[str, Any] = input_channels __lowerCAmelCase : Optional[Any] = conv_channels __lowerCAmelCase : Dict = ctc_loss_reduction __lowerCAmelCase : int = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""")
269
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = position _UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCAmelCase = [] for position in positions: _UpperCAmelCase , _UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase , _UpperCAmelCase = position if board[y][x] == 0: _UpperCAmelCase = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True _UpperCAmelCase = 0 return False def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board _UpperCAmelCase = 0 _UpperCAmelCase = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase : List[str] = "examples/" UpperCAmelCase : str = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCAmelCase : Tuple = { "init": "src/transformers/__init__.py", "setup": "setup.py", } UpperCAmelCase : List[str] = "README.md" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.read() lowercase_ , lowercase_ = REPLACE_PATTERNS[pattern] lowercase_ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowercase_ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = """🤗 Transformers currently provides the following architectures""" lowercase_ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.readlines() # Find the start of the list. lowercase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase_ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowercase_ = f.read() lowercase_ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=False ) -> Any: '''simple docstring''' lowercase_ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase_ = default_version.base_version elif patch: lowercase_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowercase_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = get_version() lowercase_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase_ = current_version.base_version # Check with the user we got that right. lowercase_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowercase_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCAmelCase : List[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
136
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "Speech2TextFeatureExtractor" lowercase__ = "Speech2TextTokenizer" def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.feature_extractor lowercase_ = False def __call__( self : Dict , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str]): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""") lowercase_ = kwargs.pop("""raw_speech""") else: lowercase_ = kwargs.pop("""audio""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""sampling_rate""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""text""" , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: lowercase_ = args[0] lowercase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if audio is not None: lowercase_ = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_) if text is not None: lowercase_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_) if text is None: return inputs elif audio is None: return encodings else: lowercase_ = encodings["""input_ids"""] return inputs def _UpperCAmelCase ( self : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : str): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_) @contextmanager def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""") lowercase_ = True lowercase_ = self.tokenizer yield lowercase_ = self.feature_extractor lowercase_ = False
136
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowerCAmelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __lowerCAmelCase = { '''camembert-base''': 5_12, } __lowerCAmelCase = '''▁''' class __a ( __UpperCamelCase ): __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Tuple = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' lowercase__: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) lowercase__: Any = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase__: Tuple = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} lowercase__: str = len(self.fairseq_tokens_to_ids ) lowercase__: Tuple = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase__: Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: int = [self.cls_token_id] lowercase__: Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: List[Any] = [self.sep_token_id] lowercase__: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: List[str] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowerCAmelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: Any = [] lowercase__: List[Any] = '' lowercase__: int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token lowercase__: int = True lowercase__: str = [] else: current_sub_tokens.append(lowerCAmelCase__ ) lowercase__: str = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __getstate__( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = self.__dict__.copy() lowercase__: List[str] = None return state def __setstate__( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Optional[int] = {} lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
361
import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase = '''path-to-your-trained-model''' __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') __lowerCAmelCase = '''A photo of sks dog in a bucket''' __lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
288
0
"""simple docstring""" class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = name lowerCamelCase = value lowerCamelCase = weight def __repr__( self ): """simple docstring""" return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def _lowerCAmelCase ( self ): """simple docstring""" return self.value def _lowerCAmelCase ( self ): """simple docstring""" return self.name def _lowerCAmelCase ( self ): """simple docstring""" return self.weight def _lowerCAmelCase ( self ): """simple docstring""" return self.value / self.weight def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCamelCase = [] for i in range(len(snake_case__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCamelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ ) lowerCamelCase = [] lowerCamelCase , lowerCamelCase = 0.0, 0.0 for i in range(len(snake_case__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ) -> str: pass if __name__ == "__main__": import doctest doctest.testmod()
291
"""simple docstring""" import operator as op lowerCAmelCase : Dict = """scaler.pt""" lowerCAmelCase : Tuple = """pytorch_model""" lowerCAmelCase : Union[str, Any] = """random_states""" lowerCAmelCase : Union[str, Any] = """optimizer""" lowerCAmelCase : Dict = """scheduler""" lowerCAmelCase : int = """pytorch_model.bin""" lowerCAmelCase : str = """pytorch_model.bin.index.json""" lowerCAmelCase : Union[str, Any] = """model.safetensors""" lowerCAmelCase : List[Any] = """model.safetensors.index.json""" lowerCAmelCase : List[Any] = """1.10.2""" lowerCAmelCase : Any = """py38""" lowerCAmelCase : Optional[int] = """4.17.0""" lowerCAmelCase : str = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] lowerCAmelCase : Tuple = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] lowerCAmelCase : List[Any] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] lowerCAmelCase : List[str] = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] lowerCAmelCase : List[str] = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] lowerCAmelCase : Any = """2.0.1""" lowerCAmelCase : List[Any] = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] lowerCAmelCase : Union[str, Any] = ["""default""", """reduce-overhead""", """max-autotune"""] lowerCAmelCase : Optional[int] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCAmelCase : Union[str, Any] = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] lowerCAmelCase : List[str] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] lowerCAmelCase : Optional[Any] = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
291
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ snake_case_ = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ snake_case_ = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :List[str] = False , lowercase_ :Dict = False , lowercase_ :int = False , lowercase_ :Union[str, Any] = False , ) -> Optional[Any]: UpperCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase = [[refs[i] for refs in references] for i in range(__a )] UpperCAmelCase = TER( normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , ) UpperCAmelCase = sb_ter.corpus_score(__a , __a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
362
"""simple docstring""" from math import factorial, radians def _lowerCAmelCase ( lowercase_ , lowercase_ = 18 , lowercase_ = 10 ): UpperCAmelCase = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians UpperCAmelCase = radians(lowercase_ ) UpperCAmelCase = angle_in_radians UpperCAmelCase = 3 UpperCAmelCase = -1 for _ in range(lowercase_ ): result += (b * (angle_in_radians**a)) / factorial(lowercase_ ) UpperCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase_ , lowercase_ ) if __name__ == "__main__": __import__("""doctest""").testmod()
181
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase__ : str = logging.get_logger(__name__) @dataclass class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Union[str, Any] ,**lowerCamelCase__ : Optional[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ = deprecated_arg[3:] setattr(self ,lowerCamelCase__ ,not kwargs.pop(lowerCamelCase__ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase__ = kwargs.pop('torchscript' ,self.torchscript ) UpperCAmelCase__ = kwargs.pop('torch_xla_tpu_print_metrics' ,self.torch_xla_tpu_print_metrics ) UpperCAmelCase__ = kwargs.pop('fp16_opt_level' ,self.fpaa_opt_level ) super().__init__(**lowerCamelCase__ ) snake_case__ = field(default=__UpperCAmelCase , metadata={"help": "Trace the models using torchscript"} ) snake_case__ = field(default=__UpperCAmelCase , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) snake_case__ = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def __lowerCAmelCase ( self : Optional[int] ): requires_backends(self ,['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: UpperCAmelCase__ = torch.device('cpu' ) UpperCAmelCase__ = 0 elif is_torch_tpu_available(): UpperCAmelCase__ = xm.xla_device() UpperCAmelCase__ = 0 else: UpperCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ = torch.cuda.device_count() return device, n_gpu @property def __lowerCAmelCase ( self : Tuple ): return is_torch_tpu_available() and self.tpu @property def __lowerCAmelCase ( self : Any ): requires_backends(self ,['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __lowerCAmelCase ( self : Dict ): requires_backends(self ,['torch'] ) return self._setup_devices[0] @property def __lowerCAmelCase ( self : int ): requires_backends(self ,['torch'] ) return self._setup_devices[1] @property def __lowerCAmelCase ( self : List[str] ): return self.n_gpu > 0
98
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase_ : str = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase_ : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ : Dict = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : str = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
32
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : List[str]=10 , _UpperCAmelCase : Dict=[10, 20, 30, 40] , _UpperCAmelCase : Any=[1, 1, 2, 1] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=None , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = self.get_config() return config, pixel_values def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = FlaxRegNetModel(config=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Any: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaxRegNetForImageClassification(config=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ = False A__ = False A__ = False def lowerCamelCase__ (self : Optional[Any] ) -> None: """simple docstring""" lowercase__ = FlaxRegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return model(pixel_values=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = (1, 1000) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
import pytest A : Optional[Any] = '__dummy_dataset1__' A : Tuple = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def UpperCamelCase ( ) -> Any: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Any ) -> str: """simple docstring""" lowercase__ = dataset_loading_script_name lowercase__ = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__magic_name__ ) lowercase__ = script_dir / f'''{script_name}.py''' with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ )
146
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=False ): """simple docstring""" a :Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): """simple docstring""" for i in range(config.num_hidden_layers ): a :str = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a :List[Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) a :Union[str, Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a :Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] a :Dict = in_proj_bias[: config.hidden_size] a :Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a :Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a :str = in_proj_weight[ -config.hidden_size :, : ] a :Union[str, Any] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( UpperCAmelCase_ : Dict ): """simple docstring""" a :List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): """simple docstring""" a :int = dct.pop(UpperCAmelCase_ ) a :Tuple = val @torch.no_grad() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): """simple docstring""" a :Optional[int] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=UpperCAmelCase_ ) a :Union[str, Any] = False a :str = False a :Union[str, Any] = False a :str = False if "vqa" in checkpoint_url: a :List[str] = True a :str = 3129 a :Optional[int] = '''huggingface/label-files''' a :Any = '''vqa2-id2label.json''' a :Optional[int] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) a :Any = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} a :Optional[Any] = idalabel a :List[Any] = {v: k for k, v in idalabel.items()} a :Tuple = ViltForQuestionAnswering(UpperCAmelCase_ ) elif "nlvr" in checkpoint_url: a :Optional[int] = True a :List[str] = 2 a :Union[str, Any] = {0: '''False''', 1: '''True'''} a :List[Any] = {v: k for k, v in config.idalabel.items()} a :List[str] = 3 a :Any = ViltForImagesAndTextClassification(UpperCAmelCase_ ) elif "irtr" in checkpoint_url: a :Optional[int] = True a :List[Any] = ViltForImageAndTextRetrieval(UpperCAmelCase_ ) elif "mlm_itm" in checkpoint_url: a :Tuple = True a :Optional[int] = ViltForMaskedLM(UpperCAmelCase_ ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys a :Dict = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='''cpu''' )['''state_dict'''] a :Dict = create_rename_keys(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) if mlm_model or irtr_model: a :str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: a , a :List[Any] = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCAmelCase_ ) # Define processor a :Union[str, Any] = ViltImageProcessor(size=384 ) a :List[str] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) a :List[str] = ViltProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) # Forward pass on example inputs (image + text) if nlvr_model: a :Tuple = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=UpperCAmelCase_ ).raw ) a :Optional[int] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=UpperCAmelCase_ ).raw ) a :Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) a :List[Any] = processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) a :Union[str, Any] = processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) a :int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: a :int = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=UpperCAmelCase_ ).raw ) if mlm_model: a :List[Any] = '''a bunch of [MASK] laying on a [MASK].''' else: a :List[Any] = '''How many cats are there?''' a :Optional[Any] = processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) a :List[str] = model(**UpperCAmelCase_ ) # Verify outputs if mlm_model: a :Any = torch.Size([1, 11, 3_0522] ) a :List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) # verify masked token prediction equals "cats" a :Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: a :Tuple = torch.Size([1, 3129] ) a :List[str] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) # verify vqa prediction equals "2" a :int = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: a :Tuple = torch.Size([1, 2] ) a :Optional[int] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case : List[str] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
94
import datasets from .evaluate import evaluate lowerCAmelCase__ = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase__ = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase__ = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase , predictions=lowercase ) return score
68
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( _lowerCamelCase): A_ : Any = ['image_processor', 'tokenizer'] A_ : List[Any] = 'ViltImageProcessor' A_ : Union[str, Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = kwargs.pop('feature_extractor' ) __lowerCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Tuple = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.tokenizer.model_input_names __lowerCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor
182
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase): A_ : List[Any] = KandinskyVaaInpaintPipeline A_ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] A_ : Any = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] A_ : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A_ : Any = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 1_00 @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCAmelCase : Any = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.dummy_unet __lowerCAmelCase : Optional[Any] = self.dummy_movq __lowerCAmelCase : Tuple = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='epsilon' , thresholding=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): __lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : str = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase : Dict = np.ones((64, 64) , dtype=np.floataa ) __lowerCAmelCase : List[str] = 0 if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : Optional[int] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = 'cpu' __lowerCAmelCase : Dict = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = output.images __lowerCAmelCase : Any = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : str = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) __lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowerCAmelCase : Any = np.ones((7_68, 7_68) , dtype=np.floataa ) __lowerCAmelCase : int = 0 __lowerCAmelCase : str = 'a hat' __lowerCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) __lowerCAmelCase : Tuple = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase : Any = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCAmelCase : Tuple = pipeline( image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) __lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
182
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ ) as metadata_file: snake_case_ = json.load(UpperCamelCase__ ) snake_case_ = LukeConfig(use_entity_aware_attention=UpperCamelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path snake_case_ = torch.load(UpperCamelCase__ , map_location='cpu' )['module'] # Load the entity vocab file snake_case_ = load_original_entity_vocab(UpperCamelCase__ ) # add an entry for [MASK2] snake_case_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case_ = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks snake_case_ = AddedToken('<ent>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) snake_case_ = AddedToken('<ent2>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: snake_case_ = json.load(UpperCamelCase__ ) snake_case_ = 'MLukeTokenizer' with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = MLukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens snake_case_ = tokenizer.convert_tokens_to_ids(['@'] )[0] snake_case_ = tokenizer.convert_tokens_to_ids(['#'] )[0] snake_case_ = state_dict['embeddings.word_embeddings.weight'] snake_case_ = word_emb[ent_init_index].unsqueeze(0 ) snake_case_ = word_emb[enta_init_index].unsqueeze(0 ) snake_case_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case_ = state_dict[bias_name] snake_case_ = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case_ = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case_ = F'''encoder.layer.{layer_index}.attention.self.''' snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case_ = state_dict['entity_embeddings.entity_embeddings.weight'] snake_case_ = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case_ = state_dict['entity_predictions.bias'] snake_case_ = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case_ = LukeForMaskedLM(config=UpperCamelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) snake_case_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): snake_case_ = state_dict[key] else: snake_case_ = state_dict[key] snake_case_ , snake_case_ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if set(UpperCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case_ = MLukeTokenizer.from_pretrained(UpperCamelCase__ , task='entity_classification' ) snake_case_ = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' snake_case_ = (0, 9) snake_case_ = tokenizer(UpperCamelCase__ , entity_spans=[span] , return_tensors='pt' ) snake_case_ = model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case_ = torch.Size((1, 33, 768) ) snake_case_ = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case_ = torch.Size((1, 1, 768) ) snake_case_ = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case_ = MLukeTokenizer.from_pretrained(UpperCamelCase__ ) snake_case_ = 'Tokyo is the capital of <mask>.' snake_case_ = (24, 30) snake_case_ = tokenizer(UpperCamelCase__ , entity_spans=[span] , return_tensors='pt' ) snake_case_ = model(**UpperCamelCase__ ) snake_case_ = encoding['input_ids'][0].tolist() snake_case_ = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) snake_case_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase__ ) snake_case_ = outputs.entity_logits[0][0].argmax().item() snake_case_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = ['[MASK]', '[PAD]', '[UNK]'] snake_case_ = [json.loads(UpperCamelCase__ ) for line in open(UpperCamelCase__ )] snake_case_ = {} for entry in data: snake_case_ = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case_ = entity_id break snake_case_ = F'''{language}:{entity_name}''' snake_case_ = entity_id return new_mapping if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
285
def __lowerCamelCase ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _UpperCAmelCase : Union[str, Any] = generate_large_matrix() _UpperCAmelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid ) assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(UpperCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case_ = (left + right) // 2 snake_case_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case_ = mid + 1 else: snake_case_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(grid[0] ) for i in range(len(UpperCamelCase__ ) ): snake_case_ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase__ ) * len(grid[0] )) - total def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 for row in grid: for i, number in enumerate(UpperCamelCase__ ): if number < 0: total += len(UpperCamelCase__ ) - i break return total def __lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print('Running benchmarks' ) snake_case_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case_ = timeit(F'''{func}(grid=grid)''' , setup=UpperCamelCase__ , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
285
1
def a__ ( lowerCAmelCase ) -> list: if len(lowerCAmelCase ) <= 1: return [tuple(lowerCAmelCase )] UpperCAmelCase__ : Any = [] def generate(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = [0] * n res.append(tuple(lowerCAmelCase ) ) UpperCAmelCase__ : Optional[int] = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCAmelCase__ : Optional[int] = arr[i], arr[0] else: UpperCAmelCase__ : Optional[Any] = arr[i], arr[c[i]] res.append(tuple(lowerCAmelCase ) ) c[i] += 1 UpperCAmelCase__ : Optional[int] = 0 else: UpperCAmelCase__ : Union[str, Any] = 0 i += 1 generate(len(lowerCAmelCase ) , lowerCAmelCase ) return res if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() _A = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
359
"""simple docstring""" import sys import turtle def a__ ( lowerCAmelCase , lowerCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _A = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _A = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
166
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ = logging.get_logger(__name__) A_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _snake_case ( A_ ): _A : List[str] = '''deberta-v2''' def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Any=128_100 ,SCREAMING_SNAKE_CASE__ : int=1_536 ,SCREAMING_SNAKE_CASE__ : Any=24 ,SCREAMING_SNAKE_CASE__ : str=24 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6_144 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=0.1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=512 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : int=0.02 ,SCREAMING_SNAKE_CASE__ : List[str]=1e-7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : Dict=-1 ,SCREAMING_SNAKE_CASE__ : Any=0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : List[Any]=0 ,SCREAMING_SNAKE_CASE__ : List[Any]="gelu" ,**SCREAMING_SNAKE_CASE__ : int ,): super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE:Optional[int] = hidden_size SCREAMING_SNAKE_CASE:int = num_hidden_layers SCREAMING_SNAKE_CASE:List[Any] = num_attention_heads SCREAMING_SNAKE_CASE:Tuple = intermediate_size SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE:Any = hidden_dropout_prob SCREAMING_SNAKE_CASE:str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE:List[str] = type_vocab_size SCREAMING_SNAKE_CASE:List[Any] = initializer_range SCREAMING_SNAKE_CASE:Any = relative_attention SCREAMING_SNAKE_CASE:List[Any] = max_relative_positions SCREAMING_SNAKE_CASE:Tuple = pad_token_id SCREAMING_SNAKE_CASE:Dict = position_biased_input # Backwards compatibility if type(_lowerCamelCase ) == str: SCREAMING_SNAKE_CASE:str = [x.strip() for x in pos_att_type.lower().split("|" )] SCREAMING_SNAKE_CASE:Tuple = pos_att_type SCREAMING_SNAKE_CASE:Tuple = vocab_size SCREAMING_SNAKE_CASE:List[str] = layer_norm_eps SCREAMING_SNAKE_CASE:Union[str, Any] = kwargs.get("pooler_hidden_size" ,_lowerCamelCase ) SCREAMING_SNAKE_CASE:Optional[int] = pooler_dropout SCREAMING_SNAKE_CASE:str = pooler_hidden_act class _snake_case ( A_ ): @property def __UpperCamelCase ( self : str ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:Optional[Any] = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __UpperCamelCase ( self : Any ): return 12 def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,SCREAMING_SNAKE_CASE__ : int = -1 ,SCREAMING_SNAKE_CASE__ : int = -1 ,SCREAMING_SNAKE_CASE__ : int = -1 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 40 ,SCREAMING_SNAKE_CASE__ : int = 40 ,SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None ,): SCREAMING_SNAKE_CASE:str = super().generate_dummy_inputs(preprocessor=_lowerCamelCase ,framework=_lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
139
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = limit + 1 _snake_case = [0] * limit for first_term in range(1 , __lowerCamelCase ): for n in range(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
288
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A: Union[str, Any] = logging.get_logger(__name__) A: Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A: Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(UpperCAmelCase__ )} ) __lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __lowerCAmelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCAmelCase : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __lowerCAmelCase : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __lowerCAmelCase : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __lowerCAmelCase : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCAmelCase : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCAmelCase : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __lowerCAmelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Dict = 'train' __lowerCAmelCase : List[Any] = 'dev' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : SquadDataTrainingArguments __lowerCAmelCase : List[SquadFeatures] __lowerCAmelCase : Split __lowerCAmelCase : bool def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = Split.train , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pt" , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = args UpperCAmelCase : Optional[int] = is_language_sensitive UpperCAmelCase : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: UpperCAmelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) UpperCAmelCase : Any = mode # Load data features from cache or dataset file UpperCAmelCase : Union[str, Any] = """v2""" if args.version_2_with_negative else """v1""" UpperCAmelCase : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : Optional[Any] = cached_features_file + """.lock""" with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: UpperCAmelCase : Dict = time.time() UpperCAmelCase : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase : str = self.old_features["""features"""] UpperCAmelCase : List[str] = self.old_features.get("""dataset""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self.old_features.get("""examples""" , _SCREAMING_SNAKE_CASE ) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: UpperCAmelCase : int = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase : List[Any] = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase , UpperCAmelCase : Dict = squad_convert_examples_to_features( examples=self.examples , tokenizer=_SCREAMING_SNAKE_CASE , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Tuple = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _SCREAMING_SNAKE_CASE , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ) -> Tuple: '''simple docstring''' return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase : List[Any] = self.features[i] UpperCAmelCase : str = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase : List[str] = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase : Union[str, Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase : str = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase : str = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase : str = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase : Dict = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase : Tuple = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
76
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( UpperCamelCase : list[list[float]] ): UpperCAmelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase : Dict = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase , UpperCAmelCase : Dict = matrix[1][1], matrix[0][0] UpperCAmelCase , UpperCAmelCase : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase : int = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase : Optional[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase : Any = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase : Optional[int] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase : int = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
76
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:List[str] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[Any] = "mvp" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, lowerCamelCase__=5_0267, lowerCamelCase__=1024, lowerCamelCase__=12, lowerCamelCase__=4096, lowerCamelCase__=16, lowerCamelCase__=12, lowerCamelCase__=4096, lowerCamelCase__=16, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__="gelu", lowerCamelCase__=1024, lowerCamelCase__=0.1, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__=True, lowerCamelCase__=2, lowerCamelCase__=2, lowerCamelCase__=False, lowerCamelCase__=100, lowerCamelCase__=800, **lowerCamelCase__, ): A : Any = vocab_size A : Union[str, Any] = max_position_embeddings A : Union[str, Any] = d_model A : List[str] = encoder_ffn_dim A : Union[str, Any] = encoder_layers A : Dict = encoder_attention_heads A : Tuple = decoder_ffn_dim A : str = decoder_layers A : List[str] = decoder_attention_heads A : Any = dropout A : Dict = attention_dropout A : str = activation_dropout A : List[str] = activation_function A : Optional[Any] = init_std A : Union[str, Any] = encoder_layerdrop A : str = decoder_layerdrop A : Any = classifier_dropout A : Tuple = use_cache A : List[Any] = encoder_layers A : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True A : List[Any] = use_prompt A : Tuple = prompt_length A : Dict = prompt_mid_dim super().__init__( pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, is_encoder_decoder=lowerCamelCase__, decoder_start_token_id=lowerCamelCase__, forced_eos_token_id=lowerCamelCase__, **lowerCamelCase__, ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""", lowerCamelCase__ ): A : Optional[int] = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
116
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "camembert" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : List[str] = hidden_act A : Tuple = intermediate_size A : Tuple = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Tuple = position_embedding_type A : str = use_cache A : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
1
from collections import defaultdict def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: UpperCamelCase__ : str = first_str.lower().strip() UpperCamelCase__ : str = second_str.lower().strip() # Remove whitespace UpperCamelCase__ : int = first_str.replace(" " , "" ) UpperCamelCase__ : Optional[Any] = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): return False # Default values for count should be 0 UpperCamelCase__ : Optional[Any] = defaultdict(__lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : List[Any] =input('''Enter the first string ''').strip() lowerCamelCase : Union[str, Any] =input('''Enter the second string ''').strip() lowerCamelCase : Tuple =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
361
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''timm_backbone''' def __init__( self : Dict , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = backbone UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : str = features_only UpperCamelCase__ : Dict = use_pretrained_backbone UpperCamelCase__ : Tuple = True UpperCamelCase__ : List[Any] = out_indices if out_indices is not None else (-1,)
196
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''PerceiverFeatureExtractor'''] lowerCamelCase_ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __snake_case : Dict = TypeVar('T') class lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : bool = True ) -> None: '''simple docstring''' A__ : dict[T, list[T]] ={} # dictionary of lists A__ : Optional[Any] =directed def lowercase__ ( self : Dict , lowerCAmelCase_ : T , lowerCAmelCase_ : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) self.adj_list[destination_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) A__ : str =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase_ ) A__ : int =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A__ : Dict =[destination_vertex] A__ : Tuple =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) A__ : Any =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A__ : Any =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A__ : Optional[Any] =[destination_vertex] A__ : Union[str, Any] =[] return self def __repr__( self : List[str] ) -> str: '''simple docstring''' return pformat(self.adj_list )
136
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : List[Any] =prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
1
from __future__ import annotations from collections.abc import Iterator class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = value lowerCAmelCase__ = None lowerCAmelCase__ = None class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = tree def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self )-> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ :List[str] = get_logger(__name__) lowerCAmelCase__ :Optional[Any] = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class __a : @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __a : @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __a ( _a ): @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" for processor in self: _UpperCAmelCase = inspect.signature(processor.__call__ ).parameters if len(_SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) _UpperCAmelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) _UpperCAmelCase = temperature def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = scores / self.temperature return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('Inf' ) , _SCREAMING_SNAKE_CASE = 1 ) -> str: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) _UpperCAmelCase = top_p _UpperCAmelCase = filter_value _UpperCAmelCase = min_tokens_to_keep def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] ) _UpperCAmelCase = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value ) _UpperCAmelCase = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 ) _UpperCAmelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well _UpperCAmelCase = jnp.roll(_SCREAMING_SNAKE_CASE , 1 ) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE ) # min tokens to keep _UpperCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1] return next_scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('Inf' ) , _SCREAMING_SNAKE_CASE = 1 ) -> Any: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = filter_value def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = scores.shape _UpperCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value ) _UpperCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check _UpperCAmelCase = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _UpperCAmelCase = topk_scores.flatten() _UpperCAmelCase = topk_indices.flatten() + shift _UpperCAmelCase = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return next_scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = bos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) ) _UpperCAmelCase = 1 - jnp.bool_(cur_len - 1 ) _UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = max_length _UpperCAmelCase = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) ) _UpperCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) _UpperCAmelCase = min_length _UpperCAmelCase = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = begin_index def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index ) _UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" _UpperCAmelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = dict(_SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _UpperCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _UpperCAmelCase = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.intaa(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" def _force_token(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = scores.shape[0] _UpperCAmelCase = self.force_token_array[generation_idx] _UpperCAmelCase = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float('inf' ) _UpperCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _UpperCAmelCase = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) ) return new_scores _UpperCAmelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , ) return scores class __a ( _a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = generate_config.eos_token_id _UpperCAmelCase = generate_config.no_timestamps_token_id _UpperCAmelCase = generate_config.no_timestamps_token_id + 1 _UpperCAmelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE , 'max_initial_timestamp_index' ): _UpperCAmelCase = generate_config.max_initial_timestamp_index else: _UpperCAmelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: _UpperCAmelCase = model_config.vocab_size def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return jnp.where( _SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index _UpperCAmelCase = jnp.where( _SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp _UpperCAmelCase = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) def handle_cumulative_probs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _UpperCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores
368
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Tuple = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = ConditionalDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
185
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _a = logging.getLogger(__name__) @dataclass class __A ( snake_case_ ): '''simple docstring''' lowerCAmelCase_ = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Whether to SortishSamler or not."""} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """whether to use adafactor"""} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) lowerCAmelCase_ = field( default="""linear""" , metadata={"""help""": F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
209
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase = logging.get_logger(__name__) lowercase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowercase = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } lowercase = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = SqueezeBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Tuple: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): snake_case_ = getattr(a , normalizer_state.pop('type' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**a ) snake_case_ = do_lower_case def _UpperCamelCase ( self , a , a=None ) -> Tuple: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(a , name=a ) return tuple(a )
178
0
'''simple docstring''' from timeit import timeit __a: str = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = 0 lowercase__ : Any = len(UpperCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[str] = len(UpperCAmelCase ) // 2 lowercase__ : int = len(UpperCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCAmelCase ) ) def __UpperCamelCase ( UpperCAmelCase ): if len(UpperCAmelCase ) <= 2: return True if s[0] == s[len(UpperCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __UpperCamelCase ( UpperCAmelCase ): return s == s[::-1] def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[str] = F"""all({name}(key) is value for key, value in test_data.items())""" lowercase__ : Any = F"""from __main__ import test_data, {name}""" lowercase__ : Optional[Any] = 50_0000 lowercase__ : List[str] = timeit(stmt=UpperCAmelCase , setup=UpperCAmelCase , number=UpperCAmelCase ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'{key:21} {value}') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
214
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=2 , __lowerCAmelCase=32 , __lowerCAmelCase=16 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=[0, 1, 2, 3] , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=[1, 384, 24, 24] , __lowerCAmelCase=True , __lowerCAmelCase=None , ) -> Dict: lowercase__ : str = parent lowercase__ : List[Any] = batch_size lowercase__ : Dict = image_size lowercase__ : Tuple = patch_size lowercase__ : str = num_channels lowercase__ : Dict = is_training lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = backbone_out_indices lowercase__ : List[str] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Optional[int] = num_labels lowercase__ : Optional[int] = backbone_featmap_shape lowercase__ : int = scope lowercase__ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ : List[str] = (image_size // patch_size) ** 2 lowercase__ : Tuple = num_patches + 1 def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[int] = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : str = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : str = self.num_labels lowercase__ : Tuple = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = DPTModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> Tuple: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(__lowerCAmelCase ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True if model_class in get_values(__lowerCAmelCase ): continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase__ : Tuple = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : str = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = False lowercase__ : str = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : List[Any] = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> List[Any]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: lowercase__ : Dict = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone lowercase__ : Union[str, Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ : List[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> List[str]: pass @slow def _lowerCAmelCase( self ) -> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ : Dict = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = '''add''' with self.assertRaises(__lowerCAmelCase ): lowercase__ : Tuple = DPTForDepthEstimation(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ : List[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__lowerCAmelCase ) lowercase__ : Optional[Any] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : str = outputs.predicted_depth # verify the predicted depth lowercase__ : Optional[Any] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) lowercase__ : str = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __lowerCAmelCase , atol=1E-4 ) )
214
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : List[str] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class __lowercase ( _lowercase ): lowerCamelCase : Dict = "vit" def __init__(self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=2_2_4 , A=1_6 , A=3 , A=True , A=1_6 , **A , ): super().__init__(**A ) lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Dict = num_attention_heads lowerCamelCase_ : int = intermediate_size lowerCamelCase_ : int = hidden_act lowerCamelCase_ : int = hidden_dropout_prob lowerCamelCase_ : List[str] = attention_probs_dropout_prob lowerCamelCase_ : str = initializer_range lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : Tuple = image_size lowerCamelCase_ : Dict = patch_size lowerCamelCase_ : Optional[int] = num_channels lowerCamelCase_ : Optional[Any] = qkv_bias lowerCamelCase_ : Union[str, Any] = encoder_stride class __lowercase ( _lowercase ): lowerCamelCase : List[Any] = version.parse("1.11" ) @property def UpperCAmelCase__ (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ (self ): return 1E-4
318
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=13 , UpperCAmelCase__ : Dict=30 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Tuple=37 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : Tuple=0.0_2 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=2 , ) -> Dict: _a : int = parent _a : Optional[Any] = batch_size _a : Tuple = image_size _a : List[str] = patch_size _a : Tuple = num_channels _a : List[str] = is_training _a : List[Any] = use_labels _a : List[Any] = hidden_size _a : int = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : List[str] = intermediate_size _a : Optional[Any] = hidden_act _a : Tuple = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : List[Any] = type_sequence_label_size _a : Dict = initializer_range _a : Optional[int] = scope _a : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : List[Any] = (image_size // patch_size) ** 2 _a : List[Any] = num_patches + 1 def _lowercase ( self : int ) -> Optional[Any]: _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[int] = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : List[str] ) -> str: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) -> str: _a : Dict = ViTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str ) -> Tuple: _a : Dict = ViTForMaskedImageModeling(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a : List[str] = 1 _a : Optional[Any] = ViTForMaskedImageModeling(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : int = model(UpperCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: _a : Union[str, Any] = self.type_sequence_label_size _a : int = ViTForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : Union[str, Any] = 1 _a : List[str] = ViTForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : int ) -> Union[str, Any]: _a : Any = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) : List[Any] = config_and_inputs _a : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase : List[str] = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = True UpperCamelCase : Optional[Any] = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[int] = False def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: _a : Optional[Any] = ViTModelTester(self ) _a : int = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> Tuple: pass def _lowercase ( self : Dict ) -> int: _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[Any] = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : Dict ) -> Tuple: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(UpperCAmelCase__ ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> Dict: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[Any]: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ) -> Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[Any] = ViTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(UpperCAmelCase__ ) _a : Union[str, Any] = self.default_image_processor _a : str = prepare_img() _a : Optional[Any] = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): _a : List[str] = model(**UpperCAmelCase__ ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : str = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def _lowercase ( self : Dict ) -> int: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _a : Any = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(UpperCAmelCase__ ) _a : Optional[int] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) _a : str = prepare_img() _a : Dict = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ) _a : List[Any] = inputs.pixel_values.to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): _a : Dict = model(UpperCAmelCase__ , interpolate_pos_encoding=UpperCAmelCase__ ) # verify the logits _a : Union[str, Any] = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) _a : Optional[int] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _lowercase ( self : Dict ) -> Union[str, Any]: _a : List[str] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) _a : str = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ) _a : List[str] = inputs.pixel_values.to(UpperCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _a : List[str] = model(UpperCAmelCase__ )
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __magic_name__ = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __magic_name__ = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE = numpy_to_pil(UpperCamelCase_ ) return images def _lowerCAmelCase ( UpperCamelCase_ ): if images.ndim == 3: __SCREAMING_SNAKE_CASE = images[None, ...] __SCREAMING_SNAKE_CASE = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __SCREAMING_SNAKE_CASE = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: __SCREAMING_SNAKE_CASE = [Image.fromarray(UpperCamelCase_ ) for image in images] return pil_images
100
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Dict=8 , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=512 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : int=3 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : List[Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = 300 return config def lowerCAmelCase_ ( self : Dict ): ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = () def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = MraModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='MRA does not output attentions' ) def lowerCAmelCase_ ( self : Union[str, Any] ): return @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) SCREAMING_SNAKE_CASE_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) SCREAMING_SNAKE_CASE_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = 50_265 SCREAMING_SNAKE_CASE_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[[9.2595, -3.6038, 11.8_819], [9.3869, -3.2693, 11.0_956], [11.8_524, -3.4938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) SCREAMING_SNAKE_CASE_ = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = 50_265 SCREAMING_SNAKE_CASE_ = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
353
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : Any=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 18} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std def lowerCAmelCase_ ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = LevitImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
210
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __SCREAMING_SNAKE_CASE : List[str] = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , ) -> Dict: """simple docstring""" if attention_mask is None: _UpperCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _UpperCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _UpperCAmelCase : Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : List[str] , A : List[Any]=13 , A : Tuple=7 , A : Union[str, Any]=True , A : int=False , A : Union[str, Any]=99 , A : Dict=16 , A : Any=2 , A : int=4 , A : int=4 , A : str="gelu" , A : List[Any]=0.1 , A : Optional[int]=0.1 , A : Any=32 , A : List[str]=2 , A : Any=1 , A : int=0 , A : int=0.02 , ): _UpperCAmelCase : int = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : Any = pad_token_id _UpperCAmelCase : Tuple = bos_token_id _UpperCAmelCase : Tuple = initializer_range def _A ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCAmelCase : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCAmelCase : str = shift_tokens_right(A , 1 , 2 ) _UpperCAmelCase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A , ) _UpperCAmelCase : Tuple = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def _A ( self : List[Any] ): _UpperCAmelCase , _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def _A ( self : Optional[Any] , A : Optional[Any] , A : Optional[int] , A : List[str] ): _UpperCAmelCase : str = 20 _UpperCAmelCase : Optional[Any] = model_class_name(A ) _UpperCAmelCase : List[Any] = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , A , A ) _UpperCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _UpperCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : List[Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : Dict = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) _UpperCAmelCase : Optional[Any] = model.decode(A , A ) _UpperCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def _A ( self : Optional[int] , A : List[str] , A : List[str] , A : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = 20 _UpperCAmelCase : List[str] = model_class_name(A ) _UpperCAmelCase : Dict = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase : Any = model.init_cache(decoder_input_ids.shape[0] , A , A ) _UpperCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) _UpperCAmelCase : Dict = model.decode(A , A , decoder_attention_mask=A ) _UpperCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Optional[int] = 9_9 def _A ( self : List[str] ): _UpperCAmelCase : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _UpperCAmelCase : int = input_ids.shape[0] _UpperCAmelCase : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _A ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._get_config_and_data() _UpperCAmelCase : int = FlaxBlenderbotSmallForConditionalGeneration(A ) _UpperCAmelCase : int = lm_model(input_ids=A ) _UpperCAmelCase : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _UpperCAmelCase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(A ) _UpperCAmelCase : Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _UpperCAmelCase : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _UpperCAmelCase : List[str] = lm_model(input_ids=A , decoder_input_ids=A ) _UpperCAmelCase : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , A ) def _A ( self : Optional[int] ): _UpperCAmelCase : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _UpperCAmelCase : Dict = shift_tokens_right(A , 1 , 2 ) _UpperCAmelCase : Dict = np.equal(A , 1 ).astype(np.floataa ).sum() _UpperCAmelCase : str = np.equal(A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ (snake_case__ , unittest.TestCase , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = True __UpperCamelCase: Tuple = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase: List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _A ( self : Optional[int] ): _UpperCAmelCase : Union[str, Any] = FlaxBlenderbotSmallModelTester(self ) def _A ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _A ( self : Any ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _A ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Any = self._prepare_for_class(A , A ) _UpperCAmelCase : Any = model_class(A ) @jax.jit def encode_jitted(A : Dict , A : str=None , **A : List[Any] ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : int = encode_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : Optional[int] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _A ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Dict = model_class(A ) _UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _UpperCAmelCase : str = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(A : Dict , A : Tuple , A : List[str] ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : str = decode_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : Dict = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _UpperCAmelCase : int = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCAmelCase : Dict = np.ones((1, 1) ) * model.config.eos_token_id _UpperCAmelCase : Optional[int] = model(A ) self.assertIsNotNone(A )
31
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() _UpperCAmelCase : Optional[int] = nn.ModuleList(A ) def _A ( self : Dict , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : torch.Tensor , A : List[torch.tensor] , A : List[float] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[Dict[str, Any]] = None , A : bool = False , A : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): _UpperCAmelCase , _UpperCAmelCase : str = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: _UpperCAmelCase , _UpperCAmelCase : List[Any] = down_samples, mid_sample else: _UpperCAmelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _A ( self : List[str] , A : Union[str, os.PathLike] , A : bool = True , A : Callable = None , A : bool = False , A : Optional[str] = None , ): _UpperCAmelCase : str = 0 _UpperCAmelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 _UpperCAmelCase : Tuple = model_path_to_save + F"""_{idx}""" @classmethod def _A ( cls : int , A : Optional[Union[str, os.PathLike]] , **A : Tuple ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _UpperCAmelCase : int = pretrained_model_path while os.path.isdir(A ): _UpperCAmelCase : List[str] = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 _UpperCAmelCase : Dict = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(A )} controlnets loaded from {pretrained_model_path}.""" ) if len(A ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(A )
31
1
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = CustomTokenizer pass
369
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE :List[str] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class A_ ( lowerCAmelCase_ ): def __init__( self : Any , snake_case_ : PriorTransformer , snake_case_ : CLIPVisionModel , snake_case_ : CLIPImageProcessor , snake_case_ : HeunDiscreteScheduler , snake_case_ : ShapERenderer , ): super().__init__() self.register_modules( prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , ) def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): if latents is None: _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase = latents.to(snake_case_ ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) @property def lowercase ( self : List[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(snake_case_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , ): if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 ) if not isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=snake_case_ ) _UpperCAmelCase = self.image_encoder(snake_case_ )["last_hidden_state"] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(snake_case_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self : str , snake_case_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , snake_case_ : int = 1 , snake_case_ : int = 2_5 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : float = 4.0 , snake_case_ : int = 6_4 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(snake_case_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # prior self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) _UpperCAmelCase = self.prior( snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=snake_case_ ) _UpperCAmelCase = [] for i, latent in enumerate(snake_case_ ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(snake_case_ ) _UpperCAmelCase = torch.stack(snake_case_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(snake_case_ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=snake_case_ )
156
0
from ..utils import DummyObject, requires_backends class snake_case__( metaclass=__UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ["""speech"""] def __init__( self , *__lowercase , **__lowercase ) -> List[Any]: requires_backends(self , ['''speech'''] ) class snake_case__( metaclass=__UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""speech"""] def __init__( self , *__lowercase , **__lowercase ) -> Tuple: requires_backends(self , ['''speech'''] )
262
"""simple docstring""" import os def lowercase_ ( _UpperCAmelCase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: A_ : List[Any] = [ [int(_UpperCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] A_ : Dict = len(_UpperCAmelCase ) A_ : Union[str, Any] = len(matrix[0] ) A_ : Optional[Any] = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): A_ : str = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): A_ : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): A_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): A_ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
167
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = CycleDiffusionPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""}) UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __A ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = CycleDiffusionPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = pipe(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCamelCase__ , '''half''' ): SCREAMING_SNAKE_CASE : str = module.half() SCREAMING_SNAKE_CASE : Any = CycleDiffusionPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pipe(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __A ( self : List[str] ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def __A ( self : List[str] ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def __A ( self : List[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def __A ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __A ( self : Any ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) SCREAMING_SNAKE_CASE : Tuple = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : int = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : List[str] = CycleDiffusionPipeline.from_pretrained( UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Union[str, Any] = '''A black colored car''' SCREAMING_SNAKE_CASE : int = '''A blue colored car''' SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=UpperCamelCase__ , source_prompt=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[str] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) SCREAMING_SNAKE_CASE : Tuple = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Optional[int] = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE : Dict = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CycleDiffusionPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Union[str, Any] = '''A black colored car''' SCREAMING_SNAKE_CASE : Tuple = '''A blue colored car''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=UpperCamelCase__ , source_prompt=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
258
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """encodec""" def __init__( self : int , UpperCamelCase__ : Optional[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : List[str]=2_4000 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=[8, 5, 4, 2] , UpperCamelCase__ : Optional[Any]="weight_norm" , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=1024 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = target_bandwidths SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_filters SCREAMING_SNAKE_CASE : int = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Dict = norm_type SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : int = dilation_growth_rate SCREAMING_SNAKE_CASE : List[Any] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : str = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[str] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase__ ) @property def __A ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''ConditionalDetrFeatureExtractor'''] snake_case_ = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = """switch_transformers""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , a=3_2128 , a=768 , a=64 , a=2048 , a=64 , a=12 , a=3 , a=12 , a=3 , a=12 , a=8 , a=False , a=0.01 , a="float32" , a=False , a=32 , a=128 , a=0.1 , a=1e-6 , a=0.001 , a=0.001 , a=1.0 , a="relu" , a=True , a=False , a=True , a=0 , a=1 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : List[Any] = d_kv lowercase__ : Any = d_ff lowercase__ : Optional[int] = num_sparse_encoder_layers lowercase__ : Tuple = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : str = expert_capacity lowercase__ : List[Any] = router_bias lowercase__ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") lowercase__ : str = router_dtype lowercase__ : Optional[int] = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : List[str] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : int = initializer_factor lowercase__ : int = feed_forward_proj lowercase__ : Dict = use_cache lowercase__ : int = add_router_probs lowercase__ : int = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : int = self.feed_forward_proj.split('-') lowercase__ : Optional[int] = act_info[-1] lowercase__ : Dict = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[int] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , )
214
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict ) -> Optional[int]: UpperCAmelCase_ = s.rsplit(__UpperCamelCase , __UpperCamelCase ) return new.join(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Tuple: UpperCAmelCase_ = {} UpperCAmelCase_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase_ = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: UpperCAmelCase_ = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): UpperCAmelCase_ = rreplace(__UpperCamelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): UpperCAmelCase_ = rreplace(__UpperCamelCase , '''.b''' , '''.bias''' , 1 ) UpperCAmelCase_ = value.float() return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=True ) -> Tuple: from dall_e import Encoder UpperCAmelCase_ = Encoder() if os.path.exists(__UpperCamelCase ): UpperCAmelCase_ = torch.load(__UpperCamelCase ) else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase_ = ckpt.state_dict() encoder.load_state_dict(__UpperCamelCase ) if config_path is not None: UpperCAmelCase_ = FlavaImageCodebookConfig.from_pretrained(__UpperCamelCase ) else: UpperCAmelCase_ = FlavaImageCodebookConfig() UpperCAmelCase_ = FlavaImageCodebook(__UpperCamelCase ).eval() UpperCAmelCase_ = encoder.state_dict() UpperCAmelCase_ = upgrade_state_dict(__UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) UpperCAmelCase_ = hf_model.state_dict() UpperCAmelCase_ = count_parameters(__UpperCamelCase ) UpperCAmelCase_ = count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(__UpperCamelCase ) else: return hf_state_dict if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _lowerCamelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
177
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
1
"""simple docstring""" import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( A_ = "." ): for dir_path, dir_names, filenames in os.walk(A_ ): lowerCAmelCase__ : str = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A_ )[1] in (".py", ".ipynb"): yield os.path.join(A_ , A_ ).lstrip('''./''' ) def __SCREAMING_SNAKE_CASE ( A_ ): return f'{i * " "}*' if i else "\n##" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A_ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A_ )} {new_part.replace("_" , " " ).title()}' ) return new_path def __SCREAMING_SNAKE_CASE ( A_ = "." ): lowerCAmelCase__ : Any = '''''' for filepath in sorted(good_file_paths(A_ ) ): lowerCAmelCase__ ,lowerCAmelCase__ : str = os.path.split(A_ ) if filepath != old_path: lowerCAmelCase__ : str = print_path(A_ , A_ ) lowerCAmelCase__ : str = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ : Union[str, Any] = f'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) lowerCAmelCase__ : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'{md_prefix(A_ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
106
"""simple docstring""" import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( A_ = "." ): for dir_path, dir_names, filenames in os.walk(A_ ): lowerCAmelCase__ : str = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A_ )[1] in (".py", ".ipynb"): yield os.path.join(A_ , A_ ).lstrip('''./''' ) def __SCREAMING_SNAKE_CASE ( A_ ): return f'{i * " "}*' if i else "\n##" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A_ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A_ )} {new_part.replace("_" , " " ).title()}' ) return new_path def __SCREAMING_SNAKE_CASE ( A_ = "." ): lowerCAmelCase__ : Any = '''''' for filepath in sorted(good_file_paths(A_ ) ): lowerCAmelCase__ ,lowerCAmelCase__ : str = os.path.split(A_ ) if filepath != old_path: lowerCAmelCase__ : str = print_path(A_ , A_ ) lowerCAmelCase__ : str = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ : Union[str, Any] = f'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) lowerCAmelCase__ : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'{md_prefix(A_ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
106
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = GPTSanJapaneseTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ = {"""unk_token""": """<unk>"""} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass
61
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase_ : Optional[int] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowerCamelCase ( lowercase : Tuple , lowercase : str , lowercase : int=None ) -> str: if rng is None: _a = random.Random() _a = 1 for dim in shape: total_dims *= dim _a = [] for _ in range(lowercase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _a = np.array(lowercase , dtype=jnp.intaa ).reshape(lowercase ) return output def _lowerCamelCase ( lowercase : str , lowercase : Union[str, Any]=None ) -> List[Any]: _a = ids_tensor(lowercase , vocab_size=2 , rng=lowercase ) # make sure that at least one token is attended to for each batch _a = 1 return attn_mask @require_flax class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =None __a =() def UpperCamelCase__ ( self : int ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _a = 2 _a = inputs["input_ids"].shape[-1] // 2 _a = inputs["input_ids"][:max_batch_size, :sequence_length] _a = jnp.ones_like(__a ) _a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase__ ( self : Tuple ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 0 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model_class.__name__[4:] # Skip the "Flax" at the beginning _a = getattr(__a , __a ) _a = pt_model_class(__a ).eval() _a = load_flax_weights_in_pytorch_model(__a , flax_model.params ) _a = flax_model.generate(__a ).sequences _a = pt_model.generate(torch.tensor(__a , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCamelCase__ ( self : Any ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : int ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = True _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : int ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 2 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : Union[str, Any] ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 2 _a = 2 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCamelCase__ ( self : Optional[int] ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = True _a = max_length _a = 0.8 _a = 10 _a = 0.3 _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : int ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = max_length _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : List[Any] ): _a , _a , _a , _a = self._get_input_ids_and_config() _a = max_length _a = 2 _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : List[str] ): _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = False _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : str ): _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = True _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ ( self : Any ): _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = 2 _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(__a ) _a = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) _a = jit(model.generate ) _a = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _a = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _a = "Hello world" _a = tokenizer(__a , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__a , "do_samples" ): model.generate(__a , do_samples=__a ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__a , "foo" ): _a = {"foo": "bar"} model.generate(__a , **__a )
63
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
271
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : "DiagonalGaussianDistribution" class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = True @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , act_fn=_UpperCAmelCase , ) _A = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = False _A = False # only relevant if vae tiling is enabled _A = self.config.sample_size _A = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A = 0.25 def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ): if isinstance(_UpperCAmelCase , (Encoder, Decoder) ): _A = value def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : bool = True ): _A = use_tiling def lowerCAmelCase_ ( self : Union[str, Any] ): self.enable_tiling(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = True def lowerCAmelCase_ ( self : str ): _A = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self : str ): _A = {} def fn_recursive_add_processors(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCAmelCase , 'set_processor' ): _A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _A = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , 'set_processor' ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _A = [self.encoder(_UpperCAmelCase ) for x_slice in x.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_slicing and z.shape[0] > 1: _A = [self._decode(_UpperCAmelCase ).sample for z_slice in z.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self._decode(_UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = min(a.shape[2] , b.shape[2] , _UpperCAmelCase ) for y in range(_UpperCAmelCase ): _A = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): _A = min(a.shape[3] , b.shape[3] , _UpperCAmelCase ) for x in range(_UpperCAmelCase ): _A = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A = [] for i in range(0 , x.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , x.shape[3] , _UpperCAmelCase ): _A = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A = [] for i in range(0 , z.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , z.shape[3] , _UpperCAmelCase ): _A = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[torch.Generator] = None , ): _A = sample _A = self.encode(_UpperCAmelCase ).latent_dist if sample_posterior: _A = posterior.sample(generator=_UpperCAmelCase ) else: _A = posterior.mode() _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
271
1
def SCREAMING_SNAKE_CASE__ ( ) -> int: return 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase = 200 ) -> int: return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
124
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case : Tuple = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> int: snake_case : str = """<pad>""" snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = XLMRobertaTokenizer(A , keep_accents=A ) snake_case : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : int = self.tokenizer_class.from_pretrained(A , **A ) snake_case : Optional[int] = tempfile.mkdtemp() snake_case : List[Any] = tokenizer_r.save_pretrained(A ) snake_case : Optional[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case : Union[str, Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : str = tokenizer_r.from_pretrained(A ) snake_case : Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True snake_case : List[Any] = tempfile.mkdtemp() snake_case : Tuple = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Any = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : int = tokenizer_r.from_pretrained(A ) snake_case : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False snake_case : Tuple = tempfile.mkdtemp() snake_case : str = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Dict = tokenizer_r.from_pretrained(A ) snake_case : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def UpperCAmelCase ( self ) -> str: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCAmelCase ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) snake_case : Any = XLMRobertaTokenizer(f.name , keep_accents=A ) snake_case : List[Any] = pickle.dumps(A ) pickle.loads(A ) def UpperCAmelCase ( self ) -> Any: if not self.test_rust_tokenizer: return snake_case : str = self.get_tokenizer() snake_case : List[str] = self.get_rust_tokenizer() snake_case : str = """I was born in 92000, and this is falsé.""" snake_case : Optional[int] = tokenizer.tokenize(A ) snake_case : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : List[Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = self.get_rust_tokenizer() snake_case : str = tokenizer.encode(A ) snake_case : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """Hello World!""" snake_case : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: snake_case : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) snake_case : Tuple = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: # fmt: off snake_case : Tuple = {"""input_ids""": [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
124
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[Any] = {'vocab_file': 'vocab.txt'} A__ : Optional[int] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } A__ : Tuple = { 'openbmb/cpm-ant-10b': 1_024, } def _snake_case ( lowerCamelCase__ : Dict ) -> List[Any]: lowerCamelCase_ : str =collections.OrderedDict() with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as reader: lowerCamelCase_ : Any =reader.readlines() for index, token in enumerate(lowerCamelCase__ ): lowerCamelCase_ : int =token.rstrip("\n" ) lowerCamelCase_ : Any =index return vocab class lowercase__ ( snake_case__ ): def __init__( self : Any , snake_case__ : Dict , snake_case__ : Dict="<unk>" , snake_case__ : str=200 ): lowerCamelCase_ : Dict =vocab lowerCamelCase_ : Optional[Any] =unk_token lowerCamelCase_ : Union[str, Any] =max_input_chars_per_word def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Any] ): lowerCamelCase_ : List[Any] =list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ : Optional[Any] =0 lowerCamelCase_ : str =[] while start < len(__UpperCAmelCase ): lowerCamelCase_ : List[str] =len(__UpperCAmelCase ) lowerCamelCase_ : str =None while start < end: lowerCamelCase_ : Optional[int] ="".join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ : List[Any] =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCAmelCase ) lowerCamelCase_ : str =end return sub_tokens class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[str] = ["input_ids", "attention_mask"] _UpperCAmelCase :Optional[int] = False def __init__( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]="<d>" , snake_case__ : int="</d>" , snake_case__ : Tuple="<s>" , snake_case__ : str="</s>" , snake_case__ : Dict="<pad>" , snake_case__ : int="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Optional[int]="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[Any] , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=__UpperCAmelCase , eod_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , line_token=__UpperCAmelCase , space_token=__UpperCAmelCase , padding_side=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCamelCase_ : Optional[int] =bod_token lowerCamelCase_ : Dict =eod_token lowerCamelCase_ : str =load_vocab(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] =self.encoder[space_token] lowerCamelCase_ : List[Any] =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ : Optional[int] =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) lowerCamelCase_ : Tuple ={v: k for k, v in self.encoder.items()} lowerCamelCase_ : Any =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCAmelCase__ ( self : Any ): return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self : Any ): return self.encoder["\n"] @property def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.encoder ) def UpperCAmelCase__ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Optional[int] ): lowerCamelCase_ : Any =[] for x in jieba.cut(__UpperCAmelCase , cut_all=__UpperCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCAmelCase ) ) return output_tokens def UpperCAmelCase__ ( self : Any , snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): lowerCamelCase_ : Tuple =[i for i in token_ids if i >= 0] lowerCamelCase_ : str =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[str] ): return token in self.encoder def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[str] ): return "".join(__UpperCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : int ): return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[int] ): return self.decoder.get(__UpperCAmelCase , self.unk_token ) def UpperCAmelCase__ ( self : str , snake_case__ : str , snake_case__ : Optional[str] = None ): if os.path.isdir(__UpperCAmelCase ): lowerCamelCase_ : List[Any] =os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCamelCase_ : Tuple =(filename_prefix + "-" if filename_prefix else "") + save_directory lowerCamelCase_ : str =0 if " " in self.encoder: lowerCamelCase_ : int =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ : str =self.encoder["\n"] del self.encoder["\n"] lowerCamelCase_ : List[str] =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) lowerCamelCase_ : Any =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase ))
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
'''simple docstring''' from __future__ import annotations import math def a_ ( _lowerCAmelCase ) -> list[int]: if num <= 0: __lowerCamelCase : Any = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [True] * (num + 1) __lowerCamelCase : List[str] = [] __lowerCamelCase : Tuple = 2 __lowerCamelCase : str = int(math.sqrt(_lowerCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCAmelCase ) # Set multiples of start be False for i in range(start * start ,num + 1 ,_lowerCAmelCase ): if sieve[i] is True: __lowerCamelCase : List[str] = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(_lowerCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
import os import numpy import onnx def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]): lowercase__ : str = a.name lowercase__ : str = b.name lowercase__ : Any = "" lowercase__ : Optional[int] = "" lowercase__ : List[Any] = a == b lowercase__ : str = name_a lowercase__ : str = name_b return res def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]): for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : int = list(model.graph.initializer) lowercase__ : Any = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase__ : int = inits[i].name lowercase__ : Optional[int] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Tuple = os.path.dirname(_lowerCamelCase) lowercase__ : Tuple = os.path.basename(_lowerCamelCase) lowercase__ : Tuple = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase)) lowercase__ : int = list(model.graph.initializer) lowercase__ : List[str] = set() lowercase__ : List[Any] = {} lowercase__ : List[str] = [] lowercase__ : Optional[int] = 0 for i in range(len(_lowerCamelCase)): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(_lowerCamelCase) dup_set.add(_lowerCamelCase) lowercase__ : Tuple = inits[j].data_type lowercase__ : int = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _lowerCamelCase) total_reduced_size += mem_size lowercase__ : Dict = inits[i].name lowercase__ : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase) else: lowercase__ : str = [name_j] ind_to_replace.append((j, i)) print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB") lowercase__ : Tuple = sorted(_lowerCamelCase) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : List[Any] = "optimized_" + model_file_name lowercase__ : str = os.path.join(_lowerCamelCase , _lowerCamelCase) onnx.save(_lowerCamelCase , _lowerCamelCase) return new_model
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = RoCBertTokenizer _A = None _A = False _A = True _A = filter_non_english def _lowerCamelCase ( self :Optional[int] ) -> int: super().setUp() __UpperCamelCase : Tuple = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __UpperCamelCase : Tuple = {} __UpperCamelCase : List[str] = {} for i, value in enumerate(a ): __UpperCamelCase : Dict = i __UpperCamelCase : Union[str, Any] = i __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) __UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(a , a , ensure_ascii=a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(a , a , ensure_ascii=a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: __UpperCamelCase : int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase : Any = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a ) , [5, 6, 2, 5, 7, 8] ) def _lowerCamelCase ( self :Optional[Any] ) -> List[str]: __UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowerCamelCase ( self :str ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : Any = RoCBertBasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self :int ) -> Optional[Any]: __UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self :Optional[Any] ) -> int: __UpperCamelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]: __UpperCamelCase : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __UpperCamelCase : List[Any] = {} for i, token in enumerate(a ): __UpperCamelCase : List[str] = i __UpperCamelCase : List[Any] = RoCBertWordpieceTokenizer(vocab=a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowerCamelCase ( self :Optional[int] ) -> Dict: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowerCamelCase ( self :Dict ) -> Optional[int]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowerCamelCase ( self :Tuple ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __UpperCamelCase : List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def _lowerCamelCase ( self :Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : int = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase : int = tokenizer_r.encode_plus( a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , ) __UpperCamelCase : Tuple = tokenizer_r.do_lower_case if hasattr(a , "do_lower_case" ) else False __UpperCamelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowerCamelCase ( self :int ) -> Optional[int]: __UpperCamelCase : List[Any] = ["的", "人", "有"] __UpperCamelCase : int = "".join(a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : str = True __UpperCamelCase : Tuple = self.tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : Optional[int] = tokenizer_p.encode(a , add_special_tokens=a ) __UpperCamelCase : Union[str, Any] = tokenizer_r.encode(a , add_special_tokens=a ) __UpperCamelCase : Dict = tokenizer_r.convert_ids_to_tokens(a ) __UpperCamelCase : Tuple = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a , a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : int = self.tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : str = tokenizer_r.encode(a , add_special_tokens=a ) __UpperCamelCase : Union[str, Any] = tokenizer_p.encode(a , add_special_tokens=a ) __UpperCamelCase : int = tokenizer_r.convert_ids_to_tokens(a ) __UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase : Union[str, Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(a ) ] self.assertListEqual(a , a ) self.assertListEqual(a , a ) @slow def _lowerCamelCase ( self :List[Any] ) -> Optional[int]: __UpperCamelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase : Dict = tokenizer.encode("你好" , add_special_tokens=a ) __UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=a ) __UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a ) __UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _lowerCamelCase ( self :List[str] ) -> Any: __UpperCamelCase : List[str] = self.get_tokenizers(do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase : Union[str, Any] = "你好,你是谁" __UpperCamelCase : str = tokenizer.tokenize(a ) __UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(a ) __UpperCamelCase : int = tokenizer.convert_tokens_to_shape_ids(a ) __UpperCamelCase : Dict = tokenizer.convert_tokens_to_pronunciation_ids(a ) __UpperCamelCase : Tuple = tokenizer.prepare_for_model( a , a , a , add_special_tokens=a ) __UpperCamelCase : List[str] = tokenizer.encode_plus(a , add_special_tokens=a ) self.assertEqual(a , a )
232
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Any) -> Dict: '''simple docstring''' __UpperCamelCase : Optional[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCamelCase : Any = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } __UpperCamelCase : str = F'{src_lang}-{tgt_lang}' __UpperCamelCase : Tuple = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) __UpperCamelCase : Dict = os.path.join(_lowerCamelCase , "README.md") print(F'Generating {path}') with open(_lowerCamelCase , "w" , encoding="utf-8") as f: f.write(_lowerCamelCase) # make sure we are under the root of the project lowercase : List[str] = Path(__file__).resolve().parent.parent.parent lowercase : Union[str, Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase , lowercase , lowercase : int = model_name.split('-') lowercase : Dict = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
232
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase_ : Tuple =random.Random() def UpperCamelCase ( _A : Optional[Any] , _A : List[Any]=1.0 , _A : List[Any]=None , _A : Optional[Any]=None )-> Optional[int]: """simple docstring""" if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase ( unittest.TestCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=400 , UpperCAmelCase__=2_000 , UpperCAmelCase__=24 , UpperCAmelCase__=24 , UpperCAmelCase__=0.0 , UpperCAmelCase__=16_000 , UpperCAmelCase__=True , UpperCAmelCase__=True , ): A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = feature_size A__ = num_mel_bins A__ = padding_value A__ = sampling_rate A__ = return_attention_mask A__ = do_normalize def __A ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , UpperCAmelCase__=False , UpperCAmelCase__=False ): def _flatten(UpperCAmelCase__ ): return list(itertools.chain(*lowercase_ ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase ( lowercase__ , unittest.TestCase ): lowerCAmelCase : List[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self ): A__ = SpeechaTextFeatureExtractionTester(self ) def __A ( self , UpperCAmelCase__ ): self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size A__ = feature_extractor(lowercase_ , padding=lowercase_ , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features A__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test batched A__ = feature_extractor(lowercase_ , return_tensors="np" ).input_features A__ = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ = np.asarray(lowercase_ ) A__ = feature_extractor(lowercase_ , return_tensors="np" ).input_features A__ = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def __A ( self ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_ ): A__ = feature_extractor( lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_attention_mask=lowercase_ ) A__ = inputs.input_features A__ = inputs.attention_mask A__ = [np.sum(lowercase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_ ): A__ = feature_extractor( lowercase_ , max_length=lowercase_ , padding=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ ) A__ = inputs.input_features A__ = inputs.attention_mask A__ = [np.sum(lowercase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = feature_extractor( lowercase_ , padding="max_length" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) A__ = inputs.input_features A__ = inputs.attention_mask A__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = feature_extractor( lowercase_ , padding="longest" , max_length=4 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) A__ = inputs.input_features A__ = inputs.attention_mask A__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A__ = feature_extractor( lowercase_ , padding="longest" , max_length=16 , truncation=lowercase_ , return_tensors="np" , return_attention_mask=lowercase_ , ) A__ = inputs.input_features A__ = inputs.attention_mask A__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self ): import torch A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = np.random.rand(100 , 32 ).astype(np.floataa ) A__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , UpperCAmelCase__ ): from datasets import load_dataset A__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A__ = ds.sort("id" ).select(range(lowercase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self ): A__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = feature_extractor(lowercase_ , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase_ , atol=1e-4 ) )
351
import datasets from .evaluate import evaluate UpperCAmelCase_ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCAmelCase_ : Any = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCAmelCase_ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=UpperCAmelCase__ , predictions=UpperCAmelCase__ ) return score
198
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = old_name if "patch_embed" in old_name: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = old_name.split('.' ) if layer == "0": __lowerCamelCase = old_name.replace('0' , 'convolution1' ) elif layer == "1": __lowerCamelCase = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __lowerCamelCase = old_name.replace('3' , 'convolution2' ) else: __lowerCamelCase = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , UpperCamelCase__ ): __lowerCamelCase = R'\b\d{2}\b' if bool(re.search(UpperCamelCase__ , UpperCamelCase__ ) ): __lowerCamelCase = re.search(R'\d\.\d\d.' , UpperCamelCase__ ).group() else: __lowerCamelCase = re.search(R'\d\.\d.' , UpperCamelCase__ ).group() if int(match[0] ) < 6: __lowerCamelCase = old_name.replace(UpperCamelCase__ , '' ) __lowerCamelCase = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __lowerCamelCase = 'intermediate_stages.' + trimmed_name else: __lowerCamelCase = old_name.replace(UpperCamelCase__ , '' ) if int(match[2] ) < num_meta4D_last_stage: __lowerCamelCase = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __lowerCamelCase = str(int(match[2] ) - num_meta4D_last_stage ) __lowerCamelCase = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __lowerCamelCase = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __lowerCamelCase = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __lowerCamelCase = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __lowerCamelCase = trimmed_name.replace('fc2' , 'linear_out' ) __lowerCamelCase = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , UpperCamelCase__ ): __lowerCamelCase = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __lowerCamelCase = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCamelCase = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCamelCase = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __lowerCamelCase = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __lowerCamelCase = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __lowerCamelCase = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __lowerCamelCase = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCamelCase = new_name.replace('norm' , 'layernorm' ) __lowerCamelCase = 'efficientformer.' + new_name else: __lowerCamelCase = 'efficientformer.encoder.' + new_name return new_name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> int: """simple docstring""" for key in checkpoint.copy().keys(): __lowerCamelCase = checkpoint.pop(UpperCamelCase__ ) __lowerCamelCase = val return checkpoint def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image def lowerCamelCase_ ( UpperCamelCase__ : Path , UpperCamelCase__ : Path , UpperCamelCase__ : Path , UpperCamelCase__ : bool ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] __lowerCamelCase = EfficientFormerConfig.from_json_file(UpperCamelCase__ ) __lowerCamelCase = EfficientFormerForImageClassificationWithTeacher(UpperCamelCase__ ) __lowerCamelCase = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __lowerCamelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCamelCase = convert_torch_checkpoint(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() __lowerCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __lowerCamelCase = prepare_img() __lowerCamelCase = 256 __lowerCamelCase = 224 __lowerCamelCase = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values # original processing pipeline __lowerCamelCase = Compose( [ Resize(UpperCamelCase__ , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(UpperCamelCase__ ), ToTensor(), Normalize(UpperCamelCase__ , UpperCamelCase__ ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ ) __lowerCamelCase = outputs.logits __lowerCamelCase = (1, 1000) if "l1" in model_name: __lowerCamelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , UpperCamelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCamelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , UpperCamelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCamelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(UpperCamelCase__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __A = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
90
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" for i in range(UpperCamelCase__ , UpperCamelCase__ ): if array[i] == target: return i return -1 def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase__ , one_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
90
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( lowerCAmelCase__ , unittest.TestCase ): _a : Tuple= DiTPipeline _a : Optional[Any]= CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _a : List[str]= PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _a : List[Any]= CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _a : str= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase : Any = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=a__ ,activation_fn="""gelu-approximate""" ,num_embeds_ada_norm=1000 ,norm_type="""ada_norm_zero""" ,norm_elementwise_affine=a__ ,) lowercase : Optional[Any] = AutoencoderKL() lowercase : Optional[Any] = DDIMScheduler() lowercase : List[str] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=0 ): '''simple docstring''' if str(a__ ).startswith("""mps""" ): lowercase : Optional[Any] = torch.manual_seed(a__ ) else: lowercase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) lowercase : Optional[int] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = """cpu""" lowercase : str = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) lowercase : List[str] = self.get_dummy_inputs(a__ ) lowercase : Optional[Any] = pipe(**a__ ).images lowercase : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) lowercase : str = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowercase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ ,1e-3 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=a__ ,expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = torch.manual_seed(0 ) lowercase : Optional[int] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowercase : Optional[Any] = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowercase : Optional[Any] = pipe.get_label_ids(a__ ) lowercase : Tuple = pipe(a__ ,generator=a__ ,num_inference_steps=40 ,output_type="""np""" ).images for word, image in zip(a__ ,a__ ): lowercase : Tuple = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowercase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowercase : Tuple = ["""vase""", """umbrella"""] lowercase : Dict = pipe.get_label_ids(a__ ) lowercase : Optional[Any] = torch.manual_seed(0 ) lowercase : Union[str, Any] = pipe(a__ ,generator=a__ ,num_inference_steps=25 ,output_type="""np""" ).images for word, image in zip(a__ ,a__ ): lowercase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
364
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase : Tuple = get_logger(__name__) lowercase : Optional[int] = Path(__file__).parent / """model_card_template.md""" lowercase : Dict = uuida().hex lowercase : Tuple = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : str = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> str: lowercase : str = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Dict: if token is None: lowercase : Optional[int] = HfFolder.get_token() if organization is None: lowercase : int = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase : str = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""" ) else None lowercase : int = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase : str = os.path.join(args.output_dir , """README.md""" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Optional[Any]: if resolved_file is None or commit_hash is not None: return commit_hash lowercase : List[Any] = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) lowercase : Any = re.search(R"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase : Optional[Any] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase : Optional[int] = os.path.join(hf_cache_home, """diffusers""") def _snake_case( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> None: if new_cache_dir is None: lowercase : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : Dict = Path(SCREAMING_SNAKE_CASE__ ).expanduser() lowercase : int = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : Any = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase : Dict = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase : Any = 0 else: with open(cache_version_file) as f: try: lowercase : List[Any] = int(f.read()) except ValueError: lowercase : int = 0 if cache_version < 1: lowercase : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase : int = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: if variant is not None: lowercase : List[str] = weights_name.split(""".""" ) lowercase : Optional[Any] = splits[:-1] + [variant] + splits[-1:] lowercase : int = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _snake_case( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: lowercase : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint lowercase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase : Any = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' so that the correct variant file can be added." , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual lowercase : int = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " """this model name. Check the model page at """ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
285
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : int = """EncodecFeatureExtractor""" SCREAMING_SNAKE_CASE_ : Optional[int] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any])-> str: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: int = self.feature_extractor __lowerCAmelCase: Union[str, Any] = False def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=True)-> List[str]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=UpperCamelCase__ , language=UpperCamelCase__ , no_timestamps=UpperCamelCase__) def __call__( self : Dict , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[str])-> Any: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__) __lowerCAmelCase: Optional[Any] = kwargs.pop("audio" , UpperCamelCase__) __lowerCAmelCase: Optional[int] = kwargs.pop("sampling_rate" , UpperCamelCase__) __lowerCAmelCase: Optional[int] = kwargs.pop("text" , UpperCamelCase__) if len(UpperCamelCase__) > 0: __lowerCAmelCase: Union[str, Any] = args[0] __lowerCAmelCase: Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: __lowerCAmelCase: List[str] = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__) if audio is not None: __lowerCAmelCase: List[Any] = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCAmelCase: List[Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowerCAmelCase: Any = audio_inputs["padding_mask"] return inputs def lowercase_ ( self : Optional[Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = kwargs.pop("audio" , UpperCamelCase__) __lowerCAmelCase: Tuple = kwargs.pop("padding_mask" , UpperCamelCase__) if len(UpperCamelCase__) > 0: __lowerCAmelCase: Optional[Any] = args[0] __lowerCAmelCase: str = args[1:] if audio_values is not None: return self._decode_audio(UpperCamelCase__ , padding_mask=UpperCamelCase__) else: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Tuple)-> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional = None)-> List[np.ndarray]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = to_numpy(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = audio_values.shape if padding_mask is None: return list(UpperCamelCase__) __lowerCAmelCase: int = to_numpy(UpperCamelCase__) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCAmelCase: Tuple = seq_len - padding_mask.shape[-1] __lowerCAmelCase: Dict = 1 - self.feature_extractor.padding_value __lowerCAmelCase: Optional[int] = np.pad(UpperCamelCase__ , ((0, 0), (0, difference)) , "constant" , constant_values=UpperCamelCase__) __lowerCAmelCase: Any = audio_values.tolist() for i in range(UpperCamelCase__): __lowerCAmelCase: Union[str, Any] = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCAmelCase: Optional[Any] = sliced_audio.reshape(UpperCamelCase__ , -1) return audio_values
217
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : str = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = """tokenizer_file""" SCREAMING_SNAKE_CASE_ : List[str] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' super().setUp() __lowerCAmelCase: Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") tokenizer.save_pretrained(self.tmpdirname) def lowercase_ ( self : List[Any] , **UpperCamelCase__ : Union[str, Any])-> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = self.get_rust_tokenizer() __lowerCAmelCase: int = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] __lowerCAmelCase: List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __lowerCAmelCase: List[str] = tokenizer.batch_encode_plus(UpperCamelCase__)["input_ids"] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: List[Any] = tokenizer.batch_decode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple=6)-> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCAmelCase: Dict = "This is a simple input" __lowerCAmelCase: str = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase: int = ("This is a simple input", "This is a pair") __lowerCAmelCase: Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding") __lowerCAmelCase: Tuple = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = self.get_rust_tokenizer() __lowerCAmelCase: List[str] = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = next(iter(UpperCamelCase__))["premise"] # pick up one data __lowerCAmelCase: Any = list(sample_data.values()) __lowerCAmelCase: int = list(map(tokenizer.encode , UpperCamelCase__)) __lowerCAmelCase: str = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
217
1
A_ = 6_55_21 def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = 1 _snake_case : int = 0 for plain_chr in plain_text: _snake_case : Optional[Any] = (a + ord(snake_case__ )) % MOD_ADLER _snake_case : int = (b + a) % MOD_ADLER return (b << 16) | a
367
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger() @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tensor, a_: Tensor ): '''simple docstring''' _snake_case : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self: List[Any], a_: Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def __call__( self: Dict, a_: Tensor ): '''simple docstring''' _snake_case : Tuple = Tracker(self.dest )(a_ ).parametrized _snake_case : int = Tracker(self.src )(a_ ).parametrized _snake_case : Tuple = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) ) _snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( f"Numbers of operations are different. Source module has {len(a_ )} operations while" f" destination module has {len(a_ )}." ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : ResNetConfig , snake_case__ : Path , snake_case__ : bool = True ): """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): _snake_case : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() _snake_case : List[Any] = ResNetForImageClassification(snake_case__ ).eval() _snake_case : List[str] = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) _snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." _snake_case : Optional[int] = F"resnet{'-'.join(name.split('resnet' ) )}" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) # we can use the convnext one _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) print(F"Pushed {checkpoint_name}" ) def UpperCAmelCase__ (snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): """simple docstring""" _snake_case : Optional[Any] = """imagenet-1k-id2label.json""" _snake_case : Optional[Any] = 10_00 _snake_case : str = (1, num_labels) _snake_case : List[Any] = """huggingface/label-files""" _snake_case : Union[str, Any] = num_labels _snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : str = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) _snake_case : Optional[int] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ = parser.parse_args() A_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
132
0
'''simple docstring''' from math import pow def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ,): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE : Dict = int(pow(__UpperCamelCase ,__UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = backtrack( __UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = backtrack( __UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase ) return current_sum, solutions_count def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(__UpperCamelCase ,__UpperCamelCase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
251
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE__ = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase = additional_special_tokens_extended else: lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCAmelCase = mask_token_sent lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , lowercase ) -> List[Any]: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def _snake_case ( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCAmelCase = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _snake_case ( self , lowercase=False ) -> Tuple: return 1 def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
46
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __snake_case ( _a ): UpperCAmelCase__ : List[str] = """autoformer""" UpperCAmelCase__ : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : int , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "student_t" , _snake_case : str = "nll" , _snake_case : int = 1 , _snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , _snake_case : bool = True , _snake_case : int = 0 , _snake_case : int = 0 , _snake_case : int = 0 , _snake_case : int = 0 , _snake_case : Optional[List[int]] = None , _snake_case : Optional[List[int]] = None , _snake_case : int = 64 , _snake_case : int = 2 , _snake_case : int = 2 , _snake_case : int = 2 , _snake_case : int = 2 , _snake_case : int = 32 , _snake_case : int = 32 , _snake_case : str = "gelu" , _snake_case : float = 0.1 , _snake_case : float = 0.1 , _snake_case : float = 0.1 , _snake_case : float = 0.1 , _snake_case : float = 0.1 , _snake_case : int = 100 , _snake_case : float = 0.0_2 , _snake_case : bool = True , _snake_case : Optional[int]=True , _snake_case : int = 10 , _snake_case : int = 25 , _snake_case : int = 3 , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = prediction_length UpperCAmelCase_ = context_length if context_length is not None else prediction_length UpperCAmelCase_ = distribution_output UpperCAmelCase_ = loss UpperCAmelCase_ = input_size UpperCAmelCase_ = num_time_features UpperCAmelCase_ = lags_sequence UpperCAmelCase_ = scaling UpperCAmelCase_ = num_dynamic_real_features UpperCAmelCase_ = num_static_real_features UpperCAmelCase_ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowerCamelCase) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''') UpperCAmelCase_ = cardinality else: UpperCAmelCase_ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowerCamelCase) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''') UpperCAmelCase_ = embedding_dimension else: UpperCAmelCase_ = [min(50 , (cat + 1) // 2) for cat in self.cardinality] UpperCAmelCase_ = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ = input_size * len(self.lags_sequence) + self._number_of_features UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = use_cache # Autoformer UpperCAmelCase_ = label_length UpperCAmelCase_ = moving_average UpperCAmelCase_ = autocorrelation_factor super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase) @property def lowerCamelCase ( self : Dict): """simple docstring""" return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
367
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase :Optional[Any] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Dict = torch.sin(t * math.pi / 2 ) ** 2 A_ : Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase ): super().__init__() A_ : List[Any] = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) A_ : int = deepcopy(self.diffusion ) A_ : str = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowerCamelCase :int = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase :List[Any] = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase :Dict = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase :Union[str, Any] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase :Dict = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase :str = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a ( lowerCamelCase__ ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( lowerCamelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def a ( lowerCamelCase__ , lowerCamelCase__=13 ): '''simple docstring''' A_ : Tuple = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A_ : str = 0 if string.startswith("""net.3.""" ): depth += 1 A_ : List[Any] = string[6:] elif string.startswith("""net.""" ): A_ : Union[str, Any] = string[4:] while string.startswith("""main.7.""" ): depth += 1 A_ : Optional[Any] = string[7:] if string.startswith("""main.""" ): A_ : int = string[5:] # mid block if string[:2].isdigit(): A_ : Optional[int] = string[:2] A_ : List[str] = string[2:] else: A_ : int = string[0] A_ : Optional[Any] = string[1:] if depth == max_depth: A_ : int = MID_NUM_TO_LAYER[layer_num] A_ : Tuple = """mid_block""" elif depth > 0 and int(lowerCamelCase__ ) < 7: A_ : Any = DOWN_NUM_TO_LAYER[layer_num] A_ : Union[str, Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: A_ : str = UP_NUM_TO_LAYER[layer_num] A_ : Optional[int] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A_ : Optional[int] = DEPTH_0_TO_LAYER[layer_num] A_ : str = f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A_ : str = string_left[1:] if "resnets" in new_layer: A_ : Dict = convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: A_ : List[Any] = convert_attn_naming(lowerCamelCase__ ) A_ : str = new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[int] = prefix + """.""" + new_layer + """.""" + string_left else: A_ : Union[str, Any] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A_ : Tuple = rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[int] = transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: A_ : Dict = v return new_state_dict def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A_ : List[str] = v[:, :, 0] else: # bias A_ : List[str] = v else: # qkv matrices A_ : Dict = v.shape[0] A_ : Optional[int] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : int = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ : Tuple = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A_ : Optional[int] = download(lowerCamelCase__ ) A_ : Tuple = MODELS_MAP[model_name]["""sample_rate"""] A_ : Dict = MODELS_MAP[model_name]["""sample_size"""] A_ : Optional[int] = Object() A_ : List[str] = sample_size A_ : Any = sample_rate A_ : Optional[int] = 0 A_ : List[str] = UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) A_ : List[str] = diffusers_model.state_dict() A_ : List[Any] = DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )["""state_dict"""] ) A_ : Dict = orig_model.diffusion_ema.eval() A_ : int = orig_model.state_dict() A_ : Union[str, Any] = rename_orig_weights(lowerCamelCase__ ) A_ : str = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : Union[str, Any] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A_ : Tuple = value.squeeze() A_ : List[Any] = value diffusers_model.load_state_dict(lowerCamelCase__ ) A_ : int = 1_00 A_ : List[str] = 33 A_ : str = IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) A_ : List[str] = torch.manual_seed(lowerCamelCase__ ) A_ : Union[str, Any] = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : Optional[Any] = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] A_ : str = get_crash_schedule(lowerCamelCase__ ) A_ : str = DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) A_ : Tuple = torch.manual_seed(33 ) A_ : List[Any] = pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios A_ : int = sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) A_ : Optional[Any] = generated.clamp(-1 , 1 ) A_ : int = (generated - audio).abs().sum() A_ : Tuple = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase__ ) print("""Diff max""" , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowerCamelCase :Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase :Dict = parser.parse_args() main(args)
206
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): A_ : List[Any] = parent A_ : str = batch_size A_ : List[Any] = seq_length A_ : Dict = is_training A_ : List[Any] = use_attention_mask A_ : Any = use_token_type_ids A_ : Optional[int] = use_labels A_ : Tuple = vocab_size A_ : List[str] = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = intermediate_size A_ : Optional[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : Any = initializer_range A_ : List[str] = num_choices def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_attention_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , ) return config, input_ids, attention_mask def _a (self ): A_ : List[str] = self.prepare_config_and_inputs() A_, A_, A_ : str = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): A_ : Tuple = FlaxDistilBertModelTester(self ) @slow def _a (self ): for model_class_name in self.all_model_classes: A_ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) A_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
206
1
"""simple docstring""" import random def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : float , lowerCamelCase__ : bool = False ) -> dict: lowerCamelCase_ : dict ={i: [] for i in range(lowerCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase__ ): for j in range(i + 1 , lowerCamelCase__ ): if random.random() < probability: graph[i].append(lowerCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase__ ) return graph def _snake_case ( lowerCamelCase__ : int ) -> dict: return { i: [j for j in range(lowerCamelCase__ ) if i != j] for i in range(lowerCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple: lowerCamelCase_ : Optional[Any] =namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
209
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): lowercase = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase = Features({"audio": Audio()} ) lowercase = Features({"labels": ClassLabel} ) lowercase = "audio" lowercase = "labels" def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __UpperCamelCase = copy.deepcopy(self ) __UpperCamelCase = self.label_schema.copy() __UpperCamelCase = features[self.label_column] __UpperCamelCase = label_schema return task_template @property def UpperCAmelCase ( self ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
316
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: List[str] = logging.get_logger(__name__) A__: Union[str, Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = "data2vec-text" def __init__( self :str , SCREAMING_SNAKE_CASE :Optional[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Any=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Dict=3_0_7_2 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :int=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=1e-12 , SCREAMING_SNAKE_CASE :int=1 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :str="absolute" , SCREAMING_SNAKE_CASE :Tuple=True , SCREAMING_SNAKE_CASE :Union[str, Any]=None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Optional[Any] =vocab_size _a : Optional[Any] =hidden_size _a : Any =num_hidden_layers _a : List[str] =num_attention_heads _a : Union[str, Any] =hidden_act _a : Any =intermediate_size _a : str =hidden_dropout_prob _a : Optional[Any] =attention_probs_dropout_prob _a : Optional[Any] =max_position_embeddings _a : Union[str, Any] =type_vocab_size _a : Tuple =initializer_range _a : Optional[int] =layer_norm_eps _a : Tuple =position_embedding_type _a : int =use_cache _a : List[str] =classifier_dropout class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Tuple ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : List[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging snake_case_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase__ ( lowerCamelCase__ ): lowercase__ = ['pixel_values'] def __init__( self : int ,lowerCamelCase__ : int = True ,lowerCamelCase__ : str = None ,lowerCamelCase__ : Dict = PILImageResampling.BICUBIC ,lowerCamelCase__ : List[Any] = True ,lowerCamelCase__ : List[str] = None ,lowerCamelCase__ : List[Any] = True ,lowerCamelCase__ : Tuple = 1 / 255 ,lowerCamelCase__ : Optional[int] = True ,lowerCamelCase__ : Union[str, Any] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[Any] = True ,**lowerCamelCase__ : str ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = size if size is not None else {'shortest_edge': 224} _UpperCamelCase : Tuple = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : List[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCamelCase : Tuple = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ,param_name='crop_size' ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : int = size _UpperCamelCase : List[str] = resample _UpperCamelCase : Optional[Any] = do_center_crop _UpperCamelCase : Dict = crop_size _UpperCamelCase : Any = do_rescale _UpperCamelCase : int = rescale_factor _UpperCamelCase : str = do_normalize _UpperCamelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : Dict = do_convert_rgb def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] = PILImageResampling.BICUBIC ,lowerCamelCase__ : Tuple = None ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCamelCase : List[Any] = get_resize_output_image_size(lowerCamelCase__ ,size=size['shortest_edge'] ,default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] = None ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCamelCase__ ,size=(size['height'], size['width']) ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] = None ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] = None ,**lowerCamelCase__ : str ,): '''simple docstring''' return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict = None ,lowerCamelCase__ : Dict = None ,lowerCamelCase__ : Optional[Any] = None ,lowerCamelCase__ : Dict = None ,lowerCamelCase__ : Tuple = None ,lowerCamelCase__ : Union[str, Any] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : int = None ,lowerCamelCase__ : List[Any] = None ,lowerCamelCase__ : List[Any] = None ,lowerCamelCase__ : Tuple = ChannelDimension.FIRST ,**lowerCamelCase__ : Dict ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase__ ,param_name='size' ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample _UpperCamelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Tuple = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Optional[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Union[str, Any] = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : List[str] = [convert_to_rgb(lowerCamelCase__ ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : List[Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _UpperCamelCase : List[Any] = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] if do_center_crop: _UpperCamelCase : Dict = [self.center_crop(image=lowerCamelCase__ ,size=lowerCamelCase__ ) for image in images] if do_rescale: _UpperCamelCase : Optional[int] = [self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ) for image in images] if do_normalize: _UpperCamelCase : Optional[Any] = [self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) for image in images] _UpperCamelCase : Any = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : str = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Optional[int] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
236
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] __snake_case : Dict = DisjunctiveConstraint(a_ ) self.assertTrue(isinstance(dc.token_ids , a_ ) ) with self.assertRaises(a_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(a_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a_ ): DisjunctiveConstraint(a_ ) # fails here def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = [[1, 2, 3], [1, 2, 4]] __snake_case : Union[str, Any] = DisjunctiveConstraint(a_ ) __snake_case : str = dc.update(1 ) __snake_case : List[str] = stepped is True and completed is False and reset is False self.assertTrue(a_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __snake_case : Dict = dc.update(2 ) __snake_case : Dict = stepped is True and completed is False and reset is False self.assertTrue(a_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __snake_case : Optional[Any] = dc.update(3 ) __snake_case : List[Any] = stepped is True and completed is True and reset is False self.assertTrue(a_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __snake_case : Optional[Any] = DisjunctiveConstraint(a_ ) __snake_case : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __snake_case : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __snake_case : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __snake_case : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __snake_case : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __snake_case : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __snake_case : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
102
from string import ascii_lowercase, ascii_uppercase def UpperCamelCase ( __lowercase : str ): '''simple docstring''' if not sentence: return "" A_ : List[str] = dict(zip(__lowercase ,__lowercase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
140
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase__ = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = "https://pypi.org/pypi/diffusers/json" lowerCAmelCase_ : Optional[int] = json.loads(request.urlopen(__UpperCamelCase ).read() )["releases"].keys() return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : version.Version(__UpperCamelCase ) ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) lowerCAmelCase_ : str = Path(__UpperCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" init_hf_modules() lowerCAmelCase_ : Dict = Path(__UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" with open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: lowerCAmelCase_ : Optional[int] = f.read() # Imports of the form `import .xxx` lowerCAmelCase_ : int = re.findall("^\s*import\s+\.(\S+)\s*$" , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , __UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = [module_file] lowerCAmelCase_ : Union[str, Any] = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCamelCase ) ) lowerCAmelCase_ : Union[str, Any] = Path(__UpperCamelCase ).parent lowerCAmelCase_ : int = [str(module_path / m ) for m in new_imports] lowerCAmelCase_ : Any = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase_ : Tuple = [f'''{f}.py''' for f in new_import_files] lowerCAmelCase_ : Any = len(__UpperCamelCase ) == 0 all_relative_imports.extend(__UpperCamelCase ) return all_relative_imports def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]: """simple docstring""" with open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: lowerCAmelCase_ : Dict = f.read() # Imports of the form `import xxx` lowerCAmelCase_ : Any = re.findall("^\s*import\s+(\S+)\s*$" , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , __UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase_ : Tuple = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all lowerCAmelCase_ : Tuple = list(set(__UpperCamelCase ) ) lowerCAmelCase_ : Dict = [] for imp in imports: try: importlib.import_module(__UpperCamelCase ) except ImportError: missing_packages.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f'''{", ".join(__UpperCamelCase )}. Run `pip install {" ".join(__UpperCamelCase )}`''' ) return get_relative_imports(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = module_path.replace(os.path.sep , "." ) lowerCAmelCase_ : Optional[Any] = importlib.import_module(__UpperCamelCase ) if class_name is None: return find_pipeline_class(__UpperCamelCase ) return getattr(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline lowerCAmelCase_ : List[str] = dict(inspect.getmembers(__UpperCamelCase , inspect.isclass ) ) lowerCAmelCase_ : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) lowerCAmelCase_ : int = cls return pipeline_class def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = str(__UpperCamelCase ) lowerCAmelCase_ : Tuple = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): lowerCAmelCase_ : Tuple = module_file_or_url lowerCAmelCase_ : Optional[Any] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: lowerCAmelCase_ : Dict = get_diffusers_versions() # cut ".dev0" lowerCAmelCase_ : List[str] = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase_ : Any = latest_version if latest_version[1:] in available_versions else "main" logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowerCAmelCase_ : Any = f'''v{revision}''' elif revision == "main": lowerCAmelCase_ : Tuple = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub lowerCAmelCase_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__UpperCamelCase , pipeline=__UpperCamelCase ) try: lowerCAmelCase_ : List[str] = cached_download( __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) lowerCAmelCase_ : Optional[int] = "git" lowerCAmelCase_ : List[Any] = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase_ : Optional[Any] = hf_hub_download( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) lowerCAmelCase_ : int = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowerCAmelCase_ : Dict = check_imports(__UpperCamelCase ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase_ : List[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = Path(__UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase_ : List[Any] = f'''{module_needed}.py''' shutil.copy(os.path.join(__UpperCamelCase , __UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : List[str] = use_auth_token elif use_auth_token is True: lowerCAmelCase_ : Dict = HfFolder.get_token() else: lowerCAmelCase_ : int = None lowerCAmelCase_ : List[Any] = model_info(__UpperCamelCase , revision=__UpperCamelCase , token=__UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase_ : Optional[Any] = submodule_path / commit_hash lowerCAmelCase_ : List[str] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCamelCase , f'''{module_needed}.py''' , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return os.path.join(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , **__UpperCamelCase , ) -> Tuple: """simple docstring""" lowerCAmelCase_ : List[str] = get_cached_module_file( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return get_class_in_module(__UpperCamelCase , final_module.replace(".py" , "" ) )
161
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() if is_torch_available(): import torch def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ) -> Dict: """simple docstring""" if rng is None: lowerCAmelCase_ : int = global_rng lowerCAmelCase_ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Dict=7 , a_ : int=4_00 , a_ : Union[str, Any]=20_00 , a_ : Any=1 , a_ : Optional[int]=0.0 , a_ : str=1_60_00 , a_ : Optional[int]=True , a_ : Dict=True , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = min_seq_length lowerCAmelCase_ : List[Any] = max_seq_length lowerCAmelCase_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Dict = feature_size lowerCAmelCase_ : Tuple = padding_value lowerCAmelCase_ : int = sampling_rate lowerCAmelCase_ : str = return_attention_mask lowerCAmelCase_ : Union[str, Any] = do_normalize def lowerCamelCase ( self : Dict ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : List[Any] , a_ : List[Any]=False , a_ : Optional[int]=False ): def _flatten(a_ : Optional[Any] ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCAmelCase_ : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : List[Any] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple = ASTFeatureExtractor def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = ASTFeatureExtractionTester(self ) def lowerCamelCase ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : str = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : Tuple = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values lowerCAmelCase_ : int = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Union[str, Any] = np.asarray(a_ ) lowerCAmelCase_ : str = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase_ : List[Any] = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) @require_torch def lowerCamelCase ( self : List[str] ): import torch lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Tuple = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase ( self : List[Any] , a_ : List[str] ): from datasets import load_dataset lowerCAmelCase_ : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase_ : Optional[int] = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase ( self : str ): # fmt: off lowerCAmelCase_ : Tuple = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on lowerCAmelCase_ : Dict = self._load_datasamples(1 ) lowerCAmelCase_ : Union[str, Any] = ASTFeatureExtractor() lowerCAmelCase_ : int = feature_extractor(a_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
161
1