code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return number | (1 << position) def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return number & ~(1 << position) def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return number ^ (1 << position) def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return ((number >> position) & 1) == 1 def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
30
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case__ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case__ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case__ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case__ , default=0 , help='''cuda_id.''' , ) lowercase_ = parser.parse_args() return args def a ( snake_case__: Optional[Any] , snake_case__: Tuple , snake_case__: Union[str, Any] ): '''simple docstring''' if not len(snake_case__ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowercase_ , lowercase_ = imgs[0].size lowercase_ = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowercase_ , lowercase_ = grid.size for i, img in enumerate(snake_case__ ): grid.paste(snake_case__ , box=(i % cols * w, i // cols * h) ) return grid def a ( snake_case__: Tuple , snake_case__: Union[str, Any]="robotic cat with wings" , snake_case__: Union[str, Any]=7.5 , snake_case__: List[str]=50 , snake_case__: List[Any]=1 , snake_case__: Optional[int]=42 , ): '''simple docstring''' lowercase_ = torch.Generator(pipeline.device ).manual_seed(snake_case__ ) lowercase_ = pipeline( snake_case__ , guidance_scale=snake_case__ , num_inference_steps=snake_case__ , generator=snake_case__ , num_images_per_prompt=snake_case__ , ).images lowercase_ = int(math.sqrt(snake_case__ ) ) lowercase_ = image_grid(snake_case__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __a = parse_args() # Load models and create wrapper for stable diffusion __a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __a = unet.to(torch.device('cuda', args.cuda_id)) __a = pipeline.to(unet.device) __a , __a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
30
1
from __future__ import annotations def __UpperCamelCase ( lowerCAmelCase__ : list[list[int]] ): __a : List[Any] = len(lowerCAmelCase__ ) # We need to create solution object to save path. __a : str = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] __a : Tuple = run_maze(lowerCAmelCase__ , 0 , 0 , lowerCAmelCase__ ) if solved: print('''\n'''.join(str(lowerCAmelCase__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __UpperCamelCase ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ): __a : str = len(lowerCAmelCase__ ) # Final check point. if i == j == (size - 1): __a : int = 1 return True __a : Tuple = (not i < 0) and (not j < 0) # Check lower bounds __a : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __a : List[str] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __a : Optional[Any] = 1 # check for directions if ( run_maze(lowerCAmelCase__ , i + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) or run_maze(lowerCAmelCase__ , lowerCAmelCase__ , j + 1 , lowerCAmelCase__ ) or run_maze(lowerCAmelCase__ , i - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) or run_maze(lowerCAmelCase__ , lowerCAmelCase__ , j - 1 , lowerCAmelCase__ ) ): return True __a : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
90
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Union[str, Any] = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: __a : str = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Any = tensor[:sequence_length] else: __a : List[Any] = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Dict = tensor[:sequence_length] else: __a : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): __a : str = ord(lowerCAmelCase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __a : List[str] = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : int = -100 _SCREAMING_SNAKE_CASE : str = "pt" def lowerCAmelCase (self : str , snake_case_ : Tuple ): import torch __a : Union[str, Any] = '''label''' if '''label''' in features[0].keys() else '''labels''' __a : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a : Union[str, Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a : List[str] = torch.tensor(batch['''entity_ids'''] ).shape[1] __a : Tuple = self.tokenizer.padding_side if padding_side == "right": __a : Union[str, Any] = [ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: __a : Dict = [ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] __a : Dict = [feature['''ner_tags'''] for feature in features] __a : Optional[Any] = padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) __a : Union[str, Any] = [feature['''original_entity_spans'''] for feature in features] __a : Optional[int] = padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) __a : List[str] = {k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
90
1
import math from collections.abc import Callable def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = xa _lowerCAmelCase : float = xa while True: if x_n == x_na or function(_lowerCamelCase ) == function(_lowerCamelCase ): raise ZeroDivisionError("float division by zero, could not find root" ) _lowerCAmelCase : float = x_na - ( function(_lowerCamelCase ) / ((function(_lowerCamelCase ) - function(_lowerCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase : Any = x_na _lowerCAmelCase : Tuple = x_na def A ( _lowerCamelCase ): '''simple docstring''' return math.pow(_lowerCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
36
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Union[str, Any] = feat_extract_activation _lowerCAmelCase : Optional[Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : str = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : str = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim) _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Tuple = activation_dropout _lowerCAmelCase : int = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : int = layerdrop _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : List[str] = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Union[str, Any] = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Optional[int] = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Optional[int] = num_negatives _lowerCAmelCase : Union[str, Any] = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Tuple = ctc_zero_infinity # adapter _lowerCAmelCase : List[Any] = add_adapter _lowerCAmelCase : List[str] = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[str] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : Tuple = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : str = list(__a) _lowerCAmelCase : Union[str, Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
36
1
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = "" , snake_case__ = False ): """simple docstring""" lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase : List[str] = is_leaf lowerCAmelCase : Any = prefix def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = 0 for q, w in zip(self.prefix , UpperCamelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , snake_case__ ): """simple docstring""" for word in words: self.insert(UpperCamelCase__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.prefix == word: lowerCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase : Union[str, Any] = RadixNode(prefix=UpperCamelCase__ , is_leaf=UpperCamelCase__ ) else: lowerCAmelCase : Optional[int] = self.nodes[word[0]] lowerCAmelCase : Dict = incoming_node.match( UpperCamelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCamelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase : str = remaining_prefix lowerCAmelCase : str = self.nodes[matching_string[0]] lowerCAmelCase : Union[str, Any] = RadixNode(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase : Any = aux_node if remaining_word == "": lowerCAmelCase : Dict = True else: self.nodes[matching_string[0]].insert(UpperCamelCase__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.nodes.get(word[0] , UpperCamelCase__ ) if not incoming_node: return False else: lowerCAmelCase : Optional[int] = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCamelCase__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.nodes.get(word[0] , UpperCamelCase__ ) if not incoming_node: return False else: lowerCAmelCase : Tuple = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCamelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase : Optional[int] = list(self.nodes.values() )[0] lowerCAmelCase : Any = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase : Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase : str = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase : int = list(incoming_node.nodes.values() )[0] lowerCAmelCase : List[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase : str = merging_node.nodes return True def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = "banana bananas bandana band apple all beast".split() lowerCAmelCase : Tuple = RadixNode() root.insert_many(__SCREAMING_SNAKE_CASE ) assert all(root.find(__SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' lowerCAmelCase : str = RadixNode() lowerCAmelCase : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__SCREAMING_SNAKE_CASE ) print("Words:" , __SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
370
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =KandinskyVaaImgaImgPipeline a : Optional[int] =["image_embeds", "negative_image_embeds", "image"] a : Optional[int] =[ "image_embeds", "negative_image_embeds", "image", ] a : str =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Dict =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.dummy_unet lowerCAmelCase : Optional[int] = self.dummy_movq lowerCAmelCase : List[str] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase : Tuple = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : List[str] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Optional[Any] = "A red cartoon frog, 4k" lowerCAmelCase : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : Tuple = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
133
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowerCAmelCase :Dict = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase :Dict = BASE_URL + '''/user''' # https://github.com/settings/tokens lowerCAmelCase :List[str] = os.environ.get('''USER_TOKEN''', '''''') def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[Any] = { 'Authorization': f'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase , headers=lowerCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=[] ) -> str: _lowercase : Any = size[0] - overlap_pixels * 2 _lowercase : List[str] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase : Optional[Any] = np.pad(_UpperCAmelCase , mode='linear_ramp' , pad_width=_UpperCAmelCase , end_values=0 ) if "l" in remove_borders: _lowercase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase : Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: return max(_UpperCAmelCase , min(_UpperCAmelCase , _UpperCAmelCase ) ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : List[Any] = list(_UpperCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase : Tuple = clamp_rect(_UpperCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Union[str, Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_UpperCAmelCase , (original_slice, 0) ) return result def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Tuple = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase : Dict = tile.crop(_UpperCAmelCase ) return tile def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _lowercase : List[str] = n % d return n - divisor class _lowerCamelCase( SCREAMING_SNAKE_CASE_ ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 3_50, ) -> Any: """simple docstring""" super().__init__( vae=__a, text_encoder=__a, tokenizer=__a, unet=__a, low_res_scheduler=__a, scheduler=__a, max_noise_level=__a, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size), min(image.size[1] - (tile_size + original_image_slice), y * tile_size), min(image.size[0], (x + 1) * tile_size), min(image.size[1], (y + 1) * tile_size), ) _lowercase : Tuple = add_overlap_rect(__a, __a, image.size) _lowercase : Optional[Any] = image.crop(__a) _lowercase : Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase : Optional[int] = translated_slice_x - (original_image_slice / 2) _lowercase : Tuple = max(0, __a) _lowercase : Optional[int] = squeeze_tile(__a, __a, __a, __a) _lowercase : Optional[int] = to_input.size _lowercase : Optional[Any] = to_input.resize((tile_size, tile_size), Image.BICUBIC) _lowercase : Union[str, Any] = super(__a, self).__call__(image=__a, **__a).images[0] _lowercase : List[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC) _lowercase : Optional[int] = unsqueeze_tile(__a, __a) _lowercase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC) _lowercase : Dict = [] if x == 0: remove_borders.append('l') elif crop_rect[2] == image.size[0]: remove_borders.append('r') if y == 0: remove_borders.append('t') elif crop_rect[3] == image.size[1]: remove_borders.append('b') _lowercase : Optional[Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=__a), mode='L', ) final_image.paste( __a, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), __a) @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 75, lowerCamelCase = 9.0, lowerCamelCase = 50, lowerCamelCase = None, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 1, lowerCamelCase = 1_28, lowerCamelCase = 32, lowerCamelCase = 32, ) -> Union[str, Any]: """simple docstring""" _lowercase : str = Image.new('RGB', (image.size[0] * 4, image.size[1] * 4)) _lowercase : List[str] = math.ceil(image.size[0] / tile_size) _lowercase : List[str] = math.ceil(image.size[1] / tile_size) _lowercase : int = tcx * tcy _lowercase : int = 0 for y in range(__a): for x in range(__a): self._process_tile( __a, __a, __a, __a, __a, __a, __a, prompt=__a, num_inference_steps=__a, guidance_scale=__a, noise_level=__a, negative_prompt=__a, num_images_per_prompt=__a, eta=__a, generator=__a, latents=__a, ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image}) return final_image def UpperCamelCase_( ) -> int: # Run a demo _lowercase : Optional[Any] = 'stabilityai/stable-diffusion-x4-upscaler' _lowercase : str = StableDiffusionTiledUpscalePipeline.from_pretrained(_UpperCAmelCase , revision='fp16' , torch_dtype=torch.floataa ) _lowercase : Tuple = pipe.to('cuda' ) _lowercase : Any = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(lowerCamelCase_ ): print(F'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) _lowercase : Tuple = pipe(image=_UpperCAmelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=_UpperCAmelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["DeiTFeatureExtractor"] SCREAMING_SNAKE_CASE : Dict = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
84
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ConsistencyModelPipeline a_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) @property def A ( self : Any ) -> str: UpperCAmelCase_ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase_ : int = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def A ( self : Dict , _A : List[str]=False ) -> int: if class_cond: UpperCAmelCase_ : str = self.dummy_cond_unet else: UpperCAmelCase_ : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def A ( self : int , _A : Dict , _A : List[str]=0 ) -> Optional[int]: if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : int = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Tuple = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : str = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[Any] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[str] = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : List[str] ) -> str: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components(class_cond=_A ) UpperCAmelCase_ : Optional[int] = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Tuple = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : int = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : str ) -> Any: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : str = self.get_dummy_components(class_cond=_A ) UpperCAmelCase_ : Optional[Any] = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[int] = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : str = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple , _A : Tuple=0 , _A : Tuple=False , _A : int="cpu" , _A : Any=torch.floataa , _A : Dict=(1, 3, 64, 64) ) -> List[Any]: UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) UpperCAmelCase_ : List[Any] = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: UpperCAmelCase_ : str = self.get_fixed_latents(seed=_A , device=_A , dtype=_A , shape=_A ) UpperCAmelCase_ : int = latents return inputs def A ( self : List[Any] , _A : Tuple=0 , _A : Optional[Any]="cpu" , _A : Union[str, Any]=torch.floataa , _A : List[Any]=(1, 3, 64, 64) ) -> Any: if type(_A ) == str: UpperCAmelCase_ : str = torch.device(_A ) UpperCAmelCase_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : List[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) return latents def A ( self : int ) -> List[Any]: UpperCAmelCase_ : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[Any] = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : str = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A ( self : List[Any] ) -> int: UpperCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : Dict = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = self.get_inputs() UpperCAmelCase_ : str = 1 UpperCAmelCase_ : str = None UpperCAmelCase_ : str = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[str] = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[Any] = self.get_inputs(get_fixed_latents=_A , device=_A ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): UpperCAmelCase_ : Optional[int] = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : str = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_inputs(get_fixed_latents=_A , device=_A ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): UpperCAmelCase_ : Union[str, Any] = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCamelCase: List[str] = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _UpperCamelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase__ ( ) -> Dict: '''simple docstring''' lowercase : List[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowercase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = dct.pop(_UpperCAmelCase ) lowercase : Tuple = val def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase : List[Any] = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) lowercase : Optional[Any] = qkv_bias def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase : List[str] = 3_64 if 'coco' in model_name else 2_24 lowercase : int = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase : Optional[int] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase : int = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowercase : int = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowercase : Any = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowercase : Any = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase , lowercase : Union[str, Any] = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase : Any = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() lowercase : Any = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowercase , lowercase : Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase , lowercase , lowercase : List[str] = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowercase : int = original_model.state_dict() lowercase : str = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase : Dict = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): lowercase : List[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase : List[Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: lowercase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowercase : List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowercase : Optional[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowercase : Optional[Any] = key.replace('t5' , 'language' ) lowercase : Tuple = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) lowercase , lowercase : str = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase : List[Any] = load_demo_image() lowercase : Optional[Any] = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) lowercase : str = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor lowercase : List[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) lowercase : Union[str, Any] = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) lowercase : Tuple = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowercase : str = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: lowercase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowercase : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowercase : Tuple = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase : str = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase : Any = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_UpperCAmelCase ) else: # cast to same type lowercase : Dict = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowercase : str = '' lowercase : List[str] = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) lowercase : Any = original_model.generate({'image': original_pixel_values} ) lowercase : Union[str, Any] = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) lowercase : str = input_ids.shape[1] lowercase : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) lowercase : Optional[int] = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] = argparse.ArgumentParser() _UpperCamelCase: Dict = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _UpperCamelCase: int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
53
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' if "img_encoder.pos_embed" in name: UpperCAmelCase_ : Optional[int] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: UpperCAmelCase_ : List[str] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: UpperCAmelCase_ : Any = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: UpperCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: UpperCAmelCase_ : List[Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCAmelCase_ : Optional[Any] = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: UpperCAmelCase_ : List[str] = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: UpperCAmelCase_ : Tuple = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: UpperCAmelCase_ : Union[str, Any] = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: UpperCAmelCase_ : Optional[Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: UpperCAmelCase_ : Any = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: UpperCAmelCase_ : int = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: UpperCAmelCase_ : List[Any] = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: UpperCAmelCase_ : str = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: UpperCAmelCase_ : List[Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: UpperCAmelCase_ : List[Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: UpperCAmelCase_ : str = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: UpperCAmelCase_ : Optional[Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: UpperCAmelCase_ : Optional[int] = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: UpperCAmelCase_ : Tuple = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: UpperCAmelCase_ : str = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def lowerCamelCase_ ( _a : Optional[Any] , _a : Dict ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : str = orig_state_dict.pop(_a ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ : Tuple = key.split(""".""" ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = int(key_split[2] ), int(key_split[4] ) UpperCAmelCase_ : int = config.vision_config.hidden_size if "weight" in key: UpperCAmelCase_ : Tuple = val[:dim, :] UpperCAmelCase_ : Dict = val[dim : dim * 2, :] UpperCAmelCase_ : Optional[Any] = val[-dim:, :] else: UpperCAmelCase_ : Tuple = val[:dim] UpperCAmelCase_ : str = val[dim : dim * 2] UpperCAmelCase_ : Optional[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ : List[Any] = key.split(""".""" ) UpperCAmelCase_ : int = int(key_split[3] ) UpperCAmelCase_ : int = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ : Dict = val[:dim, :] UpperCAmelCase_ : Optional[int] = val[ dim : dim * 2, : ] UpperCAmelCase_ : str = val[-dim:, :] else: UpperCAmelCase_ : Optional[Any] = val[:dim] UpperCAmelCase_ : Optional[int] = val[dim : dim * 2] UpperCAmelCase_ : int = val[-dim:] else: UpperCAmelCase_ : List[str] = rename_key(_a ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCAmelCase_ : Tuple = val.squeeze_() else: UpperCAmelCase_ : int = val return orig_state_dict def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _a : Optional[Any] , _a : str , _a : List[str]="groupvit-gcc-yfcc" , _a : Tuple=False ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = GroupViTConfig() UpperCAmelCase_ : Union[str, Any] = GroupViTModel(_a ).eval() UpperCAmelCase_ : str = torch.load(_a , map_location="""cpu""" )["""model"""] UpperCAmelCase_ : List[str] = convert_state_dict(_a , _a ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_a ) == 0) # verify result UpperCAmelCase_ : int = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : Optional[int] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=_a , padding=_a , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase_ : int = model(**_a ) if model_name == "groupvit-gcc-yfcc": UpperCAmelCase_ : Optional[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": UpperCAmelCase_ : str = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , _a , atol=1E-3 ) processor.save_pretrained(_a ) model.save_pretrained(_a ) print("""Successfully saved processor and model to""" , _a ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(_a , organization="""nielsr""" ) model.push_to_hub(_a , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) UpperCamelCase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
345
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup A : Any = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def UpperCamelCase ( __magic_name__ : str = "dhaka" , __magic_name__ : int = 5 ) -> int: """simple docstring""" lowercase__ = min(__magic_name__ , 50 ) # Prevent abuse! lowercase__ = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } lowercase__ = requests.get("""https://www.google.com/search""" , params=__magic_name__ , headers=__magic_name__ ) lowercase__ = BeautifulSoup(html.text , """html.parser""" ) lowercase__ = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) lowercase__ = json.dumps(__magic_name__ ) lowercase__ = json.loads(__magic_name__ ) lowercase__ = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , __magic_name__ , ) if not matched_google_image_data: return 0 lowercase__ = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(__magic_name__ ) , ) lowercase__ = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , __magic_name__ , ) for index, fixed_full_res_image in enumerate(__magic_name__ ): if index >= max_images: return index lowercase__ = bytes(__magic_name__ , """ascii""" ).decode( """unicode-escape""" ) lowercase__ = bytes(__magic_name__ , """ascii""" ).decode( """unicode-escape""" ) lowercase__ = urllib.request.build_opener() lowercase__ = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(__magic_name__ ) lowercase__ = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) urllib.request.urlretrieve( # noqa: S310 __magic_name__ , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: A : List[Any] = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('Please provide a search term.') raise
146
from functools import lru_cache def UpperCamelCase ( __magic_name__ : int ) -> set: """simple docstring""" lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return len(unique_prime_factors(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : list ) -> bool: """simple docstring""" return len(set(__magic_name__ ) ) in (0, 1) def UpperCamelCase ( __magic_name__ : int ) -> list: """simple docstring""" lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase ( __magic_name__ : int = 4 ) -> int: """simple docstring""" lowercase__ = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
146
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase( __a ): '''simple docstring''' def __init__( self: str, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _snake_case : int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self: Optional[int], a_: int = 1, a_: Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_: float = 0.0, a_: int = 50, a_: Optional[bool] = None, a_: Optional[str] = "pil", a_: bool = True, ): '''simple docstring''' if isinstance(self.unet.config.sample_size, a_ ): _snake_case : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _snake_case : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a_, a_ ) and len(a_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(a_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _snake_case : Dict = randn_tensor(a_, generator=a_, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _snake_case : List[Any] = self.unet(a_, a_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case : Optional[int] = self.scheduler.step( a_, a_, a_, eta=a_, use_clipped_model_output=a_, generator=a_ ).prev_sample _snake_case : List[Any] = (image / 2 + 0.5).clamp(0, 1 ) _snake_case : Union[str, Any] = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": _snake_case : str = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
64
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ = 16 A_ = 32 def UpperCAmelCase__ (snake_case__ : Accelerator , snake_case__ : int = 16 ): """simple docstring""" _snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _snake_case : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ : Any ): # max_length=None => use the model max length (it's actually the default) _snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : List[Any] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : str = 16 elif accelerator.mixed_precision != "no": _snake_case : Optional[int] = 8 else: _snake_case : Optional[int] = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _snake_case : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) _snake_case : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": _snake_case : List[Any] = 2 # Initialize accelerator _snake_case : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Tuple = config["""lr"""] _snake_case : str = int(config["""num_epochs"""] ) _snake_case : Union[str, Any] = int(config["""seed"""] ) _snake_case : Union[str, Any] = int(config["""batch_size"""] ) _snake_case : List[str] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(snake_case__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer _snake_case : str = AdamW(params=model.parameters() , lr=snake_case__ ) _snake_case , _snake_case : Optional[int] = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate scheduler _snake_case : str = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case : int = model(**snake_case__ ) _snake_case : str = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : int = model(**snake_case__ ) _snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) _snake_case : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _snake_case : Dict = parser.parse_args() _snake_case : int = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
64
1
'''simple docstring''' import torch from transformers import AutoModel class __A ( torch.nn.Module ): def __init__(self : Tuple , __a : List[Any]="sayef/fsner-bert-base-uncased" ): super(__a , self ).__init__() UpperCAmelCase_ = AutoModel.from_pretrained(__a , return_dict=__a ) UpperCAmelCase_ = torch.nn.CosineSimilarity(3 , 1E-08 ) UpperCAmelCase_ = torch.nn.Softmax(dim=1 ) def _lowercase (self : int , **__a : List[str] ): return self.bert(**__a ).last_hidden_state def _lowercase (self : Union[str, Any] , __a : Tuple ): return token_embeddings.sum(2 , keepdim=__a ) def _lowercase (self : Optional[Any] , __a : Optional[int] , __a : Tuple , __a : int=1 ): return self.softmax(T * self.cos(__a , __a ) ) def _lowercase (self : int , __a : Union[str, Any] , __a : Optional[Any] ): UpperCAmelCase_ = W_supports["sizes"].tolist() UpperCAmelCase_ = W_supports["start_token_id"].item() UpperCAmelCase_ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase_ = self.BERT(**__a ) UpperCAmelCase_ = self.BERT(**__a ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = W_supports["input_ids"] == start_token_id UpperCAmelCase_ = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = support_sizes[i - 1] UpperCAmelCase_ = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase_ = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase_ = torch.vstack((p_starts, p_start) ) UpperCAmelCase_ = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase_ = p_start UpperCAmelCase_ = p_end return p_starts, p_ends
106
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_: int ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case_ , default=snake_case_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case_ , default=snake_case_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--config_name" , type=snake_case_ , default=snake_case_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case_ , default=snake_case_ , help="Where to store the final ONNX file." ) UpperCAmelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int="cpu" ) -> Dict: '''simple docstring''' UpperCAmelCase_ = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Dict ) -> Dict: '''simple docstring''' model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): UpperCAmelCase_ = "My friends are cool but they eat too many carbs." UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) UpperCAmelCase_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case_ , ) logger.info("Model exported to {}".format(snake_case_ ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case_ ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(snake_case_ ) UpperCAmelCase_ = ort_sess.run( snake_case_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case_ ), "max_length": np.array(snake_case_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case_ ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
106
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowercase ( snake_case_ : List[str] ,snake_case_ : int ,snake_case_ : Dict=1e-12 ) ->Any: '''simple docstring''' __A : str = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(snake_case_ ,axis=1 ) ,a_min=snake_case_ ) ).T __A : List[Any] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(snake_case_ ,axis=1 ) ,a_min=snake_case_ ) ).T return jnp.matmul(snake_case_ ,norm_emb_a.T ) class __snake_case ( nn.Module ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) __A : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __A : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __A : str = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __A : Union[str, Any] = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __A : str = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = self.vision_model(__lowerCamelCase )[1] __A : Union[str, Any] = self.visual_projection(__lowerCamelCase ) __A : Dict = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __A : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __A : Any = 0.0 __A : str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __A : Optional[int] = jnp.round(__lowerCamelCase , 3 ) __A : Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __A : Union[str, Any] = is_special_care * 0.0_1 __A : Dict = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __A : str = jnp.round(__lowerCamelCase , 3 ) __A : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = """clip_input""" _lowerCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = jnp.floataa , __lowerCamelCase = True , **__lowerCamelCase , ): '''simple docstring''' if input_shape is None: __A : Any = (1, 224, 224, 3) __A : Optional[int] = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : List[Any] = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __A , __A : Optional[int] = jax.random.split(__lowerCamelCase ) __A : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} __A : Any = self.module.init(__lowerCamelCase , __lowerCamelCase )['''params'''] return random_params def __call__( self , __lowerCamelCase , __lowerCamelCase = None , ): '''simple docstring''' __A : Optional[int] = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
179
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """facebook/bart-large-mnli""" _lowerCamelCase = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _lowerCamelCase = """text_classifier""" _lowerCamelCase = AutoTokenizer _lowerCamelCase = AutoModelForSequenceClassification _lowerCamelCase = ["""text""", ["""text"""]] _lowerCamelCase = ["""text"""] def UpperCamelCase__( self ): '''simple docstring''' super().setup() __A : List[str] = self.model.config __A : int = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __A : List[str] = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = outputs.logits __A : List[str] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
179
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices(snake_case_ , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['c'] ) self.assertEqual(snake_case_ , [2] ) # Out indices set to match out features UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(['a', 'c'] , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features set to match out indices UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_aligned_output_features_output_indices(snake_case_ , [0, 2] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features selected from negative indices UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(snake_case_ , [-3, -1] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [-3, -1] ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case_ ) # Out features must be a list with self.assertRaises(snake_case_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = BackboneMixin() UpperCAmelCase_ : Any = ['a', 'b', 'c'] UpperCAmelCase_ : str = ['a', 'c'] UpperCAmelCase_ : str = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase_ : str = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase_ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A : Optional[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __A : str = { '''camembert-base''': 512, } __A : Any = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Any , A : Any , A : Optional[Any]="<s>" , A : Optional[Any]="</s>" , A : str="</s>" , A : Optional[int]="<s>" , A : List[str]="<unk>" , A : List[Any]="<pad>" , A : Optional[Any]="<mask>" , A : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , A : Optional[Dict[str, Any]] = None , **A : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowercase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowercase_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase_ : List[Any] = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.fairseq_tokens_to_ids ) lowercase_ : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Any , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] lowercase_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def A ( self : Union[str, Any] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : List[str] ) -> Union[str, Any]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A ( self : Any ) -> Optional[Any]: lowercase_ : List[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[int] , A : str ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def A ( self : Union[str, Any] , A : str ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def A ( self : int , A : List[str] ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : Tuple , A : Tuple ) -> Optional[Any]: lowercase_ : Tuple = [] lowercase_ : int = '''''' lowercase_ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowercase_ : Dict = True lowercase_ : Any = [] else: current_sub_tokens.append(A ) lowercase_ : int = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ) -> Union[str, Any]: lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Tuple = None return state def __setstate__( self : Optional[int] , A : Optional[Any] ) -> Union[str, Any]: lowercase_ : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[str] = {} lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : List[Any] , A : str , A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Union[str, Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
33
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A : str = logging.get_logger(__name__) A : Union[str, Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[Any] = '''layoutlmv3''' def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=5_02_65 , __lowerCAmelCase : Tuple=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : List[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=10_24 , __lowerCAmelCase : List[str]=1_28 , __lowerCAmelCase : Optional[int]=1_28 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=1_28 , __lowerCAmelCase : str=64 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=2_24 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = version.parse('''1.12''' ) @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def a_ ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5 @property def a_ ( self : Tuple ) -> int: """simple docstring""" return 12 def a_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
274
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __A : int = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __A : List[str] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __A : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : int )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=None )->Dict: return { "matthews_correlation": float(matthews_corrcoef(__UpperCamelCase , __UpperCamelCase , sample_weight=__UpperCamelCase ) ), }
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE ( _a ): pass class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : Any ): UpperCamelCase :Any = data UpperCamelCase :Node | None = None def __iter__( self : List[Any] ): UpperCamelCase :Union[str, Any] = self UpperCamelCase :Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(__lowerCamelCase ) yield node.data UpperCamelCase :int = node.next_node @property def _A ( self : str ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = Node(1) UpperCAmelCase_ : Any = Node(2) UpperCAmelCase_ : List[str] = Node(3) UpperCAmelCase_ : Union[str, Any] = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ : Optional[int] = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ : List[str] = Node(5) UpperCAmelCase_ : List[str] = Node(6) UpperCAmelCase_ : Optional[Any] = Node(5) UpperCAmelCase_ : Optional[int] = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ : Dict = Node(1) print(root_node.has_loop) # False
38
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
0
"""simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} SCREAMING_SNAKE_CASE : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase ( snake_case_ : dict[int, list[int]] , snake_case_ : int , snake_case_ : list[bool] ) -> list[int]: """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case_ , snake_case_ , snake_case_ ) order.append(snake_case_ ) return order def __UpperCAmelCase ( snake_case_ : dict[int, list[int]] , snake_case_ : int , snake_case_ : list[bool] ) -> list[int]: """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case_ , snake_case_ , snake_case_ ) return component def __UpperCAmelCase ( snake_case_ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) * [False] _lowerCAmelCase = {vert: [] for vert in range(len(snake_case_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case_ ) _lowerCAmelCase = [] for i, was_visited in enumerate(snake_case_ ): if not was_visited: order += topology_sort(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase = [] _lowerCAmelCase = len(snake_case_ ) * [False] for i in range(len(snake_case_ ) ): _lowerCAmelCase = order[len(snake_case_ ) - i - 1] if not visited[vert]: _lowerCAmelCase = find_components(snake_case_ , snake_case_ , snake_case_ ) components_list.append(snake_case_ ) return components_list
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase__ ( _lowerCamelCase : str ) -> Optional[Any]: if isinstance(_lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class a : def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: pass def UpperCamelCase ( self : Optional[Any] ) -> Tuple: pass def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float ) -> Union[str, Any]: lowerCamelCase_ = np.abs((a - b) ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: lowerCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: lowerCamelCase_ , lowerCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : int ) -> List[Any]: lowerCamelCase_ , lowerCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = after_output[0] lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = to_atuple(vision_model.config.image_size ) lowerCamelCase_ = to_atuple(vision_model.config.patch_size ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase_ = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> Tuple: pt_model.to(__SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs lowerCamelCase_ = inputs_dict lowerCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCamelCase_ = pt_model(**__SCREAMING_SNAKE_CASE ).to_tuple() lowerCamelCase_ = fx_model(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_pt=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = fx_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_flax=__SCREAMING_SNAKE_CASE ) pt_model_loaded.to(__SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): lowerCamelCase_ = pt_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2 ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: lowerCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: lowerCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , fx_model.params ) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any ) -> str: lowerCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> Tuple: lowerCamelCase_ = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] ) -> Tuple: lowerCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def UpperCamelCase ( self : List[str] ) -> List[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = config_inputs_dict.pop('vision_config' ) lowerCamelCase_ = config_inputs_dict.pop('text_config' ) lowerCamelCase_ = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase ( self : Any ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ = self.get_pretrained_model_and_inputs() lowerCamelCase_ = model_a(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = model_a(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = after_outputs[0] lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-5 ) @require_flax class a ( __snake_case , unittest.TestCase ): def UpperCamelCase ( self : Any ) -> Dict: lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = 13 lowerCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCamelCase_ = random_attention_mask([batch_size, 4] ) lowerCamelCase_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: lowerCamelCase_ = FlaxViTModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowerCamelCase_ = FlaxViTModelTester(self ) lowerCamelCase_ = FlaxBertModelTester(self ) lowerCamelCase_ = vit_model_tester.prepare_config_and_inputs() lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ = vision_config_and_inputs lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a ( __snake_case , unittest.TestCase ): def UpperCamelCase ( self : int ) -> int: lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = 13 lowerCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCamelCase_ = random_attention_mask([batch_size, 4] ) lowerCamelCase_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def UpperCamelCase ( self : int ) -> List[Any]: lowerCamelCase_ = FlaxCLIPVisionModelTester(self ) lowerCamelCase_ = FlaxBertModelTester(self ) lowerCamelCase_ = clip_model_tester.prepare_config_and_inputs() lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ = vision_config_and_inputs lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a ( unittest.TestCase ): @slow def UpperCamelCase ( self : Optional[int] ) -> Tuple: lowerCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='np' ) lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCamelCase_ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
183
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[str] = MobileBertTokenizer SCREAMING_SNAKE_CASE : int = MobileBertTokenizerFast SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Dict = filter_non_english SCREAMING_SNAKE_CASE : str = """google/mobilebert-uncased""" def UpperCamelCase ( self : List[str] ) -> Dict: super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCamelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def UpperCamelCase ( self : Dict ) -> Any: lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self : Dict ) -> Dict: if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] ) -> str: lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase ( self : Any ) -> Any: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase ( self : Tuple ) -> List[str]: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase ( self : Optional[int] ) -> Any: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self : Tuple ) -> Tuple: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self : List[str] ) -> List[Any]: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self : Tuple ) -> str: lowerCamelCase_ = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase ( self : List[str] ) -> Any: lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase ( self : List[Any] ) -> Any: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase ( self : Union[str, Any] ) -> int: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase ( self : str ) -> Optional[Any]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase ( self : int ) -> List[Any]: lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCamelCase ( self : Dict ) -> List[str]: lowerCamelCase_ = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCamelCase ( self : Tuple ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCamelCase_ = tokenizer_r.encode_plus( __SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(__SCREAMING_SNAKE_CASE , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCamelCase ( self : Any ) -> List[Any]: lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(__SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__SCREAMING_SNAKE_CASE ) ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
183
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : int =1_6 A_ : Optional[int] =3_2 def SCREAMING_SNAKE_CASE_ ( snake_case : Accelerator , snake_case : int = 16 )-> int: _lowerCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case : List[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase = 8 else: _lowerCamelCase = None return tokenizer.pad( snake_case , padding='longest' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) _lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Optional[int] =mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : Optional[Any] )-> Tuple: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , snake_case ) == "1": _lowerCamelCase = 2 # New Code # _lowerCamelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase = config['lr'] _lowerCamelCase = int(config['num_epochs'] ) _lowerCamelCase = int(config['seed'] ) _lowerCamelCase = int(config['batch_size'] ) _lowerCamelCase = evaluate.load('glue' , 'mrpc' ) set_seed(snake_case ) _lowerCamelCase , _lowerCamelCase = get_dataloaders(snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler _lowerCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case ): _lowerCamelCase = model(**snake_case ) _lowerCamelCase = output.loss accelerator.backward(snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase = model(**snake_case ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) _lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , snake_case ) def SCREAMING_SNAKE_CASE_ ( )-> Tuple: _lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case , default=snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=snake_case , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
357
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": A_ : List[Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) A_ : List[str] =parser.parse_args() A_ : Any =download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
80
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _a : Any= random.Random() def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int=1.0 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __snake_case : Optional[int] = global_rng __snake_case : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): def __init__(self : Any , _A : Optional[Any] , _A : Optional[Any]=7 , _A : Tuple=4_00 , _A : Union[str, Any]=20_00 , _A : List[Any]=1 , _A : int=0.0 , _A : Any=1_60_00 , _A : Union[str, Any]=True , _A : Union[str, Any]=True , ) -> Dict: __snake_case : Optional[Any] = parent __snake_case : Dict = batch_size __snake_case : Any = min_seq_length __snake_case : Any = max_seq_length __snake_case : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Optional[int] = feature_size __snake_case : Dict = padding_value __snake_case : List[str] = sampling_rate __snake_case : Any = return_attention_mask __snake_case : List[str] = do_normalize def _lowercase (self : Dict) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase (self : Optional[int] , _A : Any=False , _A : int=False) -> str: def _flatten(_A : str): return list(itertools.chain(*_A)) if equal_length: __snake_case : Optional[int] = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size __snake_case : str = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __snake_case : Optional[Any] = [np.asarray(_A) for x in speech_inputs] return speech_inputs class UpperCamelCase ( lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase : str = WavaVecaFeatureExtractor def _lowercase (self : Any) -> str: __snake_case : Tuple = WavaVecaFeatureExtractionTester(self) def _lowercase (self : int , _A : Tuple) -> Optional[int]: self.assertTrue(np.all(np.mean(_A , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(_A , axis=0) - 1) < 1E-3)) def _lowercase (self : Union[str, Any]) -> List[str]: __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __snake_case : Optional[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : Dict = [np.asarray(_A) for speech_input in speech_inputs] # Test not batched input __snake_case : List[Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values __snake_case : Dict = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test batched __snake_case : Optional[Any] = feat_extract(_A , return_tensors='np').input_values __snake_case : str = feat_extract(_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test 2-D numpy arrays are batched. __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] __snake_case : str = np.asarray(_A) __snake_case : Union[str, Any] = feat_extract(_A , return_tensors='np').input_values __snake_case : Tuple = feat_extract(_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) def _lowercase (self : Optional[int]) -> List[Any]: __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : List[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : int = ["longest", "max_length", "do_not_pad"] __snake_case : List[Any] = [None, 16_00, None] for max_length, padding in zip(_A , _A): __snake_case : Optional[Any] = feat_extract(_A , padding=_A , max_length=_A , return_tensors='np') __snake_case : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowercase (self : Tuple) -> Union[str, Any]: __snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : List[Any] = range(8_00 , 14_00 , 2_00) __snake_case : List[str] = [floats_list((1, x))[0] for x in lengths] __snake_case : Optional[int] = ["longest", "max_length", "do_not_pad"] __snake_case : List[Any] = [None, 16_00, None] for max_length, padding in zip(_A , _A): __snake_case : int = feat_extract(_A , max_length=_A , padding=_A) __snake_case : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowercase (self : Any) -> Dict: __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Optional[int] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : int = feat_extract( _A , truncation=_A , max_length=10_00 , padding='max_length' , return_tensors='np') __snake_case : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def _lowercase (self : Dict) -> List[str]: __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : str = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : List[Any] = feat_extract( _A , truncation=_A , max_length=10_00 , padding='longest' , return_tensors='np') __snake_case : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) __snake_case : List[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : Tuple = feat_extract( _A , truncation=_A , max_length=20_00 , padding='longest' , return_tensors='np') __snake_case : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) @require_torch def _lowercase (self : Optional[Any]) -> int: import torch __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Any = np.random.rand(1_00).astype(np.floataa) __snake_case : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : str = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) __snake_case : int = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def _lowercase (self : Dict) -> Optional[Any]: for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __snake_case : List[str] = WavaVecaConfig.from_pretrained(_A) __snake_case : Dict = WavaVecaFeatureExtractor.from_pretrained(_A) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer')
172
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple =logging.get_logger(__name__) _A : Tuple ={ '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowercase ( _lowercase ): a = """sew-d""" def __init__( self: str , UpperCamelCase__: List[str]=32 , UpperCamelCase__: Union[str, Any]=768 , UpperCamelCase__: List[Any]=12 , UpperCamelCase__: Union[str, Any]=12 , UpperCamelCase__: List[Any]=3_072 , UpperCamelCase__: List[str]=2 , UpperCamelCase__: Optional[int]=512 , UpperCamelCase__: Optional[Any]=256 , UpperCamelCase__: Any=True , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: Union[str, Any]=("p2c", "c2p") , UpperCamelCase__: Dict="layer_norm" , UpperCamelCase__: List[str]="gelu_python" , UpperCamelCase__: Any=0.1 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: List[Any]=0.0 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: Tuple=0.02 , UpperCamelCase__: str=1e-7 , UpperCamelCase__: str=1e-5 , UpperCamelCase__: List[str]="group" , UpperCamelCase__: Optional[Any]="gelu" , UpperCamelCase__: Any=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCamelCase__: Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase__: Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase__: str=False , UpperCamelCase__: List[str]=128 , UpperCamelCase__: Union[str, Any]=16 , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Optional[int]=0.05 , UpperCamelCase__: str=10 , UpperCamelCase__: Union[str, Any]=2 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: Tuple=10 , UpperCamelCase__: List[Any]=0 , UpperCamelCase__: Tuple="mean" , UpperCamelCase__: Any=False , UpperCamelCase__: str=False , UpperCamelCase__: Any=256 , UpperCamelCase__: Any=0 , UpperCamelCase__: str=1 , UpperCamelCase__: List[Any]=2 , **UpperCamelCase__: str , ): super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : int = feat_extract_norm lowerCamelCase__ : int = feat_extract_activation lowerCamelCase__ : str = list(UpperCamelCase__ ) lowerCamelCase__ : int = list(UpperCamelCase__ ) lowerCamelCase__ : Dict = list(UpperCamelCase__ ) lowerCamelCase__ : int = conv_bias lowerCamelCase__ : Optional[Any] = num_conv_pos_embeddings lowerCamelCase__ : Optional[Any] = num_conv_pos_embedding_groups lowerCamelCase__ : int = len(self.conv_dim ) lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : int = squeeze_factor lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Optional[Any] = position_buckets lowerCamelCase__ : Optional[Any] = share_att_key lowerCamelCase__ : str = relative_attention lowerCamelCase__ : Dict = norm_rel_ebd lowerCamelCase__ : Dict = list(UpperCamelCase__ ) lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = hidden_dropout lowerCamelCase__ : int = attention_dropout lowerCamelCase__ : List[Any] = activation_dropout lowerCamelCase__ : List[str] = feat_proj_dropout lowerCamelCase__ : Union[str, Any] = final_dropout lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : int = feature_layer_norm_eps lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : List[Any] = apply_spec_augment lowerCamelCase__ : str = mask_time_prob lowerCamelCase__ : List[str] = mask_time_length lowerCamelCase__ : Any = mask_time_min_masks lowerCamelCase__ : List[Any] = mask_feature_prob lowerCamelCase__ : str = mask_feature_length lowerCamelCase__ : int = mask_feature_min_masks # ctc loss lowerCamelCase__ : List[Any] = ctc_loss_reduction lowerCamelCase__ : Dict = ctc_zero_infinity # sequence classification lowerCamelCase__ : List[str] = use_weighted_layer_sum lowerCamelCase__ : Union[str, Any] = classifier_proj_size @property def lowerCamelCase_ ( self: Optional[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
129
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase ( _lowercase ): pass class _lowercase : def __init__( self: Optional[int] , UpperCamelCase__: Any ): lowerCamelCase__ : Any = data lowerCamelCase__ : Node | None = None def __iter__( self: List[Any] ): lowerCamelCase__ : Optional[Any] = self lowerCamelCase__ : int = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data lowerCamelCase__ : List[str] = node.next_node @property def lowerCamelCase_ ( self: Optional[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _A : Any =Node(1) _A : Optional[int] =Node(2) _A : Dict =Node(3) _A : Optional[Any] =Node(4) print(root_node.has_loop) # False _A : Any =root_node.next_node print(root_node.has_loop) # True _A : Dict =Node(5) _A : Union[str, Any] =Node(6) _A : str =Node(5) _A : int =Node(6) print(root_node.has_loop) # False _A : Optional[Any] =Node(1) print(root_node.has_loop) # False
129
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : int="" ): __lowercase : str = tempfile.mkdtemp() return os.path.join(lowerCAmelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase : Dict = AgentAudio(__a ) __lowercase : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__a ) ) # Ensure that the file contains the same value as the original tensor __lowercase , __lowercase : List[str] = sf.read(__a ) self.assertTrue(torch.allclose(__a , torch.tensor(__a ) , atol=1E-4 ) ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase : List[str] = get_new_path(suffix=""".wav""" ) sf.write(__a , __a , 16000 ) __lowercase : Optional[int] = AgentAudio(__a ) self.assertTrue(torch.allclose(__a , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , __a ) @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = torch.randint(0 , 256 , (64, 64, 3) ) __lowercase : str = AgentImage(__a ) __lowercase : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __lowercase : Union[str, Any] = Image.open(__a ) __lowercase : List[str] = AgentImage(__a ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : int = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __lowercase : List[Any] = Image.open(__a ) __lowercase : Tuple = AgentImage(__a ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a ) ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = """Hey!""" __lowercase : Dict = AgentText(__a ) self.assertEqual(__a , agent_type.to_string() ) self.assertEqual(__a , agent_type.to_raw() ) self.assertEqual(__a , __a )
233
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : Any = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : List[str] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
233
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : '''simple docstring''' def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: List[Any]=7 , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Optional[int]=99 , _SCREAMING_SNAKE_CASE: str=32 , _SCREAMING_SNAKE_CASE: Optional[int]=5 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: List[Any]=37 , _SCREAMING_SNAKE_CASE: Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=0.1 , _SCREAMING_SNAKE_CASE: Any=512 , _SCREAMING_SNAKE_CASE: Dict=16 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=3 , _SCREAMING_SNAKE_CASE: str=4 , _SCREAMING_SNAKE_CASE: Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Any = use_input_mask __lowerCAmelCase : Union[str, Any] = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : str = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCAmelCase : Dict = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Dict = num_labels __lowerCAmelCase : List[str] = num_choices __lowerCAmelCase : List[str] = scope def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : Optional[Any] = None if self.use_input_mask: __lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowerCAmelCase : List[str] = None __lowerCAmelCase : int = None __lowerCAmelCase : str = None if self.use_labels: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" __lowerCAmelCase : List[str] = NystromformerModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = NystromformerForMaskedLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = NystromformerForQuestionAnswering(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Union[str, Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : List[str] = NystromformerForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.num_labels __lowerCAmelCase : Tuple = NystromformerForTokenClassification(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_choices __lowerCAmelCase : int = NystromformerForMultipleChoice(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Any = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Dict = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Optional[int] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: int) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = NystromformerModelTester(self) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Any = NystromformerModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Any = NystromformerModel.from_pretrained("uw-madison/nystromformer-512") __lowerCAmelCase : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : str = torch.Size((1, 6, 768)) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : Any = "the [MASK] of Belgium is Brussels" __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") __lowerCAmelCase : List[str] = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512") __lowerCAmelCase : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt") with torch.no_grad(): __lowerCAmelCase : str = model(encoding.input_ids).logits __lowerCAmelCase : Any = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE) , "capital")
58
"""simple docstring""" __snake_case : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __snake_case : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __snake_case : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __snake_case : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __snake_case : Any = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __snake_case : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __snake_case : str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : int = '''ibert''' def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=3_0_5_2_2 , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Optional[int]=1E-12 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Any="none" , **lowerCAmelCase__ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = vocab_size __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = quant_mode __SCREAMING_SNAKE_CASE : Optional[Any] = force_dequant class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
112
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase__ : Tuple = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase__ : List[Any] = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : Any = bs[:] __SCREAMING_SNAKE_CASE : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Dict = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : str = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Any = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]="replace" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : str = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Union[str, Any] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : int = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : str = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = bigram __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Dict = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Tuple = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = word return word def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : List[str] ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[int] ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : int = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Tuple = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : List[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : int = """ """ + text return (text, kwargs) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: __SCREAMING_SNAKE_CASE : Tuple = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __SCREAMING_SNAKE_CASE : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __SCREAMING_SNAKE_CASE : str = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE : Dict = len(lowerCAmelCase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __SCREAMING_SNAKE_CASE : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __SCREAMING_SNAKE_CASE : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
112
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, __snake_case=None ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCAmelCase: lowercase__ = OPTConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , __a=16 , __a=16 , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = embed_dim _UpperCamelCase = word_embed_proj_dim _UpperCamelCase = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) _UpperCamelCase = prepare_opt_inputs_dict(__a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFOPTModel(config=__a) _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = model(__a , attention_mask=__a , past_key_values=__a)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3) @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = TFOPTModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a , __a): if hasattr(__a , '''weight'''): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , '''weight'''): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCamelCase = model_class(config=__a) _UpperCamelCase = _get_word_embedding_weight(__a , model.get_input_embeddings()) _UpperCamelCase = _get_word_embedding_weight(__a , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(__a) _UpperCamelCase = _get_word_embedding_weight(__a , model.get_input_embeddings()) _UpperCamelCase = _get_word_embedding_weight(__a , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. _UpperCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a) # check that weights remain the same after resizing _UpperCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: _UpperCamelCase = False self.assertTrue(__a) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a) _UpperCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: _UpperCamelCase = False self.assertTrue(__a) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" return tf.constant(__snake_case, dtype=tf.intaa ) @require_tf class _UpperCAmelCase( unittest.TestCase ): lowercase__ = 99 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = tf.ones((4, 1) , dtype=tf.intaa) * 2 _UpperCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''') _UpperCamelCase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _UpperCamelCase = tf.not_equal(__a , model.config.pad_token_id) with tf.GradientTape(): _UpperCamelCase = model(input_ids=__a , attention_mask=__a).last_hidden_state _UpperCamelCase = (1, 11, 5_12) self.assertEqual(output.shape , __a) _UpperCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-3)) _UpperCamelCase = tf.function(__a , jit_compile=__a) _UpperCamelCase = xla_generate(__a , __a)[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-2)) @require_tf @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = '''facebook/opt-350m''' def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model) _UpperCamelCase = GPTaTokenizer.from_pretrained(self.path_model) _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCamelCase = tokenizer(__a , return_tensors='''tf''' , padding=__a , add_special_tokens=__a) _UpperCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) _UpperCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ]) self.assertTrue(np.allclose(__a , __a , atol=1e-4)) _UpperCamelCase = tf.function(__a , jit_compile=__a) _UpperCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(__a , __a , atol=1e-4)) @require_tf @slow class _UpperCAmelCase( unittest.TestCase ): @property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''facebook/opt-125m''' _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCamelCase = [] _UpperCamelCase = GPTaTokenizer.from_pretrained(__a) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(__a) for prompt in self.prompts: _UpperCamelCase = tokenizer(__a , return_tensors='''tf''').input_ids _UpperCamelCase = model.generate(__a , max_length=10) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) predicted_outputs += generated_string self.assertListEqual(__a , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = '''facebook/opt-350m''' _UpperCamelCase = GPTaTokenizer.from_pretrained(__a) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(__a) _UpperCamelCase = '''left''' # use different length sentences to test batching _UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''tf''' , padding=__a) _UpperCamelCase = inputs['''input_ids'''] _UpperCamelCase = model.generate(input_ids=__a , attention_mask=inputs['''attention_mask''']) _UpperCamelCase = tokenizer(sentences[0] , return_tensors='''tf''').input_ids _UpperCamelCase = model.generate(input_ids=__a) _UpperCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa)) _UpperCamelCase = tokenizer(sentences[1] , return_tensors='''tf''').input_ids _UpperCamelCase = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a) _UpperCamelCase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__a , __a) self.assertListEqual(__a , [non_padded_sentence, padded_sentence]) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = '''facebook/opt-350m''' _UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCamelCase = [] _UpperCamelCase = GPTaTokenizer.from_pretrained(__a) _UpperCamelCase = TFOPTForCausalLM.from_pretrained(__a) for prompt in self.prompts: _UpperCamelCase = tokenizer(__a , return_tensors='''tf''').input_ids _UpperCamelCase = model.generate(__a , max_length=10) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) predicted_outputs += generated_string self.assertListEqual(__a , __a)
100
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> Any: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
100
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowercase: Optional[Any] = logging.get_logger(__name__) class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" if not conversation_id: a = uuid.uuida() if past_user_inputs is None: a = [] if generated_responses is None: a = [] a = conversation_id a = past_user_inputs a = generated_responses a = text def __eq__(self , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) a = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: a = text def UpperCamelCase_ (self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) a = None def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" self.generated_responses.append(lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ): """simple docstring""" a = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): a = "user" if is_user else "bot" output += F'''{name} >> {text} \n''' return output @add_end_docstrings( lowerCAmelCase, R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ", ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) if self.tokenizer.pad_token_id is None: a = self.tokenizer.eos_token def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = {} a = {} a = {} if min_length_for_response is not None: a = min_length_for_response if minimum_tokens is not None: a = minimum_tokens if "max_length" in generate_kwargs: a = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__(self , lowerCamelCase_ , lowerCamelCase_=0 , **lowerCamelCase_ ): """simple docstring""" a = super().__call__(lowerCamelCase_ , num_workers=lowerCamelCase_ , **lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) == 1: return outputs[0] return outputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=32 ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): a = self.tokenizer._build_conversation_input_ids(lowerCamelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version a = self._legacy_parse_and_tokenize(lowerCamelCase_ ) if self.framework == "pt": a = torch.LongTensor([input_ids] ) elif self.framework == "tf": a = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=10 , **lowerCamelCase_ ): """simple docstring""" a = generate_kwargs.get("max_length" , self.model.config.max_length ) a = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) a = max_length - minimum_tokens a = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: a = model_inputs["attention_mask"][:, -trim:] a = model_inputs.pop("conversation" ) a = max_length a = self.model.generate(**lowerCamelCase_ , **lowerCamelCase_ ) if self.model.config.is_encoder_decoder: a = 1 else: a = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=True ): """simple docstring""" a = model_outputs["output_ids"] a = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , ) a = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowerCamelCase_ ) return conversation def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.tokenizer.eos_token_id a = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > self.tokenizer.model_max_length: a = input_ids[-self.tokenizer.model_max_length :] return input_ids
227
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = (DDPMScheduler,) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" a = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**lowerCamelCase_ ) return config def UpperCamelCase_ (self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , ) def UpperCamelCase_ (self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) a = len(lowerCamelCase_ ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual a = model(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a = pred_prev_sample a = torch.sum(torch.abs(lowerCamelCase_ ) ) a = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(prediction_type="v_prediction" ) a = scheduler_class(**lowerCamelCase_ ) a = len(lowerCamelCase_ ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual a = model(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a = pred_prev_sample a = torch.sum(torch.abs(lowerCamelCase_ ) ) a = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) a = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) a = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: a = -1 else: a = timesteps[i + 1] a = scheduler.previous_timestep(lowerCamelCase_ ) a = prev_t.item() self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) a = [100, 87, 50, 51, 0] with self.assertRaises(lowerCamelCase_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) a = [100, 87, 50, 1, 0] a = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) a = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
227
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : Optional[Any] ={ '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __a ( unittest.TestCase ): def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : List[Any]=56 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : List[str]=99 , SCREAMING_SNAKE_CASE : str=32 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Dict=7 , SCREAMING_SNAKE_CASE : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Any=5_12 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Any=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=4 , SCREAMING_SNAKE_CASE : int="block_sparse" , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Dict=3 , ): '''simple docstring''' UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Union[str, Any] = batch_size UpperCamelCase__ : Union[str, Any] = seq_length UpperCamelCase__ : Dict = is_training UpperCamelCase__ : Optional[int] = use_attention_mask UpperCamelCase__ : List[str] = use_token_type_ids UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = intermediate_size UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Tuple = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : str = max_position_embeddings UpperCamelCase__ : Tuple = type_vocab_size UpperCamelCase__ : Dict = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Any = num_choices UpperCamelCase__ : Dict = rescale_embeddings UpperCamelCase__ : Union[str, Any] = attention_type UpperCamelCase__ : int = use_bias UpperCamelCase__ : List[Any] = block_size UpperCamelCase__ : Union[str, Any] = num_random_blocks def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Any = None if self.use_attention_mask: UpperCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Any = None if self.use_token_type_ids: UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = config_and_inputs UpperCamelCase__ : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[int] = False def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __lowercase ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __lowercase ( self : List[Any] ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __lowercase ( self : Union[str, Any] ): '''simple docstring''' super().test_hidden_states_output() @slow def __lowercase ( self : str ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=None , **SCREAMING_SNAKE_CASE : List[Any] ): return model(input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): UpperCamelCase__ : Tuple = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase__ : List[Any] = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=1e-5 , SCREAMING_SNAKE_CASE : Tuple="outputs" , SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
196
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) A__ : List[Any] =pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" inspect_dataset(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = path + """.py""" assert script_name in os.listdir(lowerCAmelCase ) assert "__pycache__" not in os.listdir(lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" inspect_metric(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = path + """.py""" assert script_name in os.listdir(lowerCAmelCase ) assert "__pycache__" not in os.listdir(lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_dataset_config_info(lowerCAmelCase , config_name=lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with pytest.raises(lowerCAmelCase ): get_dataset_config_info(lowerCAmelCase , config_name=lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_dataset_config_names(lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_dataset_infos(lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _lowerCAmelCase = expected_configs[0] assert expected_config in infos _lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_dataset_infos(lowerCAmelCase ) assert expected_config in infos _lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with pytest.raises(lowerCAmelCase ): get_dataset_split_names(lowerCAmelCase , config_name=lowerCAmelCase )
70
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Tuple = PandasConfig def lowercase__ ( self : Optional[Any] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __snake_case : Dict ) -> int: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : List[Any] , __snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(__snake_case ) ) yield i, self._cast_table(__snake_case )
70
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case (UpperCAmelCase__ ) -> str: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): pass def _a ( self ): pass def _a ( self ): pass def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = np.abs((a - b) ).max() self.assertLessEqual(_lowerCamelCase , _lowerCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: Dict = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Dict = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[int] = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: List[str] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCamelCase_: List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Tuple = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCamelCase_: List[str] = after_output[0] UpperCamelCase_: int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-3 ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[Any] = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: Any = model( input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , output_attentions=_lowerCamelCase ) UpperCamelCase_: Tuple = output.vision_model_output.attentions self.assertEqual(len(_lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_: Optional[Any] = to_atuple(vision_model.config.image_size ) UpperCamelCase_: Union[str, Any] = to_atuple(vision_model.config.patch_size ) UpperCamelCase_: List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase_: str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase_: Tuple = output.text_model_output.attentions self.assertEqual(len(_lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): pt_model.to(_lowerCamelCase ) pt_model.eval() # prepare inputs UpperCamelCase_: List[str] = inputs_dict UpperCamelCase_: Optional[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase_: List[str] = pt_model(**_lowerCamelCase ).to_tuple() UpperCamelCase_: Dict = fx_model(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: int = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_pt=_lowerCamelCase ) UpperCamelCase_: Dict = fx_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: int = VisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_flax=_lowerCamelCase ) pt_model_loaded.to(_lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase_: Dict = pt_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output_loaded.numpy() , 4e-2 ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Any = VisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: int = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCamelCase ) UpperCamelCase_: Dict = fx_state self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: int = VisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = load_flax_weights_in_pytorch_model(_lowerCamelCase , fx_model.params ) self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCamelCase ) @is_pt_flax_cross_test def _a ( self ): UpperCamelCase_: List[str] = self.prepare_config_and_inputs() UpperCamelCase_: Tuple = config_inputs_dict.pop('vision_config' ) UpperCamelCase_: List[str] = config_inputs_dict.pop('text_config' ) UpperCamelCase_: Dict = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.check_equivalence_flax_to_pt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: int = self.get_pretrained_model_and_inputs() UpperCamelCase_: Union[str, Any] = model_a(**_lowerCamelCase ) UpperCamelCase_: Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCamelCase ) UpperCamelCase_: Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Optional[int] = model_a(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = after_outputs[0] UpperCamelCase_: Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-5 ) @require_flax class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCamelCase_: List[Any] = 1_3 UpperCamelCase_: Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_: List[str] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_: Optional[int] = random_attention_mask([batch_size, 4] ) UpperCamelCase_: int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = FlaxViTModel(_lowerCamelCase ) UpperCamelCase_: Dict = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _a ( self ): UpperCamelCase_: Union[str, Any] = FlaxViTModelTester(self ) UpperCamelCase_: List[Any] = FlaxBertModelTester(self ) UpperCamelCase_: List[Any] = vit_model_tester.prepare_config_and_inputs() UpperCamelCase_: List[str] = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: int = vision_config_and_inputs UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCamelCase_: int = 1_3 UpperCamelCase_: List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_: str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_: Dict = random_attention_mask([batch_size, 4] ) UpperCamelCase_: Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FlaxCLIPVisionModel(_lowerCamelCase ) UpperCamelCase_: Optional[int] = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _a ( self ): UpperCamelCase_: Optional[int] = FlaxCLIPVisionModelTester(self ) UpperCamelCase_: List[Any] = FlaxBertModelTester(self ) UpperCamelCase_: Optional[int] = clip_model_tester.prepare_config_and_inputs() UpperCamelCase_: List[str] = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = vision_config_and_inputs UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: str = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) UpperCamelCase_: int = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCamelCase_: List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: List[str] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ) UpperCamelCase_: str = model(**_lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase_: List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCamelCase , atol=1e-3 ) )
292
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =RoFormerTokenizer a : int =RoFormerTokenizerFast a : int =True a : Optional[int] =True def _a ( self ): super().setUp() def _a ( self , **_lowerCamelCase ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = '永和服装饰品有限公司,今天天气非常好' UpperCamelCase_: Any = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_ ,UpperCamelCase_: int = self.get_chinese_input_output_texts() UpperCamelCase_: Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: Dict = tokens + [tokenizer.unk_token] UpperCamelCase_: Dict = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer() UpperCamelCase_ ,UpperCamelCase_: Tuple = self.get_chinese_input_output_texts() UpperCamelCase_: Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): pass def _a ( self ): pass def _a ( self ): pass
292
1
import heapq as hq import math from collections.abc import Iterator class __snake_case : def __init__( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Dict = str(id_ ) snake_case__ : List[str] = None snake_case__ : Dict = None snake_case__ : Any = [] snake_case__ : Any = {} # {vertex:distance} def __lt__( self , __UpperCamelCase ) -> Any: '''simple docstring''' return self.key < other.key def __repr__( self ) -> str: '''simple docstring''' return self.id def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' self.neighbors.append(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = weight def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> str: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A__ ) graph[b - 1].add_edge(graph[a - 1] , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> list: snake_case__ : List[Any] = [] for u in graph: snake_case__ : List[Any] = math.inf snake_case__ : int = None snake_case__ : Union[str, Any] = 0 snake_case__ : Optional[Any] = graph[:] while q: snake_case__ : List[Any] = min(A__ ) q.remove(A__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : str = u snake_case__ : Any = u.edges[v.id] for i in range(1 , len(A__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( A__ , A__ ) -> Iterator[tuple]: for u in graph: snake_case__ : int = math.inf snake_case__ : List[str] = None snake_case__ : Optional[int] = 0 snake_case__ : Optional[Any] = list(A__ ) hq.heapify(A__ ) while h: snake_case__ : int = hq.heappop(A__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : List[str] = u snake_case__ : Any = u.edges[v.id] hq.heapify(A__ ) for i in range(1 , len(A__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
143
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ : List[Any] = { '''google/rembert''': 2_56, } lowerCAmelCase__ : List[str] = '''▁''' class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = RemBertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="[CLS]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<unk>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<pad>" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , **__UpperCamelCase , ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = do_lower_case snake_case__ : Any = remove_space snake_case__ : List[Any] = keep_accents snake_case__ : Dict = vocab_file snake_case__ : int = False if not self.vocab_file else True def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Dict = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(__UpperCamelCase ) ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
143
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __UpperCAmelCase =["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a__ ( UpperCAmelCase__ ): def __init__( self : Dict , a : List[str] , a : Optional[int] , a : List[Any]=None , a : Tuple=1 ): """simple docstring""" __lowerCamelCase = tokenizer __lowerCamelCase = dataset __lowerCamelCase = len(a ) if n_tasks is None else n_tasks __lowerCamelCase = n_copies def __iter__( self : int ): """simple docstring""" __lowerCamelCase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __lowerCamelCase = self.tokenizer(a , padding=a , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a__ ( UpperCAmelCase__ ): def __init__( self : Dict , a : str , a : int , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = start_length __lowerCamelCase = eof_strings __lowerCamelCase = tokenizer def __call__( self : Optional[int] , a : Optional[int] , a : Any , **a : str ): """simple docstring""" __lowerCamelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowerCamelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: __lowerCamelCase = re.split('''(%s)''' % '''|'''.join(UpperCamelCase__ ) , UpperCamelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=20 , **UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = defaultdict(UpperCamelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase__ ) ): with torch.no_grad(): __lowerCamelCase = batch['''ids'''].shape[-1] __lowerCamelCase = accelerator.unwrap_model(UpperCamelCase__ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=UpperCamelCase__ , **UpperCamelCase__ ) # each task is generated batch_size times __lowerCamelCase = batch['''task_id'''].repeat(UpperCamelCase__ ) __lowerCamelCase = accelerator.pad_across_processes( UpperCamelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) __lowerCamelCase , __lowerCamelCase = accelerator.gather((generated_tokens, generated_tasks) ) __lowerCamelCase = generated_tokens.cpu().numpy() __lowerCamelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase__ , UpperCamelCase__ ): gen_token_dict[task].append(UpperCamelCase__ ) __lowerCamelCase = [[] for _ in range(UpperCamelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowerCamelCase = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) code_gens[task].append(remove_last_block(UpperCamelCase__ ) ) return code_gens def __lowerCAmelCase ( ) -> Optional[Any]: # Setup configuration __lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) __lowerCamelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowerCamelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowerCamelCase = '''false''' if args.num_workers is None: __lowerCamelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowerCamelCase = Accelerator() set_seed(args.seed , device_specific=UpperCamelCase__ ) # Load model and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCamelCase = tokenizer.eos_token __lowerCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowerCamelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase__ , UpperCamelCase__ )] ), } # Load evaluation dataset and metric __lowerCamelCase = load_dataset('''openai_humaneval''' ) __lowerCamelCase = load_metric('''code_eval''' ) __lowerCamelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __lowerCamelCase = args.n_samples // args.batch_size __lowerCamelCase = TokenizedDataset(UpperCamelCase__ , human_eval['''test'''] , n_copies=UpperCamelCase__ , n_tasks=UpperCamelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowerCamelCase = DataLoader(UpperCamelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowerCamelCase = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __lowerCamelCase , __lowerCamelCase = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = complete_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , n_tasks=UpperCamelCase__ , batch_size=args.batch_size , **UpperCamelCase__ , ) if accelerator.is_main_process: __lowerCamelCase = [] for task in tqdm(range(UpperCamelCase__ ) ): __lowerCamelCase = human_eval['''test'''][task]['''test'''] __lowerCamelCase = f"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __lowerCamelCase , __lowerCamelCase = code_eval_metric.compute( references=UpperCamelCase__ , predictions=UpperCamelCase__ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
237
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class a__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = 5 # Realm tok __lowerCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowerCamelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(a , exist_ok=a ) __lowerCamelCase = os.path.join(a , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowerCamelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(a , exist_ok=a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=a , ) return block_records def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.get_config() __lowerCamelCase = self.get_dummy_retriever() __lowerCamelCase = retriever.tokenizer __lowerCamelCase = np.array([0, 3] , dtype='''long''' ) __lowerCamelCase = tokenizer(['''Test question'''] ).input_ids __lowerCamelCase = tokenizer( ['''the fourth'''] , add_special_tokens=a , return_token_type_ids=a , return_attention_mask=a , ).input_ids __lowerCamelCase = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = retriever( a , a , answer_ids=a , max_length=a , return_tensors='''np''' ) self.assertEqual(len(a ) , 2 ) self.assertEqual(len(a ) , 2 ) self.assertEqual(len(a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.get_config() __lowerCamelCase = self.get_dummy_retriever() __lowerCamelCase = retriever.tokenizer __lowerCamelCase = np.array([0, 3, 5] , dtype='''long''' ) __lowerCamelCase = tokenizer(['''Test question'''] ).input_ids __lowerCamelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=a , return_token_type_ids=a , return_attention_mask=a , ).input_ids __lowerCamelCase = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = retriever( a , a , answer_ids=a , max_length=a , return_tensors='''np''' ) self.assertEqual([False, True, True] , a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , a ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path __lowerCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: __lowerCamelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowerCamelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
237
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
17
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip_vision_model" def __init__( self , A_=1408 , A_=6144 , A_=39 , A_=16 , A_=224 , A_=14 , A_="gelu" , A_=1E-6 , A_=0.0 , A_=1E-10 , A_=True , **A_ , ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =qkv_bias @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "instructblip_qformer" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=2 , A_=1408 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =cross_attention_frequency __UpperCamelCase =encoder_hidden_size @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip" UpperCAmelCase__ : Optional[Any] = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> List[str]: super().__init__(**A_ ) if vision_config is None: __UpperCamelCase ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __UpperCamelCase ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __UpperCamelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __UpperCamelCase =InstructBlipVisionConfig(**A_ ) __UpperCamelCase =InstructBlipQFormerConfig(**A_ ) __UpperCamelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCamelCase =CONFIG_MAPPING[text_model_type](**A_ ) __UpperCamelCase =self.text_config.tie_word_embeddings __UpperCamelCase =self.text_config.is_encoder_decoder __UpperCamelCase =num_query_tokens __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase =1.0 __UpperCamelCase =0.02 @classmethod def _a ( cls , A_ , A_ , A_ , **A_ , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.qformer_config.to_dict() __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
62
0
from torch import nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : Dict , a__ : Any ): """simple docstring""" super().__init__() __snake_case = class_size __snake_case = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __snake_case = nn.Linear(a__ , a__ ) def a (self : Any , a__ : Dict ): """simple docstring""" __snake_case = self.mlp(a__ ) return logits
353
import re import string import numpy as np import datasets snake_case_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' snake_case_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' snake_case_ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def a (self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def a (self : List[Any] , a__ : int , a__ : Optional[int] , a__ : Optional[Any]=None , a__ : Any=False , a__ : Dict=False , a__ : Tuple=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __snake_case = np.array([re.sub(a__ , '''''' , a__ ) for x in predictions] ) __snake_case = np.array([re.sub(a__ , '''''' , a__ ) for x in references] ) else: __snake_case = np.asarray(a__ ) __snake_case = np.asarray(a__ ) if ignore_case: __snake_case = np.char.lower(a__ ) __snake_case = np.char.lower(a__ ) if ignore_punctuation: __snake_case = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = np.char.translate(a__ , table=a__ ) if ignore_numbers: __snake_case = string.digits.maketrans('''''' , '''''' , string.digits ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = predictions == references return {"exact_match": np.mean(a__ ) * 100}
238
0
"""simple docstring""" from __future__ import annotations import math def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : bool , _snake_case : list[int] , _snake_case : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) ) def _snake_case ( ): lowerCAmelCase : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase : Union[str, Any] = math.log(len(_snake_case ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , _snake_case , _snake_case , _snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : List[str] = jax.device_count() lowerCAmelCase : Optional[int] = num_samples * [prompt] lowerCAmelCase : Any = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = replicate(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = shard(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[Any] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : str = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : List[str] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = '''stabilityai/stable-diffusion-2''' lowerCAmelCase, lowerCAmelCase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowerCAmelCase, lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : List[Any] = scheduler_params lowerCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : Any = jax.device_count() lowerCAmelCase : int = num_samples * [prompt] lowerCAmelCase : int = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Dict = replicate(UpperCamelCase_ ) lowerCAmelCase : Tuple = shard(UpperCamelCase_ ) lowerCAmelCase : int = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[int] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : Tuple = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : Tuple = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
60
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Union[str, Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=None , UpperCAmelCase__="no" , UpperCAmelCase__="29500" ) -> List[Any]: UpperCamelCase_: Any = False UpperCamelCase_: List[str] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): UpperCamelCase_: List[Any] = True elif "IPython" in sys.modules: UpperCamelCase_: List[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: UpperCamelCase_: Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , UpperCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: UpperCamelCase_: List[str] = 8 UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*UpperCAmelCase__ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port=UpperCAmelCase__ , mixed_precision=UpperCAmelCase__ ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_: Tuple = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=2 ) -> Optional[int]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , debug=UpperCAmelCase__ ) start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' )
292
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _A ( ): """simple docstring""" a__ : Dict =ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE ) # Let's go a__ : List[str] =parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
95
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> list: snake_case_ = len(__lowercase ) for i in range(1 , __lowercase ): snake_case_ = collection[i] snake_case_ = 0 snake_case_ = i - 1 while low <= high: snake_case_ = (low + high) // 2 if val < collection[mid]: snake_case_ = mid - 1 else: snake_case_ = mid + 1 for j in range(__lowercase , __lowercase , -1 ): snake_case_ = collection[j - 1] snake_case_ = val return collection if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
from __future__ import annotations import math def UpperCamelCase_( _snake_case : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(lowerCAmelCase__ ) __a =[n] for i in range(1 , len(lowerCAmelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase_( _snake_case : int ): """simple docstring""" if len(str(lowerCAmelCase__ ) ) > 3: if not is_prime(int(str(lowerCAmelCase__ )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase__ )[:3] ) ): return False return True def UpperCamelCase_( _snake_case : int = 11 ): """simple docstring""" __a =[] __a =13 while len(lowerCAmelCase__ ) != count: if validate(lowerCAmelCase__ ): __a =list_truncated_nums(lowerCAmelCase__ ) if all(is_prime(lowerCAmelCase__ ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase__ ) num += 2 return list_truncated_primes def UpperCamelCase_( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = 'RegNetConfig' # Base docstring UpperCAmelCase_ = 'facebook/regnet-y-040' UpperCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring UpperCAmelCase_ = 'facebook/regnet-y-040' UpperCAmelCase_ = 'tabby, tabby cat' UpperCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[str] = "relu" , **UpperCamelCase_: List[str] , ): super().__init__(**UpperCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=UpperCamelCase_ , kernel_size=UpperCamelCase_ , strides=UpperCamelCase_ , padding="""VALID""" , groups=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" , ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __lowerCamelCase = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = self.convolution(self.padding(UpperCamelCase_ ) ) __lowerCamelCase = self.normalization(UpperCamelCase_ ) __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Tuple ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = config.num_channels __lowerCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any ): __lowerCamelCase = shape_list(UpperCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 2, 3, 1) ) __lowerCamelCase = self.embedder(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 2 , **UpperCamelCase_: List[Any] ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=UpperCamelCase_ , kernel_size=1 , strides=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False ): return self.normalization(self.convolution(UpperCamelCase_ ) , training=UpperCamelCase_ ) class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: str , UpperCamelCase_: int , UpperCamelCase_: int , **UpperCamelCase_: str ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" ) __lowerCamelCase = [ tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase = self.pooler(UpperCamelCase_ ) for layer_module in self.attention: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = hidden_state * pooled return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: Any ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase = [ TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.2""" ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = self.shortcut(UpperCamelCase_ ) hidden_state += residual __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Any , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __lowerCamelCase = [ TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(UpperCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.3""" ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = self.shortcut(UpperCamelCase_ ) hidden_state += residual __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: List[str] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , **UpperCamelCase_: Tuple ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __lowerCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , name="""layers.0""" ), *[layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: List[Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Dict ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( UpperCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(UpperCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , depth=UpperCamelCase_ , name=F'stages.{i+1}' ) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True ): __lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) __lowerCamelCase = stage_module(UpperCamelCase_ ) if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=UpperCamelCase_ , hidden_states=UpperCamelCase_ ) @keras_serializable class lowerCamelCase__( tf.keras.layers.Layer): UpperCAmelCase__ : Union[str, Any] = RegNetConfig def __init__( self: str , UpperCamelCase_: str , **UpperCamelCase_: List[str] ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = config __lowerCamelCase = TFRegNetEmbeddings(UpperCamelCase_ , name="""embedder""" ) __lowerCamelCase = TFRegNetEncoder(UpperCamelCase_ , name="""encoder""" ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" ) @unpack_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.embedder(UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = self.encoder( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = encoder_outputs[0] __lowerCamelCase = self.pooler(UpperCamelCase_ ) # Change to NCHW output format have uniformity in the modules __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase = tuple([tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase_ , pooler_output=UpperCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = RegNetConfig UpperCAmelCase__ : str = 'regnet' UpperCAmelCase__ : Union[str, Any] = 'pixel_values' @property def lowerCAmelCase__ ( self: Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} UpperCAmelCase_ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCamelCase , ) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: List[str] , **UpperCamelCase_: Any ): super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: int=False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( pixel_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCamelCase , ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): def __init__( self: Optional[int] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Dict ): super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = config.num_labels __lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" ) # classification head __lowerCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: bool = None , UpperCamelCase_: bool = None , UpperCamelCase_: List[str]=False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier[0](UpperCamelCase_ ) __lowerCamelCase = self.classifier[1](UpperCamelCase_ ) __lowerCamelCase = None if labels is None else self.hf_compute_loss(labels=UpperCamelCase_ , logits=UpperCamelCase_ ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=UpperCamelCase_ , logits=UpperCamelCase_ , hidden_states=outputs.hidden_states )
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase_ = input('Enter image url: ').strip() print(f'''Downloading image from {url} ...''') lowerCAmelCase_ = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase_ = soup.find('meta', {'property': 'og:image'})['content'] lowerCAmelCase_ = requests.get(image_url).content lowerCAmelCase_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
351
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ ( unittest.TestCase): def __init__( self :Optional[Any] , _A :Union[str, Any] , _A :Optional[Any]=7 , _A :Any=3 , _A :Optional[Any]=18 , _A :Dict=30 , _A :Tuple=400 , _A :Union[str, Any]=True , _A :Any=None , _A :Dict=True , ) -> Any: '''simple docstring''' __A = size if size is not None else {'height': 18, 'width': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = apply_ocr def lowercase_ ( self :int ) -> List[Any]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : Optional[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase_ ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __A = LayoutLMvaImageProcessingTester(self ) @property def lowercase_ ( self :int ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'apply_ocr' ) ) def lowercase_ ( self :int ) -> Union[str, Any]: '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched __A = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowercase_ ( self :int ) -> List[str]: '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowercase_ ( self :str ) -> Union[str, Any]: '''simple docstring''' __A = LayoutLMvaImageProcessor() from datasets import load_dataset __A = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __A = Image.open(ds[0]['file'] ).convert('RGB' ) __A = image_processing(_A , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __A = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False __A = LayoutLMvaImageProcessor(apply_ocr=_A ) __A = image_processing(_A , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
161
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase )] ) __A = np.array(UpperCAmelCase ) __A = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase ) ) , x.transpose() ) , UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = (1, 2, 1) __A = (1, 1, 0, 7) __A = SARIMAX( UpperCAmelCase , exog=UpperCAmelCase , order=UpperCAmelCase , seasonal_order=UpperCAmelCase ) __A = model.fit(disp=UpperCAmelCase , maxiter=6_0_0 , method='nm' ) __A = model_fit.predict(1 , len(UpperCAmelCase ) , exog=[test_match] ) return result[0] def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase , UpperCAmelCase ) __A = regressor.predict(UpperCAmelCase ) return y_pred[0] def snake_case ( UpperCAmelCase )-> float: """simple docstring""" train_user.sort() __A = np.percentile(UpperCAmelCase , 2_5 ) __A = np.percentile(UpperCAmelCase , 7_5 ) __A = qa - qa __A = qa - (iqr * 0.1) return low_lim def snake_case ( UpperCAmelCase , UpperCAmelCase )-> bool: """simple docstring""" __A = 0 __A = 0 for i in list_vote: if i > actual_result: __A = not_safe + 1 else: if abs(abs(UpperCAmelCase ) - abs(UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ : List[str] = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] a__ : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) a__ : List[Any] = Normalizer().fit_transform(data_input_df.values) # split data a__ : Dict = normalize_df[:, 2].tolist() a__ : Optional[int] = normalize_df[:, 0].tolist() a__ : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ : Tuple = normalize_df[:, [1, 2]].tolist() a__ : Dict = x[: len(x) - 1] a__ : Any = x[len(x) - 1 :] # for linear regression & sarimax a__ : Tuple = total_date[: len(total_date) - 1] a__ : List[Any] = total_user[: len(total_user) - 1] a__ : List[Any] = total_match[: len(total_match) - 1] a__ : List[str] = total_date[len(total_date) - 1 :] a__ : List[str] = total_user[len(total_user) - 1 :] a__ : Tuple = total_match[len(total_match) - 1 :] # voting system with forecasting a__ : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ : List[str] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
161
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''spiece.model'''} __A ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __A ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __A =0 __A =1 __A =2 __A =3 __A =4 class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = '''left''' def __init__( self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowerCamelCase_ = 3 lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: if self.remove_space: lowerCamelCase_ = " ".join(inputs.strip().split() ) else: lowerCamelCase_ = inputs lowerCamelCase_ = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: lowerCamelCase_ = unicodedata.normalize("NFKD" , _a ) lowerCamelCase_ = "".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: lowerCamelCase_ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = self.preprocess_text(_a ) lowerCamelCase_ = self.sp_model.encode(_a , out_type=_a ) lowerCamelCase_ = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ = cur_pieces[1:] else: lowerCamelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = "".join(_a ).replace(_a , " " ).strip() return out_string def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = False , lowercase = None , lowercase = True , **lowercase , ) -> List[str]: lowerCamelCase_ = kwargs.pop("use_source_tokenizer" , _a ) lowerCamelCase_ = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase_ = [] lowerCamelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) lowerCamelCase_ = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase_ = "".join(_a ) lowerCamelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase_ = self.clean_up_tokenization(_a ) return clean_text else: return text def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[str]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[str]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple: if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
363
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowercase_ , unittest.TestCase ): UpperCAmelCase_ = XLNetTokenizer UpperCAmelCase_ = XLNetTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True def UpperCAmelCase_ ( self :Dict ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = XLNetTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: UpperCAmelCase__ = '<s>' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Any: UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(__UpperCamelCase ) , 1006 ) def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase_ ( self :str ) -> Optional[int]: UpperCAmelCase__ = XLNetTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def UpperCAmelCase_ ( self :List[str] ) -> Optional[Any]: UpperCAmelCase__ = XLNetTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def UpperCAmelCase_ ( self :int ) -> List[Any]: UpperCAmelCase__ = XLNetTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCamelCase ) UpperCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCamelCase ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = {'input_ids': [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
169
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=None ,__UpperCamelCase=2 ,) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : List[str] = patch_size lowercase_ : int = num_channels lowercase_ : List[str] = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : str = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : int = scope lowercase_ : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : Any = (image_size // patch_size) ** 2 lowercase_ : Optional[int] = num_patches + 1 def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : List[Any] = ViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ViTForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : Any = 1 lowercase_ : List[Any] = ViTForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Dict = self.type_sequence_label_size lowercase_ : Dict = ViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Any = ViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = ViTModelTester(self ) lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase ,nn.Linear ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(__UpperCamelCase ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = ViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__UpperCamelCase ) lowercase_ : Any = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : Tuple = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**__UpperCamelCase ) # verify the logits lowercase_ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : Optional[int] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : str = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__UpperCamelCase ) lowercase_ : int = ViTImageProcessor.from_pretrained('facebook/dino-vits8' ,size=480 ) lowercase_ : int = prepare_img() lowercase_ : Dict = image_processor(images=__UpperCamelCase ,return_tensors='pt' ) lowercase_ : int = inputs.pixel_values.to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : int = model(__UpperCamelCase ,interpolate_pos_encoding=__UpperCamelCase ) # verify the logits lowercase_ : Any = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,__UpperCamelCase ) lowercase_ : Any = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Optional[int] = ViTModel.from_pretrained('facebook/dino-vits8' ,torch_dtype=torch.floataa ,device_map='auto' ) lowercase_ : int = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : Tuple = image_processor(images=__UpperCamelCase ,return_tensors='pt' ) lowercase_ : Union[str, Any] = inputs.pixel_values.to(__UpperCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )
213
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=3 , __lowerCamelCase=18 , __lowerCamelCase=30 , __lowerCamelCase=400 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=[0.5, 0.5, 0.5] , ): '''simple docstring''' __A : Dict = parent __A : Any = batch_size __A : Any = num_channels __A : str = image_size __A : Union[str, Any] = min_resolution __A : Optional[Any] = max_resolution __A : str = do_resize __A : List[str] = size if size is not None else {'''height''': 18, '''width''': 20} __A : str = do_thumbnail __A : List[Any] = do_align_axis __A : List[str] = do_pad __A : Optional[Any] = do_normalize __A : Union[str, Any] = image_mean __A : List[Any] = image_std def UpperCamelCase__( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = DonutImageProcessor if is_vision_available() else None def UpperCamelCase__( self ): '''simple docstring''' __A : str = DonutImageProcessingTester(self ) @property def UpperCamelCase__( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __A : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCamelCase__( self ): '''simple docstring''' pass @is_flaky() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __A : List[Any] = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCamelCase__( self ): '''simple docstring''' __A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __A : Optional[int] = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __A : Dict = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
291
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Union[str, Any] = """mgp-str""" def __init__( self , _A=[3_2, 1_2_8] , _A=4 , _A=3 , _A=2_7 , _A=3_8 , _A=5_0_2_5_7 , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=4.0 , _A=True , _A=False , _A=1E-5 , _A=0.0 , _A=0.0 , _A=0.0 , _A=False , _A=0.02 , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = max_token_length __lowerCAmelCase = num_character_labels __lowerCAmelCase = num_bpe_labels __lowerCAmelCase = num_wordpiece_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = mlp_ratio __lowerCAmelCase = distilled __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_rate __lowerCAmelCase = qkv_bias __lowerCAmelCase = attn_drop_rate __lowerCAmelCase = drop_path_rate __lowerCAmelCase = output_aa_attentions __lowerCAmelCase = initializer_range
92
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) __lowerCAmelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __lowerCAmelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) __lowerCAmelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) __lowerCAmelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __lowerCAmelCase = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
92
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): UpperCAmelCase_ = [x.strip() for x in open(lowerCAmelCase__ ).readlines()] UpperCAmelCase_ = [x.strip() for x in open(lowerCAmelCase__ ).readlines()][: len(lowerCAmelCase__ )] UpperCAmelCase_ = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) if save_path is not None: save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
241
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase__ ( datasets.BuilderConfig ): '''simple docstring''' UpperCamelCase = None UpperCamelCase = "utf-8" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True # deprecated UpperCamelCase = None # deprecated UpperCamelCase = 10 << 20 # 10MB UpperCamelCase = None class lowercase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCamelCase = JsonConfig def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) UpperCAmelCase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): UpperCAmelCase_ = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowercase__ ( self : str , _UpperCAmelCase : pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ = self.config.features.arrow_schema.field(_UpperCAmelCase ).type UpperCAmelCase_ = pa_table.append_column(_UpperCAmelCase , pa.array([None] * len(_UpperCAmelCase ) , type=_UpperCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ = json.load(_UpperCAmelCase ) # We keep only the field we are interested in UpperCAmelCase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_UpperCAmelCase , (list, tuple) ): UpperCAmelCase_ = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} else: UpperCAmelCase_ = dataset UpperCAmelCase_ = pa.Table.from_pydict(_UpperCAmelCase ) yield file_idx, self._cast_table(_UpperCAmelCase ) # If the file has one json object per line else: with open(_UpperCAmelCase , "rb" ) as f: UpperCAmelCase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: UpperCAmelCase_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_UpperCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ = batch.decode(self.config.encoding , errors=_UpperCAmelCase ).encode("utf-8" ) try: while True: try: UpperCAmelCase_ = paj.read_json( io.BytesIO(_UpperCAmelCase ) , read_options=paj.ReadOptions(block_size=_UpperCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_UpperCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_UpperCAmelCase ) or block_size > len(_UpperCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_UpperCAmelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ = json.load(_UpperCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(_UpperCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} UpperCAmelCase_ = pa.Table.from_pydict(_UpperCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(_UpperCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_UpperCAmelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(_UpperCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) batch_idx += 1
241
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = ["image_processor", "tokenizer"] snake_case__ : Union[str, Any] = "OwlViTImageProcessor" snake_case__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = kwargs.pop("feature_extractor" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]="max_length" , UpperCAmelCase__ : Optional[Any]="np" , **UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not isinstance(text[0] , UpperCAmelCase__ )): __SCREAMING_SNAKE_CASE = [self.tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ )] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(text[0] , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [] # Maximum number of queries across batch __SCREAMING_SNAKE_CASE = max([len(UpperCAmelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase__ ) != max_num_queries: __SCREAMING_SNAKE_CASE = t + [" "] * (max_num_queries - len(UpperCAmelCase__ )) __SCREAMING_SNAKE_CASE = self.tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) encodings.append(UpperCAmelCase__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __SCREAMING_SNAKE_CASE = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __SCREAMING_SNAKE_CASE = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __SCREAMING_SNAKE_CASE = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __SCREAMING_SNAKE_CASE = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __SCREAMING_SNAKE_CASE = BatchEncoding() __SCREAMING_SNAKE_CASE = input_ids __SCREAMING_SNAKE_CASE = attention_mask if query_images is not None: __SCREAMING_SNAKE_CASE = BatchEncoding() __SCREAMING_SNAKE_CASE = self.image_processor( UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ).pixel_values __SCREAMING_SNAKE_CASE = query_pixel_values if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and images is not None: __SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif query_images is not None and images is not None: __SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ) -> List[str]: return self.image_processor.post_process(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] ) -> Tuple: return self.image_processor.post_process_object_detection(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int] ) -> List[Any]: return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[int] ) -> Tuple: return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase__ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : List[str] ) -> str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase__ , ) return self.image_processor
54
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : """simple docstring""" snake_case__ : Dict = PegasusConfig snake_case__ : Union[str, Any] = {} snake_case__ : Any = "gelu" def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int=1_3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : List[Any]=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[Any]=2_0 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[Any]=0 , ) -> Any: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if attention_mask is None: __SCREAMING_SNAKE_CASE = np.not_equal(lowerCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ : Tuple = True snake_case__ : Union[str, Any] = False snake_case__ : int = False snake_case__ : List[Any] = False def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : int ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("google/pegasus-large" , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __SCREAMING_SNAKE_CASE = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , return_tensors="np" , truncation=UpperCAmelCase__ , max_length=5_1_2 , padding=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(**UpperCAmelCase__ , num_beams=2 ).sequences __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) assert tgt_text == decoded
54
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( lowercase : Tuple=32 , lowercase : Tuple=10 , lowercase : Dict=100 , lowercase : Tuple=1026 , lowercase : Union[str, Any]=True , lowercase : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , lowercase : Tuple="igf_context_pairs.jbl" , ) -> int: set_seed(3 ) # generate train_data and objective_set _a , _a = generate_datasets( lowercase , lowercase , number=lowercase , min_len=1026 , trim=lowercase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _a = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model _a = load_gpta("gpt2" ).to(lowercase ) print("computing perplexity on objective set" ) _a = compute_perplexity(lowercase , lowercase , lowercase ).item() print("perplexity on objective set:" , lowercase ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Union[str, Any]=15 , lowercase : int=128 , lowercase : Union[str, Any]=100 , lowercase : Any="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model _a = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model _a = SecondaryLearner(lowercase ) # Train secondary learner _a = train_secondary_learner( lowercase , lowercase , max_epochs=lowercase , batch_size=lowercase , eval_freq=100 , igf_model_path=lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : Tuple=32 , lowercase : List[Any]=1000 , lowercase : List[Any]=16 , lowercase : Any=1.0 , lowercase : int=recopy_gpta , lowercase : Optional[Any]=None , lowercase : Optional[int]=10 , lowercase : List[str]="gpt2_finetuned.pt" , ) -> Optional[int]: _a = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) _a = RandomSampler(lowercase ) _a = DataLoader(lowercase , sampler=lowercase ) _a = max_steps // (len(lowercase )) + 1 _a = 0 _a = torch.zeros((1, context_len) , dtype=torch.long , device=lowercase ) _a , _a , _a = recopy_model(lowercase , lowercase , lowercase ) model.train() if secondary_learner is not None: secondary_learner.to(lowercase ) secondary_learner.eval() _a = [] _a = 0 _a = [] _a = [] # Compute the performance of the transformer model at the beginning _a = compute_perplexity(lowercase , lowercase , lowercase ) test_perps.append(lowercase ) print("Test perplexity, step" , lowercase , ":" , lowercase ) for epoch in range(int(lowercase ) ): for step, example in enumerate(lowercase ): torch.cuda.empty_cache() _a = random.randint(0 , example.size(2 ) - context_len - 1 ) _a = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _a = model(lowercase , labels=lowercase ) _a = True if secondary_learner is not None: _a = secondary_learner.forward( torch.tensor(lowercase , dtype=torch.long , device=lowercase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowercase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _a = -1 if predicted_q < threshold: _a = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _a = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _a = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _a = compute_perplexity(lowercase , lowercase , lowercase ) test_perps.append(lowercase ) print("Test perplexity, step" , lowercase , ":" , lowercase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , lowercase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ) -> Optional[int]: _a = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=lowercase , type=lowercase , required=lowercase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=lowercase , type=lowercase , required=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=lowercase , default=lowercase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=lowercase , default=lowercase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=lowercase , type=lowercase , required=lowercase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=lowercase , type=lowercase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=lowercase , default=lowercase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=lowercase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=lowercase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=lowercase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=lowercase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=lowercase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=lowercase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=lowercase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=lowercase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=lowercase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=lowercase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=lowercase , type=lowercase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=lowercase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=lowercase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=lowercase , type=lowercase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=lowercase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner _a = joblib.load("data/IGF_values.jbl" ) # Train secondary learner _a = training_secondary_learner( lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model _a = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _a , _a = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=lowercase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowercase , lowercase , lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=lowercase , secondary_learner=lowercase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
346
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = '▁' lowerCAmelCase_ : Optional[Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase_ : Optional[int] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase_ : List[str] = { 'facebook/s2t-small-librispeech-asr': 10_24, } lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =MAX_MODEL_INPUT_SIZES __a =['input_ids', 'attention_mask'] __a =[] def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ): _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = do_upper_case _a = do_lower_case _a = load_json(__a ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(__a , self.sp_model_kwargs ) if lang_codes is not None: _a = lang_codes _a = LANGUAGES[lang_codes] _a = [f'<lang:{lang}>' for lang in self.langs] _a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} _a = self.lang_tokens _a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _a = {} @property def UpperCamelCase__ ( self : str ): return len(self.encoder ) @property def UpperCamelCase__ ( self : str ): return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self : Optional[int] , __a : Any ): _a = new_tgt_lang self.set_tgt_lang_special_tokens(__a ) def UpperCamelCase__ ( self : List[Any] , __a : str ): _a = self.lang_code_to_id[tgt_lang] _a = [lang_code_id] def UpperCamelCase__ ( self : Dict , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : List[str] , __a : Any ): return self.encoder.get(__a , self.encoder[self.unk_token] ) def UpperCamelCase__ ( self : str , __a : int ): return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ ( self : str , __a : List[str] ): _a = [] _a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _a = self.sp_model.decode(__a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _a = [] else: current_sub_tokens.append(__a ) _a = self.sp_model.decode(__a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _a = [1] * len(self.prefix_tokens ) _a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : str , __a : Dict ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ): _a = Path(__a ) assert save_dir.is_dir(), f'{save_directory} should be a directory' _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _a = sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]: with open(lowercase , "r" ) as f: return json.load(lowercase ) def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None: with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase , indent=2 )
346
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCAmelCase_ = { 'E': 1_2.7_0, 'T': 9.0_6, 'A': 8.1_7, 'O': 7.5_1, 'I': 6.9_7, 'N': 6.7_5, 'S': 6.3_3, 'H': 6.0_9, 'R': 5.9_9, 'D': 4.2_5, 'L': 4.0_3, 'C': 2.7_8, 'U': 2.7_6, 'M': 2.4_1, 'W': 2.3_6, 'F': 2.2_3, 'G': 2.0_2, 'Y': 1.9_7, 'P': 1.9_3, 'B': 1.2_9, 'V': 0.9_8, 'K': 0.7_7, 'J': 0.1_5, 'X': 0.1_5, 'Q': 0.1_0, 'Z': 0.0_7, } lowerCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' lowerCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def snake_case( __magic_name__ ) -> dict[str, int]: '''simple docstring''' lowercase : Union[str, Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case( __magic_name__ ) -> str: '''simple docstring''' return x[0] def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[int] = get_letter_count(__magic_name__ ) lowercase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__magic_name__ ) lowercase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__magic_name__ ) lowercase : Any = ''''''.join(freq_to_letter[freq] ) lowercase : int = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__magic_name__ , reverse=__magic_name__ ) lowercase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__magic_name__ ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Tuple = get_frequency_order(__magic_name__ ) lowercase : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: str =[0] * len(__a ) lowerCamelCase__: Dict =[] lowerCamelCase__: List[Any] =[] lowerCamelCase__: int =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__a ) ): if indegree[i] == 0: queue.append(__a ) while queue: lowerCamelCase__: Optional[int] =queue.pop(0 ) cnt += 1 topo.append(__a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__a ) if cnt != len(__a ): print("Cycle exists" ) else: print(__a ) # Adjacency List of Graph __A = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
273
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A = logging.getLogger(__name__) if __name__ == "__main__": __A = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) __A = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, "rb") as fp: __A = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A = Counter() for tk_ids in data: counter.update(tk_ids) __A = [0] * args.vocab_size for k, v in counter.items(): __A = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
273
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib A_ : Optional[Any] = get_logger() A_ : Optional[dict] = None class lowercase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): """simple docstring""" def __init__( self ,a_=None ,a_=None ,**a_ ) -> str: super().__init__(features=a_ ) import jax from jaxlib.xla_client import Device if isinstance(a_ ,a_ ): raise ValueError( f'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase : Dict = device if isinstance(a_ ,a_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase : Union[str, Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) _UpperCAmelCase : Dict = str(jax.devices()[0] ) _UpperCAmelCase : Tuple = jnp_array_kwargs @staticmethod def _snake_case ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(a_ ): device for device in jax.devices()} def _snake_case ( self ,a_ ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(a_ ,a_ ) and column: if all( isinstance(a_ ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a_ ,axis=0 ) return column def _snake_case ( self ,a_ ) -> Optional[int]: import jax import jax.numpy as jnp if isinstance(a_ ,(str, bytes, type(a_ )) ): return value elif isinstance(a_ ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _UpperCAmelCase : Dict = {} if isinstance(a_ ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase : List[str] = {"""dtype""": jnp.intaa} else: _UpperCAmelCase : List[str] = {"""dtype""": jnp.intaa} elif isinstance(a_ ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _UpperCAmelCase : Dict = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ ,PIL.Image.Image ): _UpperCAmelCase : Optional[Any] = np.asarray(a_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a_ ,**{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self ,a_ ) -> Optional[int]: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a_ ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a_ ,"""__array__""" ) and not isinstance(a_ ,jax.Array ): _UpperCAmelCase : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def _snake_case ( self ,a_ ) -> List[str]: return map_nested(self._recursive_tensorize ,a_ ,map_list=a_ ) def _snake_case ( self ,a_ ) -> Mapping: _UpperCAmelCase : Tuple = self.numpy_arrow_extractor().extract_row(a_ ) _UpperCAmelCase : List[str] = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def _snake_case ( self ,a_ ) -> "jax.Array": _UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_column(a_ ) _UpperCAmelCase : List[Any] = self.python_features_decoder.decode_column(a_ ,pa_table.column_names[0] ) _UpperCAmelCase : Any = self.recursive_tensorize(a_ ) _UpperCAmelCase : Optional[int] = self._consolidate(a_ ) return column def _snake_case ( self ,a_ ) -> Mapping: _UpperCAmelCase : str = self.numpy_arrow_extractor().extract_batch(a_ ) _UpperCAmelCase : str = self.python_features_decoder.decode_batch(a_ ) _UpperCAmelCase : str = self.recursive_tensorize(a_ ) for column_name in batch: _UpperCAmelCase : Dict = self._consolidate(batch[column_name] ) return batch
215
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Any = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """markuplm""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=0 ,a_=2 ,a_=256 ,a_=1_024 ,a_=216 ,a_=1_001 ,a_=32 ,a_=50 ,a_="absolute" ,a_=True ,a_=None ,**a_ ,) -> Union[str, Any]: super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ,) _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Any = use_cache _UpperCAmelCase : List[Any] = classifier_dropout # additional properties _UpperCAmelCase : Dict = max_depth _UpperCAmelCase : Union[str, Any] = max_xpath_tag_unit_embeddings _UpperCAmelCase : Optional[int] = max_xpath_subs_unit_embeddings _UpperCAmelCase : List[Any] = tag_pad_id _UpperCAmelCase : Tuple = subs_pad_id _UpperCAmelCase : List[str] = xpath_unit_hidden_size
215
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( snake_case_ ): def __init__( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): super().__init__() # make sure scheduler can always be converted to DDIM __snake_case : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self : str , _lowerCAmelCase : List[Any] = 1 , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Dict = 0.0 , _lowerCAmelCase : Dict = 50 , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Optional[int] = "pil" , _lowerCAmelCase : Union[str, Any] = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCAmelCase ): __snake_case : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __snake_case : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __snake_case : Tuple = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Union[str, Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case : str = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , eta=_lowerCAmelCase , use_clipped_model_output=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __snake_case : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : List[Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
352
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
"""simple docstring""" from __future__ import annotations from random import choice def _lowerCamelCase( a ): return choice(__a ) def _lowerCamelCase( a , a ): __a = random_pivot(__a ) # partition based on pivot # linear time __a = [e for e in lst if e < pivot] __a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__a ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__a ) < k - 1: return kth_number(__a , k - len(__a ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__a , __a ) if __name__ == "__main__": import doctest doctest.testmod()
261
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 5_0),) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]=0 , **lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class.from_pretrained(lowercase_) new_scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str]=0 , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(lowercase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Any = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : str , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_) for i, t in enumerate(scheduler.prk_timesteps): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps'''): scheduler.set_timesteps(lowercase_) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**lowercase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : str = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**lowercase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_98.13_18) < 1e-2 assert abs(result_mean.item() - 0.25_80) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.full_loop(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 67.39_86) < 1e-2 assert abs(result_mean.item() - 0.08_78) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 2_30.03_99) < 1e-2 assert abs(result_mean.item() - 0.29_95) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_86.94_82) < 1e-2 assert abs(result_mean.item() - 0.24_34) < 1e-3
91
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( snake_case__, snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Tuple , *, lowercase_ : int = 4 , lowercase_ : int = 768 , lowercase_ : int , lowercase_ : int , ): super().__init__() UpperCamelCase__ : Optional[int] =nn.Parameter(torch.zeros(lowercase_ ) ) # parameters for additional clip time embeddings UpperCamelCase__ : Dict =nn.Linear(lowercase_ , lowercase_ ) UpperCamelCase__ : List[str] =nn.Linear(lowercase_ , lowercase_ ) # parameters for encoder hidden states UpperCamelCase__ : Tuple =clip_extra_context_tokens UpperCamelCase__ : Tuple =nn.Linear( lowercase_ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase__ : Optional[int] =nn.Linear(lowercase_ , lowercase_ ) UpperCamelCase__ : Dict =nn.LayerNorm(lowercase_ ) def _lowerCAmelCase ( self : List[str] , *, lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[str] ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase__ : int =image_embeddings.shape[0] UpperCamelCase__ : Tuple =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase__ : List[Any] =classifier_free_guidance_embeddings.expand( lowercase_ , -1 ) UpperCamelCase__ : str =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase__ : Any =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase__ : Tuple =self.embedding_proj(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.clip_image_embeddings_project_to_time_embeddings(lowercase_ ) UpperCamelCase__ : str =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase__ : int =self.clip_extra_context_tokens_proj(lowercase_ ) UpperCamelCase__ : str =clip_extra_context_tokens.reshape(lowercase_ , -1 , self.clip_extra_context_tokens ) UpperCamelCase__ : str =clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase__ : str =self.encoder_hidden_states_proj(lowercase_ ) UpperCamelCase__ : int =self.text_encoder_hidden_states_norm(lowercase_ ) UpperCamelCase__ : List[str] =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
157
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : """simple docstring""" def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=3 , lowercase_ : Tuple=32 , lowercase_ : List[str]=3 , lowercase_ : str=10 , lowercase_ : Tuple=[10, 20, 30, 40] , lowercase_ : Tuple=[1, 1, 2, 1] , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]="relu" , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=None , ): UpperCamelCase__ : Tuple =parent UpperCamelCase__ : str =batch_size UpperCamelCase__ : List[Any] =image_size UpperCamelCase__ : Union[str, Any] =num_channels UpperCamelCase__ : Dict =embeddings_size UpperCamelCase__ : Tuple =hidden_sizes UpperCamelCase__ : List[Any] =depths UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : Union[str, Any] =use_labels UpperCamelCase__ : Optional[int] =hidden_act UpperCamelCase__ : Dict =num_labels UpperCamelCase__ : List[str] =scope UpperCamelCase__ : Optional[Any] =len(lowercase_ ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[int] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Tuple =None if self.use_labels: UpperCamelCase__ : str =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] ): UpperCamelCase__ : Any =RegNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Union[str, Any] =model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): UpperCamelCase__ : List[str] =self.num_labels UpperCamelCase__ : Optional[Any] =RegNetForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Optional[int] =model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =config_and_inputs UpperCamelCase__ : str ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Optional[int] =RegNetModelTester(self ) UpperCamelCase__ : Optional[int] =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def _lowerCAmelCase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowerCAmelCase ( self : List[Any] ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowerCAmelCase ( self : Dict ): pass def _lowerCAmelCase ( self : int ): UpperCamelCase__ , UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(lowercase_ ) UpperCamelCase__ : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] =[*signature.parameters.keys()] UpperCamelCase__ : str =['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ , UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowerCAmelCase ( self : List[Any] ): def check_hidden_states_output(lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] ): UpperCamelCase__ : int =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : List[str] =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Tuple =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] =self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase__ , UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ : Dict =layer_type UpperCamelCase__ : Dict =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : int =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : Any ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] =RegNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.default_image_processor UpperCamelCase__ : Any =prepare_img() UpperCamelCase__ : Optional[Any] =image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict =model(**lowercase_ ) # verify the logits UpperCamelCase__ : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase__ : Union[str, Any] =torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
157
1
SCREAMING_SNAKE_CASE__ : Tuple = 65_521 def __magic_name__ ( __lowerCAmelCase : Dict ) -> int: __lowerCamelCase = 1 __lowerCamelCase = 0 for plain_chr in plain_text: __lowerCamelCase = (a + ord(__lowerCAmelCase )) % MOD_ADLER __lowerCamelCase = (b + a) % MOD_ADLER return (b << 16) | a
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[Any] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
161
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = False, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, **__magic_name__, ) -> Tuple: """simple docstring""" super().__init__( _snake_case, split=_snake_case, features=_snake_case, cache_dir=_snake_case, keep_in_memory=_snake_case, streaming=_snake_case, num_proc=_snake_case, **_snake_case, ) UpperCamelCase__ : str = field UpperCamelCase__ : Union[str, Any] = path_or_paths if isinstance(_snake_case, _snake_case ) else {self.split: path_or_paths} UpperCamelCase__ : Union[str, Any] = Json( cache_dir=_snake_case, data_files=_snake_case, features=_snake_case, field=_snake_case, **_snake_case, ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" if self.streaming: UpperCamelCase__ : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : List[Any] = None UpperCamelCase__ : str = None UpperCamelCase__ : Optional[Any] = None self.builder.download_and_prepare( download_config=_snake_case, download_mode=_snake_case, verification_mode=_snake_case, base_path=_snake_case, num_proc=self.num_proc, ) UpperCamelCase__ : int = self.builder.as_dataset( split=self.split, verification_mode=_snake_case, in_memory=self.keep_in_memory ) return dataset class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__ = None, __magic_name__ = None, **__magic_name__, ) -> int: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) UpperCamelCase__ : Optional[int] = dataset UpperCamelCase__ : Optional[Any] = path_or_buf UpperCamelCase__ : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase__ : Optional[Any] = num_proc UpperCamelCase__ : str = '''utf-8''' UpperCamelCase__ : str = to_json_kwargs def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = self.to_json_kwargs.pop('''path_or_buf''', _snake_case ) UpperCamelCase__ : List[str] = self.to_json_kwargs.pop('''orient''', '''records''' ) UpperCamelCase__ : List[str] = self.to_json_kwargs.pop('''lines''', True if orient == '''records''' else False ) UpperCamelCase__ : str = self.to_json_kwargs.pop('''index''', False if orient in ['''split''', '''table'''] else True ) UpperCamelCase__ : List[str] = self.to_json_kwargs.pop('''compression''', _snake_case ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf, '''wb''', compression=_snake_case ) as buffer: UpperCamelCase__ : str = self._write(file_obj=_snake_case, orient=_snake_case, lines=_snake_case, index=_snake_case, **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" ''' was passed. Please provide a local path instead.''' ) UpperCamelCase__ : Union[str, Any] = self._write( file_obj=self.path_or_buf, orient=_snake_case, lines=_snake_case, index=_snake_case, **self.to_json_kwargs ) return written def UpperCamelCase__ ( self, __magic_name__ ) -> Dict: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = args UpperCamelCase__ : Optional[int] = query_table( table=self.dataset.data, key=slice(_snake_case, offset + self.batch_size ), indices=self.dataset._indices, ) UpperCamelCase__ : List[str] = batch.to_pandas().to_json( path_or_buf=_snake_case, orient=_snake_case, lines=_snake_case, index=_snake_case, **_snake_case ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, **__magic_name__, ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset ), self.batch_size ), unit='''ba''', disable=not logging.is_progress_bar_enabled(), desc='''Creating json from Arrow format''', ): UpperCamelCase__ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_snake_case ) else: UpperCamelCase__ ,UpperCamelCase__ : Dict = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, index, to_json_kwargs) for offset in range(0, _snake_case, _snake_case )], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit='''ba''', disable=not logging.is_progress_bar_enabled(), desc='''Creating json from Arrow format''', ): written += file_obj.write(_snake_case ) return written
357
from __future__ import annotations import bisect def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : Tuple = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : int = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : int = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[str] = len(__UpperCAmelCase ) - 1 while left <= right: UpperCamelCase__ : List[str] = left + (right - left) // 2 UpperCamelCase__ : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: UpperCamelCase__ : List[str] = midpoint - 1 else: UpperCamelCase__ : List[str] = midpoint + 1 return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Union[str, Any] = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int | None: if right < left: return None UpperCamelCase__ : Optional[int] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ = sorted(int(item) for item in user_input.split(',')) UpperCAmelCase_ = int(input('Enter a single number to be found in the list:\n')) UpperCAmelCase_ = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
247
0
def A_ ( a , a ): """simple docstring""" if not isinstance(a , a ): raise ValueError('iterations must be defined as integers' ) if not isinstance(a , a ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) SCREAMING_SNAKE_CASE_ : str = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
253
def A_ ( a ): """simple docstring""" return "".join(chr(ord(a ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
253
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' # vision encoder if "img_encoder.pos_embed" in name: UpperCamelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: UpperCamelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: UpperCamelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: UpperCamelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: UpperCamelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: UpperCamelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCamelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: UpperCamelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: UpperCamelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: UpperCamelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: UpperCamelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: UpperCamelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: UpperCamelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: UpperCamelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: UpperCamelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: UpperCamelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: UpperCamelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: UpperCamelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: UpperCamelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: UpperCamelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: UpperCamelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: UpperCamelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: UpperCamelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCamelCase = key.split(""".""" ) UpperCamelCase , UpperCamelCase = int(key_split[2] ), int(key_split[4] ) UpperCamelCase = config.vision_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[3] ) UpperCamelCase = config.text_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCamelCase = val.squeeze_() else: UpperCamelCase = val return orig_state_dict def lowercase( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="groupvit-gcc-yfcc" , UpperCamelCase_=False ) -> str: '''simple docstring''' UpperCamelCase = GroupViTConfig() UpperCamelCase = GroupViTModel(UpperCamelCase_ ).eval() UpperCamelCase = torch.load(UpperCamelCase_ , map_location="""cpu""" )["""model"""] UpperCamelCase = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result UpperCamelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCamelCase = prepare_img() UpperCamelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="""pt""" ) with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": UpperCamelCase = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": UpperCamelCase = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("""Successfully saved processor and model to""" , UpperCamelCase_ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(UpperCamelCase_ , organization="""nielsr""" ) model.push_to_hub(UpperCamelCase_ , organization="""nielsr""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
165
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self : Any , lowerCamelCase_ : int = 6_5536 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : str = "fourier" , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCamelCase_ : str = None , lowerCamelCase_ : Tuple[int] = (32, 32, 64) , lowerCamelCase_ : str = None , lowerCamelCase_ : int = 8 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : bool = False , ): """simple docstring""" super().__init__() UpperCamelCase = sample_size # time if time_embedding_type == "fourier": UpperCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase_ , log=lowerCamelCase_ , flip_sin_to_cos=lowerCamelCase_ ) UpperCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase_ , downscale_freq_shift=lowerCamelCase_ ) UpperCamelCase = block_out_channels[0] if use_timestep_embedding: UpperCamelCase = block_out_channels[0] * 4 UpperCamelCase = TimestepEmbedding( in_channels=lowerCamelCase_ , time_embed_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ , out_dim=block_out_channels[0] , ) UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = None # down UpperCamelCase = in_channels for i, down_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCamelCase = i == len(lowerCamelCase_ ) - 1 UpperCamelCase = get_down_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase_ ) # mid UpperCamelCase = get_mid_block( lowerCamelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase_ , add_downsample=lowerCamelCase_ , ) # up UpperCamelCase = list(reversed(lowerCamelCase_ ) ) UpperCamelCase = reversed_block_out_channels[0] if out_block_type is None: UpperCamelCase = out_channels else: UpperCamelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase = output_channel UpperCamelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase_ ) - 1 else final_upsample_channels ) UpperCamelCase = i == len(lowerCamelCase_ ) - 1 UpperCamelCase = get_up_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase_ ) UpperCamelCase = output_channel # out UpperCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) UpperCamelCase = get_out_block( out_block_type=lowerCamelCase_ , num_groups_out=lowerCamelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase_ , act_fn=lowerCamelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Union[torch.Tensor, float, int] , lowerCamelCase_ : bool = True , ): """simple docstring""" UpperCamelCase = timestep if not torch.is_tensor(lowerCamelCase_ ): UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps[None].to(sample.device ) UpperCamelCase = self.time_proj(lowerCamelCase_ ) if self.config.use_timestep_embedding: UpperCamelCase = self.time_mlp(lowerCamelCase_ ) else: UpperCamelCase = timestep_embed[..., None] UpperCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCamelCase = () for downsample_block in self.down_blocks: UpperCamelCase , UpperCamelCase = downsample_block(hidden_states=lowerCamelCase_ , temb=lowerCamelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCamelCase = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCamelCase = down_block_res_samples[-1:] UpperCamelCase = down_block_res_samples[:-1] UpperCamelCase = upsample_block(lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , temb=lowerCamelCase_ ) # 5. post-process if self.out_block: UpperCamelCase = self.out_block(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase_ )
165
1
"""simple docstring""" from itertools import permutations def __a ( __lowerCamelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__lowerCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __a ( __lowerCamelCase = 10 ): return sum( int("".join(map(__lowerCamelCase, __lowerCamelCase ) ) ) for num in permutations(range(__lowerCamelCase ) ) if is_substring_divisible(__lowerCamelCase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
61
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Any = "data2vec-vision" def __init__( self : Optional[int] , lowerCamelCase : int=768 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : Union[str, Any]=3072 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=1E-12 , lowerCamelCase : Optional[int]=224 , lowerCamelCase : List[str]=16 , lowerCamelCase : str=3 , lowerCamelCase : Any=False , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]=False , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=True , lowerCamelCase : Tuple=[3, 5, 7, 11] , lowerCamelCase : Union[str, Any]=[1, 2, 3, 6] , lowerCamelCase : List[str]=True , lowerCamelCase : int=0.4 , lowerCamelCase : Optional[int]=256 , lowerCamelCase : Tuple=1 , lowerCamelCase : Tuple=False , lowerCamelCase : Any=255 , **lowerCamelCase : str , ) -> Optional[int]: super().__init__(**lowerCamelCase ) __snake_case : Dict = hidden_size __snake_case : str = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : int = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Tuple = image_size __snake_case : Tuple = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = use_mask_token __snake_case : Dict = use_absolute_position_embeddings __snake_case : Optional[Any] = use_relative_position_bias __snake_case : Any = use_shared_relative_position_bias __snake_case : Union[str, Any] = layer_scale_init_value __snake_case : List[Any] = drop_path_rate __snake_case : Any = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Optional[int] = out_indices __snake_case : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : int = use_auxiliary_head __snake_case : Optional[Any] = auxiliary_loss_weight __snake_case : Optional[int] = auxiliary_channels __snake_case : str = auxiliary_num_convs __snake_case : Any = auxiliary_concat_input __snake_case : Optional[Any] = semantic_loss_ignore_index class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse("1.11" ) @property def __snake_case ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case ( self : List[Any] ) -> float: return 1E-4
123
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def A (__A : Any ) -> Any: """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def A () -> List[Any]: """simple docstring""" UpperCAmelCase_ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__A ) UpperCAmelCase_ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__A ) EnvironmentCommand.register_subcommand(__A ) TestCommand.register_subcommand(__A ) RunBeamCommand.register_subcommand(__A ) DummyDataCommand.register_subcommand(__A ) # Parse args UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() if not hasattr(__A , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase_ = parse_unknown_args(__A ) # Run UpperCAmelCase_ = args.func(__A , **__A ) service.run() if __name__ == "__main__": main()
363
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCAmelCase (__A): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def lowerCAmelCase (__A): """simple docstring""" for char in word: _a = ord(__A) if not _is_chinese_char(__A): return 0 return 1 def lowerCAmelCase (__A): """simple docstring""" _a = set() for token in tokens: _a = len(__A) > 1 and is_chinese(__A) if chinese_word: word_set.add(__A) _a = list(__A) return word_list def lowerCAmelCase (__A , __A): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(__A) for w in chinese_word_set]) _a = bert_tokens _a , _a = 0, len(__A) while start < end: _a = True if is_chinese(bert_word[start]): _a = min(end - start , __A) for i in range(__A , 1 , -1): _a = ''''''.join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] for i in range(0 , len(__A) , 100): _a = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws''']).cws _a = [get_chinese_word(__A) for r in res] ltp_res.extend(__A) assert len(__A) == len(__A) _a = [] for i in range(0 , len(__A) , 100): _a = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__A , truncation=__A , max_length=512) bert_res.extend(res['''input_ids''']) assert len(__A) == len(__A) _a = [] for input_ids, chinese_word in zip(__A , __A): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(__A) input_tokens.append(__A) _a = add_sub_symbol(__A , __A) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__A): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(__A) == 1 and _is_chinese_char(ord(__A)): ref_id.append(__A) ref_ids.append(__A) assert len(__A) == len(__A) return ref_ids def lowerCAmelCase (__A): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''') as f: _a = f.readlines() _a = [line.strip() for line in data if len(__A) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert) _a = prepare_ref(__A , __A , __A) with open(args.save_path , '''w''' , encoding='''utf-8''') as f: _a = [json.dumps(__A) + '''\n''' for ref in ref_ids] f.writelines(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowercase_ = parser.parse_args() main(args)
211
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Tuple = 'resnet' __lowerCamelCase : Any = ['basic', 'bottleneck'] def __init__(self , A=3 , A=64 , A=[256, 512, 1_024, 2_048] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> Dict: """simple docstring""" super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _a = num_channels _a = embedding_size _a = hidden_sizes _a = depths _a = layer_type _a = hidden_act _a = downsample_in_first_stage _a = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(A ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-3
211
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = 42 class UpperCAmelCase__ ( nn.Module ): """simple docstring""" a = 42 a = (16, 32, 96, 2_56) a = jnp.floataa def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE__ = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE__ = self.block_out_channels[i] SCREAMING_SNAKE_CASE__ = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = blocks SCREAMING_SNAKE_CASE__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , __lowerCamelCase : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = nn.silu(lowerCamelCase_ ) for block in self.blocks: SCREAMING_SNAKE_CASE__ = block(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = nn.silu(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.conv_out(lowerCamelCase_ ) return embedding @flax_register_to_config class UpperCAmelCase__ ( nn.Module , A__ , A__ ): """simple docstring""" a = 32 a = 4 a = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a = False a = (3_20, 6_40, 12_80, 12_80) a = 2 a = 8 a = None a = 12_80 a = 0.0 a = False a = jnp.floataa a = True a = 0 a = "rgb" a = (16, 32, 96, 2_56) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE__ = jnp.zeros(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE__ = jnp.zeros(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = jax.random.split(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["params"] def lowercase_ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.block_out_channels SCREAMING_SNAKE_CASE__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE__ = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE__ = FlaxTimestepEmbedding(lowerCamelCase_ , dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE__ = self.only_cross_attention if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = block_out_channels[0] SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase_ ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = block_out_channels[i] SCREAMING_SNAKE_CASE__ = i == len(lowerCamelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE__ = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE__ = FlaxDownBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCamelCase_ ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase_ ) if not is_final_block: SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = down_blocks SCREAMING_SNAKE_CASE__ = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE__ = block_out_channels[-1] SCREAMING_SNAKE_CASE__ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE__ = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int = 1.0 , __lowerCamelCase : Any = True , __lowerCamelCase : Optional[int] = False , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE__ = jnp.flip(lowerCamelCase_ , axis=1 ) # 1. time if not isinstance(lowerCamelCase_ , jnp.ndarray ): SCREAMING_SNAKE_CASE__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCamelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = jnp.expand_dims(lowerCamelCase_ , 0 ) SCREAMING_SNAKE_CASE__ = self.time_proj(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = self.time_embedding(lowerCamelCase_ ) # 2. pre-process SCREAMING_SNAKE_CASE__ = jnp.transpose(lowerCamelCase_ , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE__ = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = jnp.transpose(lowerCamelCase_ , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE__ = self.controlnet_cond_embedding(lowerCamelCase_ ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE__ = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = down_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = down_block(lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE__ = self.mid_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE__ = () for down_block_res_sample, controlnet_block in zip(lowerCamelCase_ , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE__ = controlnet_block(lowerCamelCase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE__ = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE__ = self.controlnet_mid_block(lowerCamelCase_ ) # 6. scaling SCREAMING_SNAKE_CASE__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase_ , mid_block_res_sample=lowerCamelCase_ )
355
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_A ) # Let's go SCREAMING_SNAKE_CASE__ = parser.parse_args() if not hasattr(_A , '''func''' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE__ = args.func(_A ) service.run() if __name__ == "__main__": main()
218
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _UpperCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 0: return False SCREAMING_SNAKE_CASE__ : Optional[int] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
363
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
0
def __UpperCAmelCase ( a_ , a_): snake_case_ = len(a_) + 1 snake_case_ = len(a_) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. snake_case_ = [[0 for i in range(a_)] for j in range(a_)] # since string of zero length match pattern of zero length snake_case_ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , a_): snake_case_ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , a_): snake_case_ = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , a_): for j in range(1 , a_): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": snake_case_ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: snake_case_ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): snake_case_ = dp[i - 1][j] else: snake_case_ = 0 else: snake_case_ = 0 return bool(dp[-1][-1]) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowercase = "aab" lowercase = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
178
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
def _a ( a :int , a :list ) -> List[str]: _enforce_args(a , a ) if n == 0: return 0 a = float('''-inf''' ) for i in range(1 , n + 1 ): a = max( a , prices[i - 1] + naive_cut_rod_recursive(n - i , a ) ) return max_revue def _a ( a :int , a :list ) -> int: _enforce_args(a , a ) a = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(a , a , a ) def _a ( a :int , a :list , a :list ) -> int: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: a = float('''-inf''' ) for i in range(1 , n + 1 ): a = max( a , prices[i - 1] + _top_down_cut_rod_recursive(n - i , a , a ) , ) a = max_revenue return max_rev[n] def _a ( a :int , a :list ) -> str: _enforce_args(a , a ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. a = [float('''-inf''' ) for _ in range(n + 1 )] a = 0 for i in range(1 , n + 1 ): a = max_rev[i] for j in range(1 , i + 1 ): a = max(a , prices[j - 1] + max_rev[i - j] ) a = max_revenue_i return max_rev[n] def _a ( a :int , a :list ) -> List[Any]: if n < 0: a = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(a ) if n > len(a ): a = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(a )}""" ) raise ValueError(a ) def _a ( ) -> int: a = [6, 10, 12, 15, 20, 23] a = len(a ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. a = 36 a = top_down_cut_rod(a , a ) a = bottom_up_cut_rod(a , a ) a = naive_cut_rod_recursive(a , a ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : int = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
285
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = """maskformer""" a_ : Optional[int] = {"""hidden_size""": """mask_feature_size"""} a_ : Optional[int] = ["""resnet""", """swin"""] a_ : int = ["""detr"""] def __init__( self : str , a_ : int = 2_56 , a_ : int = 2_56 , a_ : float = 0.1 , a_ : bool = False , a_ : Optional[Dict] = None , a_ : Optional[Dict] = None , a_ : float = 0.02 , a_ : float = 1.0 , a_ : float = 1.0 , a_ : float = 1.0 , a_ : float = 20.0 , a_ : Optional[bool] = None , **a_ : str , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase_ : Tuple = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(a_ , a_ ): lowerCAmelCase_ : Optional[Any] = backbone_config.pop("model_type" ) lowerCAmelCase_ : Any = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : str = config_class.from_dict(a_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase_ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase_ : Optional[Any] = ( decoder_config.pop("model_type" ) if isinstance(a_ , a_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(a_ , a_ ): lowerCAmelCase_ : Optional[int] = CONFIG_MAPPING[decoder_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(a_ ) lowerCAmelCase_ : str = backbone_config lowerCAmelCase_ : Tuple = decoder_config # main feature dimension for the model lowerCAmelCase_ : str = fpn_feature_size lowerCAmelCase_ : str = mask_feature_size # initializer lowerCAmelCase_ : List[Any] = init_std lowerCAmelCase_ : Tuple = init_xavier_std # Hungarian matcher && loss lowerCAmelCase_ : int = cross_entropy_weight lowerCAmelCase_ : Dict = dice_weight lowerCAmelCase_ : int = mask_weight lowerCAmelCase_ : Any = use_auxiliary_loss lowerCAmelCase_ : Dict = no_object_weight lowerCAmelCase_ : Optional[int] = output_auxiliary_logits lowerCAmelCase_ : int = self.decoder_config.encoder_attention_heads lowerCAmelCase_ : str = self.decoder_config.num_hidden_layers super().__init__(**a_ ) @classmethod def lowerCamelCase ( cls : int , a_ : PretrainedConfig , a_ : PretrainedConfig , **a_ : Tuple ): return cls( backbone_config=a_ , decoder_config=a_ , **a_ , ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Union[str, Any] = self.decoder_config.to_dict() lowerCAmelCase_ : List[str] = self.__class__.model_type return output
241
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Any = b.T lowercase_ : List[Any] = np.sum(np.square(lowerCamelCase_ ) , axis=1 ) lowercase_ : Dict = np.sum(np.square(lowerCamelCase_ ) , axis=0 ) lowercase_ : Optional[int] = np.matmul(lowerCamelCase_ , lowerCamelCase_ ) lowercase_ : Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : Tuple = x.reshape(-1 , 3 ) lowercase_ : str = squared_euclidean_distance(lowerCamelCase_ , lowerCamelCase_ ) return np.argmin(lowerCamelCase_ , axis=1 ) class UpperCamelCase ( lowerCamelCase__ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = None ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = True ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowercase_ : Optional[Any] = size if size is not None else {'''height''': 256, '''width''': 256} lowercase_ : Optional[Any] = get_size_dict(__lowerCamelCase ) lowercase_ : List[str] = np.array(__lowerCamelCase ) if clusters is not None else None lowercase_ : Any = do_resize lowercase_ : List[str] = size lowercase_ : str = resample lowercase_ : List[str] = do_normalize lowercase_ : Union[str, Any] = do_color_quantize def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Union[str, Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __lowerCamelCase ,size=(size['height'], size['width']) ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,) -> np.ndarray: '''simple docstring''' lowercase_ : int = rescale(image=__lowerCamelCase ,scale=1 / 127.5 ,data_format=__lowerCamelCase ) lowercase_ : Union[str, Any] = image - 1 return image def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : Any = do_resize if do_resize is not None else self.do_resize lowercase_ : int = size if size is not None else self.size lowercase_ : str = get_size_dict(__lowerCamelCase ) lowercase_ : Dict = resample if resample is not None else self.resample lowercase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ : Any = clusters if clusters is not None else self.clusters lowercase_ : Tuple = np.array(__lowerCamelCase ) lowercase_ : str = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowercase_ : int = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowercase_ : Optional[int] = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_normalize: lowercase_ : Optional[Any] = [self.normalize(image=__lowerCamelCase ) for image in images] if do_color_quantize: lowercase_ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ : Union[str, Any] = np.array(__lowerCamelCase ) lowercase_ : Optional[int] = color_quantize(__lowerCamelCase ,__lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase_ : Optional[Any] = images.shape[0] lowercase_ : List[str] = images.reshape(__lowerCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ : Union[str, Any] = list(__lowerCamelCase ) else: lowercase_ : List[Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] lowercase_ : Tuple = {'''input_ids''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
356
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Optional[int] =logging.get_logger(__name__) a__ : Any =torch.device('''cpu''') def lowercase__ ( ) -> Tuple: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def lowercase__ ( __lowercase : int ) -> Tuple: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def lowercase__ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase = dct.pop(__lowercase ) __UpperCamelCase = val def lowercase__ ( __lowercase : Optional[Any] ) -> str: """simple docstring""" __UpperCamelCase = [] for k in state_dict.keys(): __UpperCamelCase = k if ".pwconv" in k: __UpperCamelCase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __UpperCamelCase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __UpperCamelCase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __UpperCamelCase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __UpperCamelCase = k_new.split('.' ) if ls[2].isdigit(): __UpperCamelCase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __UpperCamelCase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase__ ( __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : int ) -> Tuple: """simple docstring""" __UpperCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCamelCase = 1000 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(__lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCamelCase = [3, 3, 6, 4] __UpperCamelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCamelCase = [3, 3, 9, 6] __UpperCamelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCamelCase = [4, 3, 10, 5] __UpperCamelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCamelCase = [4, 4, 12, 6] __UpperCamelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __UpperCamelCase = torch.hub.load_state_dict_from_url(__lowercase , map_location='cpu' , check_hash=__lowercase ) else: __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) __UpperCamelCase = checkpoint __UpperCamelCase = create_rename_keys(__lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # load HuggingFace model __UpperCamelCase = SwiftFormerForImageClassification(__lowercase ).eval() hf_model.load_state_dict(__lowercase ) # prepare test inputs __UpperCamelCase = prepare_img() __UpperCamelCase = ViTImageProcessor.from_pretrained('preprocessor_config' ) __UpperCamelCase = processor(images=__lowercase , return_tensors='pt' ) # compare outputs from both models __UpperCamelCase = get_expected_output(__lowercase ) __UpperCamelCase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __lowercase , atol=1e-3 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(__lowercase ) if __name__ == "__main__": a__ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') a__ : Union[str, Any] =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
53
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case ( __lowerCamelCase ): """simple docstring""" pass class snake_case : """simple docstring""" def __init__( self : List[Any] , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None def __iter__( self : Optional[Any] ): __UpperCamelCase = self __UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __UpperCamelCase = node.next_node @property def _lowerCamelCase ( self : List[str] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": a__ : Dict =Node(1) a__ : Optional[int] =Node(2) a__ : List[str] =Node(3) a__ : Optional[int] =Node(4) print(root_node.has_loop) # False a__ : str =root_node.next_node print(root_node.has_loop) # True a__ : Optional[int] =Node(5) a__ : List[Any] =Node(6) a__ : int =Node(5) a__ : Tuple =Node(6) print(root_node.has_loop) # False a__ : str =Node(1) print(root_node.has_loop) # False
53
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Dict ): a__: Optional[Any] =XLMRobertaModel.from_pretrained("xlm-roberta-base" ) a__: Optional[int] =torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house a__: Tuple =torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim a__: Dict =torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__: Tuple =model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) ) @slow def _lowerCamelCase ( self : Union[str, Any] ): a__: List[Any] =XLMRobertaModel.from_pretrained("xlm-roberta-large" ) a__: Dict =torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house a__: List[Any] =torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim a__: Any =torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__: str =model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) )
358
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: int =len([g for position, g in enumerate(__magic_name__ ) if g == main_target[position]] ) return (item, float(__magic_name__ )) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =random.randint(0 , len(__magic_name__ ) - 1 ) a__: Tuple =parent_a[:random_slice] + parent_a[random_slice:] a__: List[str] =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] ): a__: str =list(__magic_name__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__: Union[str, Any] =random.choice(__magic_name__ ) return "".join(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : tuple[str, float] , __magic_name__ : list[tuple[str, float]] , __magic_name__ : list[str] , ): a__: List[Any] =[] # Generate more children proportionally to the fitness score. a__: Dict =int(parent_a[1] * 100 ) + 1 a__: Tuple =10 if child_n >= 10 else child_n for _ in range(__magic_name__ ): a__: List[str] =population_score[random.randint(0 , __magic_name__ )][0] a__ , a__: Dict =crossover(parent_a[0] , __magic_name__ ) # Append new string to the population list. pop.append(mutate(__magic_name__ , __magic_name__ ) ) pop.append(mutate(__magic_name__ , __magic_name__ ) ) return pop def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] , __magic_name__ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a__: Any =F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__magic_name__ ) # Verify that the target contains no genes besides the ones inside genes variable. a__: int =sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__: str =F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__magic_name__ ) # Generate random starting population. a__: Tuple =[] for _ in range(__magic_name__ ): population.append("".join([random.choice(__magic_name__ ) for i in range(len(__magic_name__ ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__: Any =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__magic_name__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__: Dict =[evaluate(__magic_name__ , __magic_name__ ) for item in population] # Check if there is a matching evolution. a__: Any =sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__: Optional[int] =population[: int(N_POPULATION / 3 )] population.clear() population.extend(__magic_name__ ) # Normalize population score to be between 0 and 1. a__: List[str] =[ (item, score / len(__magic_name__ )) for item, score in population_score ] # This is selection for i in range(__magic_name__ ): population.extend(select(population_score[int(__magic_name__ )] , __magic_name__ , __magic_name__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__magic_name__ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
42
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = KandinskyVaaControlnetImgaImgPipeline lowercase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowercase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowercase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def _lowercase( self ) -> Dict: return 32 @property def _lowercase( self ) -> List[str]: return 32 @property def _lowercase( self ) -> str: return self.time_input_dim @property def _lowercase( self ) -> List[str]: return self.time_input_dim * 4 @property def _lowercase( self ) -> Tuple: return 100 @property def _lowercase( self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase : Any = UNetaDConditionModel(**A ) return model @property def _lowercase( self ) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase( self ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self.dummy_unet UpperCAmelCase : int = self.dummy_movq UpperCAmelCase : List[str] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase : int = DDIMScheduler(**A ) UpperCAmelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase( self , A , A=0 ) -> Dict: UpperCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) # create init_image UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : List[str] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((256, 256) ) # create hint UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Any = torch.manual_seed(A ) else: UpperCAmelCase : List[str] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Any = self.pipeline_class(**A ) UpperCAmelCase : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(A ) ) UpperCAmelCase : Any = output.images UpperCAmelCase : Any = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] UpperCAmelCase : str = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Any = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase : int = init_image.resize((512, 512) ) UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.array(A ) ).float() / 2_5_5.0 UpperCAmelCase : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict = """A robot, 4k photo""" UpperCAmelCase : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A ) UpperCAmelCase : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] = pipe_prior( A , image=A , strength=0.8_5 , generator=A , negative_prompt="""""" , ).to_tuple() UpperCAmelCase : str = pipeline( image=A , image_embeds=A , negative_image_embeds=A , hint=A , generator=A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A , A )
265
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a : List[str] = get_tests_dir("""fixtures""") class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase : Tuple = mock.Mock() UpperCAmelCase : List[str] = 500 UpperCAmelCase : Any = {} UpperCAmelCase : List[str] = HTTPError UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def _lowercase( self ) -> Union[str, Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def _lowercase( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() UpperCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
265
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
365
"""simple docstring""" import numpy as np def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict: _UpperCamelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(a__ ): _UpperCamelCase = f(a__ , y[k] ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + h , y[k] + h * ka ) _UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
54
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case ( __a ): '''simple docstring''' snake_case_ : Any = """speech_to_text_2""" snake_case_ : Any = ["""past_key_values"""] snake_case_ : Tuple = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , lowerCAmelCase : str=1_0000 , lowerCAmelCase : str=6 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[str]="relu" , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Optional[int]=1024 , **lowerCAmelCase : Any , ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = vocab_size _snake_case : str = d_model _snake_case : Tuple = decoder_ffn_dim _snake_case : Optional[int] = decoder_layers _snake_case : Optional[Any] = decoder_attention_heads _snake_case : Union[str, Any] = dropout _snake_case : List[str] = attention_dropout _snake_case : str = activation_dropout _snake_case : Union[str, Any] = activation_function _snake_case : List[str] = init_std _snake_case : int = decoder_layerdrop _snake_case : int = use_cache _snake_case : str = decoder_layers _snake_case : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_target_positions super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , decoder_start_token_id=a_ , **a_ , )
317
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any=7 ): """simple docstring""" _snake_case : Any = None if token is not None: _snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) _snake_case : List[str] = """636036""" _snake_case : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _snake_case : str = requests.get(snake_case__ , headers=snake_case__ ).json() return result["workflow_runs"] def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : str = get_daily_ci_runs(snake_case__ ) _snake_case : str = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case : List[str] = workflow_run["""id"""] break return workflow_run_id def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = {} for artifact_name in artifact_names: _snake_case : int = os.path.join(snake_case__ , F"{artifact_name}.zip" ) if os.path.isfile(snake_case__ ): _snake_case : Tuple = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _snake_case : Any = f.read().decode("""UTF-8""" ) return results
64
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = get_activation('''swish''' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def snake_case__ ( self ): _lowerCamelCase = get_activation('''silu''' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def snake_case__ ( self ): _lowerCamelCase = get_activation('''mish''' ) self.assertIsInstance(__a , nn.Mish ) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def snake_case__ ( self ): _lowerCamelCase = get_activation('''gelu''' ) self.assertIsInstance(__a , nn.GELU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 3_8_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = do_resize _lowerCamelCase = size # Default value set here for backwards compatibility where the value in config is None _lowerCamelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _lowerCamelCase = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCamelCase = int(shortest_edge / crop_pct ) _lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__ , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__ , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , crop_pct=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
73
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = (UnCLIPScheduler,) def A ( self : Tuple , **A : Any ) -> Any: lowercase_ : Dict = { "num_train_timesteps": 10_00, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__lowerCamelCase ) return config def A ( self : List[str] ) -> Dict: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def A ( self : Union[str, Any] ) -> str: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def A ( self : int ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def A ( self : List[str] ) -> int: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def A ( self : Optional[Any] ) -> List[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def A ( self : Optional[Any] ) -> Dict: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Dict = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowercase_ : Optional[Any] = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9994987 ) ) < 1e-5 def A ( self : Tuple ) -> str: lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Union[str, Any] = self.get_scheduler_config(variance_type='''learned_range''' ) lowercase_ : List[str] = scheduler_class(**__lowerCamelCase ) lowercase_ : Any = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : List[str] = self.scheduler_classes[0] lowercase_ : Dict = self.get_scheduler_config() lowercase_ : List[str] = scheduler_class(**__lowerCamelCase ) lowercase_ : Optional[int] = scheduler.timesteps lowercase_ : Union[str, Any] = self.dummy_model() lowercase_ : List[Any] = self.dummy_sample_deter lowercase_ : Any = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual lowercase_ : Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 lowercase_ : Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample lowercase_ : List[Any] = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__lowerCamelCase ) ) lowercase_ : Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def A ( self : int ) -> Any: lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : Union[str, Any] = self.get_scheduler_config() lowercase_ : Dict = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) lowercase_ : Dict = scheduler.timesteps lowercase_ : List[Any] = self.dummy_model() lowercase_ : Optional[int] = self.dummy_sample_deter lowercase_ : str = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual lowercase_ : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: lowercase_ : List[str] = None else: lowercase_ : int = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ : Any = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample lowercase_ : Dict = pred_prev_sample lowercase_ : Dict = torch.sum(torch.abs(__lowerCamelCase ) ) lowercase_ : Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def A ( self : List[str] ) -> str: pass def A ( self : Optional[int] ) -> int: pass
33
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[str] ): UpperCamelCase__ = tempfile.mkdtemp() # fmt: off UpperCamelCase__ = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ = dict(zip(_a , range(len(_a ) ) ) ) UpperCamelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ = {'''unk_token''': '''<unk>'''} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) UpperCamelCase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase__ = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def A_ ( self : List[str] , **_a : List[Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **_a ) def A_ ( self : Tuple , **_a : List[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **_a ) def A_ ( self : str , **_a : List[str] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def A_ ( self : Optional[int] ): UpperCamelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : int ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def A_ ( self : List[Any] ): UpperCamelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ = self.get_image_processor(do_normalize=_a ) UpperCamelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def A_ ( self : Tuple ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(_a , return_tensors='''np''' ) UpperCamelCase__ = processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self : int ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = processor(text=_a , return_tensors='''np''' ) UpperCamelCase__ = tokenizer(_a , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : Optional[int] ): UpperCamelCase__ = '''google/owlvit-base-patch32''' UpperCamelCase__ = OwlViTProcessor.from_pretrained(_a ) UpperCamelCase__ = ['''cat''', '''nasa badge'''] UpperCamelCase__ = processor(text=_a ) UpperCamelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : int ): UpperCamelCase__ = '''google/owlvit-base-patch32''' UpperCamelCase__ = OwlViTProcessor.from_pretrained(_a ) UpperCamelCase__ = [['''cat''', '''nasa badge'''], ['''person''']] UpperCamelCase__ = processor(text=_a ) UpperCamelCase__ = 16 UpperCamelCase__ = len(_a ) UpperCamelCase__ = max([len(_a ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : Union[str, Any] ): UpperCamelCase__ = '''google/owlvit-base-patch32''' UpperCamelCase__ = OwlViTProcessor.from_pretrained(_a ) UpperCamelCase__ = ['''cat''', '''nasa badge'''] UpperCamelCase__ = processor(text=_a ) UpperCamelCase__ = 16 UpperCamelCase__ = inputs['''input_ids'''] UpperCamelCase__ = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A_ ( self : int ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(images=_a , query_images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : Any ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = OwlViTProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(_a ) UpperCamelCase__ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a )
35
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def A_ ( self : Tuple ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = get_activation('''gelu_10''' ) UpperCamelCase__ = torch_builtin(_a ) UpperCamelCase__ = geluaa(_a ) UpperCamelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def A_ ( self : List[Any] ): UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = 1 UpperCamelCase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): UpperCamelCase__ = acta.a
35
1
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = ComputeEnvironment.AMAZON_SAGEMAKER __lowerCamelCase : str = True __lowerCamelCase : Dict = 'ml.p3.2xlarge' __lowerCamelCase : Tuple = 'accelerate_sagemaker_execution_role' __lowerCamelCase : int = 'hf-sm' __lowerCamelCase : Optional[int] = 'us-east-1' __lowerCamelCase : List[Any] = 1 __lowerCamelCase : str = 'accelerate-sagemaker-1' __lowerCamelCase : str = '1.6' __lowerCamelCase : Optional[int] = '4.4' __lowerCamelCase : Optional[int] = 'train.py' __lowerCamelCase : List[Any] = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] __lowerCamelCase : Dict = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Tuple: """simple docstring""" _a = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , A ) assert isinstance(converted_args['''do_train'''] , A ) assert isinstance(converted_args['''epochs'''] , A ) assert isinstance(converted_args['''learning_rate'''] , A ) assert isinstance(converted_args['''max_steps'''] , A ) with pytest.raises(A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
211
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A): """simple docstring""" _a = u for i in range(1 , __A): _a = temp * (u - i) return temp def lowerCAmelCase (): """simple docstring""" _a = int(input('''enter the numbers of values: ''')) _a = [] for _ in range(__A): y.append([]) for i in range(__A): for j in range(__A): y[i].append(__A) _a = 0 print('''enter the values of parameters in a list: ''') _a = list(map(__A , input().split())) print('''enter the values of corresponding parameters: ''') for i in range(__A): _a = float(input()) _a = int(input('''enter the value to interpolate: ''')) _a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A): for j in range(n - i): _a = y[j + 1][i - 1] - y[j][i - 1] _a = y[0][0] for i in range(1 , __A): summ += (ucal(__A , __A) * y[0][i]) / math.factorial(__A) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
211
1
from math import isqrt def snake_case_ ( snake_case ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case ) + 1 ) ) def snake_case_ ( snake_case = 10**6 ) -> int: lowercase__: Optional[Any] = 0 lowercase__: Tuple = 1 lowercase__: Optional[int] = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
288
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = parent lowercase__: str = batch_size lowercase__: Dict = seq_length lowercase__: str = is_training lowercase__: List[str] = use_input_mask lowercase__: str = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: int = vocab_size lowercase__: Dict = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Dict = max_position_embeddings lowercase__: Optional[Any] = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Optional[int] = num_labels lowercase__: Union[str, Any] = num_choices lowercase__: int = scope def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[str] = None if self.use_input_mask: lowercase__: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[int] = None if self.use_token_type_ids: lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Tuple = None lowercase__: Optional[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Tuple = self.prepare_config_and_inputs() lowercase__: Optional[int] = True lowercase__: Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[Any] = NezhaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' lowercase__: Dict = True lowercase__: Optional[Any] = NezhaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) lowercase__: str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = NezhaForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Any = NezhaForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Union[str, Any] = NezhaForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = NezhaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.num_labels lowercase__: List[Any] = NezhaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.num_labels lowercase__: Dict = NezhaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: List[str] = self.num_choices lowercase__: str = NezhaForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): str = config_and_inputs lowercase__: Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : List[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowercase : Any = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' lowercase__: Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): lowercase__: int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = NezhaModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__: str = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = NezhaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase__: Optional[int] = True lowercase__: Optional[int] = model_class(config=lowerCAmelCase__ ) lowercase__: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'bert.pt' ) ) lowercase__: List[str] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'bert.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Dict = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Union[str, Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
288
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def __lowercase ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def __lowercase ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def __lowercase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = DDIMScheduler() lowerCAmelCase = self.dummy_vq_model lowerCAmelCase = LDMPipeline(unet=lowerCAmelCase , vqvae=lowerCAmelCase , scheduler=lowerCAmelCase ) ldm.to(lowerCAmelCase ) ldm.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=lowerCAmelCase )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) lowerCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Dict ): lowerCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCAmelCase ) ldm.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=lowerCAmelCase , num_inference_steps=5 , output_type="""numpy""" ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) lowerCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
155
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] a = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase (snake_case__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) return sd def lowercase (snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=rename_keys_prefix ) -> Dict: '''simple docstring''' lowerCAmelCase = OrderedDict() lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase = key for name_pair in rename_keys_prefix: lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def lowercase (snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowerCAmelCase = """pretraining""" if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "nlvr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} lowerCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} lowerCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129} lowerCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: lowerCAmelCase = { """visual_embedding_dim""": 1_024, """num_labels""": 2, } lowerCAmelCase = """nlvr""" lowerCAmelCase = VisualBertConfig(**snake_case__ ) # Load State Dict lowerCAmelCase = load_state_dict(snake_case__ ) lowerCAmelCase = get_new_dict(snake_case__ , snake_case__ ) if model_type == "pretraining": lowerCAmelCase = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": lowerCAmelCase = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": lowerCAmelCase = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": lowerCAmelCase = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
155
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=a__ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=a__ , default=5 ) parser.add_argument('''--batch_size''' , type=a__ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=a__ , default=1 ) parser.add_argument('''--freeze''' , type=a__ , default=a__ ) parser.add_argument('''--learning_rate''' , type=a__ , default=5e-4 ) parser.add_argument('''--seed''' , type=a__ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=a__ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=a__ , default=10 ) parser.add_argument('''--weight_decay''' , type=a__ , default=0.01 ) parser.add_argument('''--output_dir''' , type=a__ , default='''./results''' ) return parser.parse_args() a__ : Union[str, Any] = load('''accuracy''') def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = eval_pred SCREAMING_SNAKE_CASE : Any = np.argmax(a__ , axis=1 ) return metric.compute(predictions=a__ , references=a__ ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = trainer def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->List[Any]: if control.should_evaluate: SCREAMING_SNAKE_CASE : List[str] = deepcopy(_lowerCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = get_args() set_seed(args.seed ) SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) SCREAMING_SNAKE_CASE : Tuple = dataset.train_test_split(test_size=0.2 ) SCREAMING_SNAKE_CASE : List[Any] = train_test['''test'''].train_test_split(test_size=0.5 ) SCREAMING_SNAKE_CASE : Tuple = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE : str = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) SCREAMING_SNAKE_CASE : Any = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(a__ ): SCREAMING_SNAKE_CASE : Any = tokenizer(example['''src'''] , truncation=a__ , max_length=1_024 ) SCREAMING_SNAKE_CASE : Optional[int] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } SCREAMING_SNAKE_CASE : Dict = train_test_validation.map( a__ , batched=a__ , remove_columns=train_test_validation['''train'''].column_names , ) SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(tokenizer=a__ ) SCREAMING_SNAKE_CASE : List[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) SCREAMING_SNAKE_CASE : str = Trainer( model=a__ , args=a__ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(a__ ) ) trainer.train() if __name__ == "__main__": main()
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase__( __UpperCamelCase: bool = True ,*__UpperCamelCase: Union[str, Any] ,**__UpperCamelCase: List[Any] ): """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) SCREAMING_SNAKE_CASE : Tuple = False if main_process_only: SCREAMING_SNAKE_CASE : Any = PartialState().local_process_index == 0 return _tqdm(*__UpperCamelCase ,**__UpperCamelCase ,disable=__UpperCamelCase )
251
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCamelCase_ = parser.parse_args() if args.model_type == "bert": UpperCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase_ = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCamelCase_ = model.state_dict() UpperCamelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCamelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCamelCase_ = state_dict["cls.predictions.decoder.weight"] UpperCamelCase_ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCamelCase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
251
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """sew""" def __init__( self : int , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : int=3_072 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : int=1E-5 , UpperCAmelCase_ : Union[str, Any]="group" , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase_ : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase_ : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=0.05 , UpperCAmelCase_ : Union[str, Any]=10 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int="mean" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Tuple=2 , **UpperCAmelCase_ : Any , ) ->List[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = squeeze_factor snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # sequence classification snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size @property def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
233
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" snake_case_ = """laion/clap-htsat-unfused""" snake_case_ = tempfile.mkdtemp() def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : Tuple ) ->str: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , **UpperCAmelCase_ : Any ) ->Optional[Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = self.get_feature_extractor() snake_case_ = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" snake_case_ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ = self.get_feature_extractor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) snake_case_ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) snake_case_ = floats_list((3, 1_000) ) snake_case_ = feature_extractor(UpperCAmelCase_ , return_tensors="""np""" ) snake_case_ = processor(audios=UpperCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) snake_case_ = """This is a test string""" snake_case_ = processor(text=UpperCAmelCase_ ) snake_case_ = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(UpperCAmelCase_ ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
233
1
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> list[int]: '''simple docstring''' return [ord(__A ) - 96 for elem in plain] def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = encode(input("-> " ).strip().lower() ) print("Encoded: ", __A ) print("Decoded:", decode(__A ) ) if __name__ == "__main__": main()
65
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase_ ) , 'Tatoeba directory does not exist.' ) class A ( unittest.TestCase ): @cached_property def lowercase_ (self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase ) @slow def lowercase_ (self : List[Any] ) -> Optional[int]: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
65
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __UpperCAmelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Any ) -> str: '''simple docstring''' for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase_ :Any = """lm_head""" lowerCAmelCase_ :Optional[int] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: lowerCAmelCase_ :List[Any] = getattr(lowercase__ , lowercase__ ).shape else: lowerCAmelCase_ :List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase_ :List[str] = value elif weight_type == "weight_g": lowerCAmelCase_ :Any = value elif weight_type == "weight_v": lowerCAmelCase_ :List[str] = value elif weight_type == "bias": lowerCAmelCase_ :Dict = value else: lowerCAmelCase_ :Optional[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = [] lowerCAmelCase_ :Union[str, Any] = fairseq_model.state_dict() lowerCAmelCase_ :Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ :str = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase_ :Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ :Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase_ :Optional[int] = True if "*" in mapped_key: lowerCAmelCase_ :Any = name.split(lowercase__ )[0].split(""".""" )[-2] lowerCAmelCase_ :Optional[Any] = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: lowerCAmelCase_ :str = """weight_g""" elif "weight_v" in name: lowerCAmelCase_ :Any = """weight_v""" elif "bias" in name: lowerCAmelCase_ :List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase_ :str = """weight""" else: lowerCAmelCase_ :str = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase_ :Union[str, Any] = name.split(""".""" ) lowerCAmelCase_ :Tuple = int(items[0] ) lowerCAmelCase_ :List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase_ :str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase_ :Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase_ :List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase_ :List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def _snake_case ( lowercase__ : Any , lowercase__ : Dict , lowercase__ : Tuple=None , lowercase__ : int=None , lowercase__ : Optional[Any]=True ) -> Any: '''simple docstring''' if config_path is not None: lowerCAmelCase_ :List[Any] = UniSpeechConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ :str = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase_ :Union[str, Any] = Dictionary.load_from_json(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase_ :Any = target_dict.pad_index lowerCAmelCase_ :Union[str, Any] = target_dict.bos_index lowerCAmelCase_ :Optional[Any] = target_dict.eos_index lowerCAmelCase_ :Dict = len(target_dict.symbols ) lowerCAmelCase_ :Optional[int] = os.path.join(lowercase__ , """vocab.json""" ) if not os.path.isdir(lowercase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ :List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase_ :List[str] = 4_2 lowerCAmelCase_ :List[str] = 4_3 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) lowerCAmelCase_ :int = WavaVecaPhonemeCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase__ , ) lowerCAmelCase_ :List[Any] = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase_ :Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) lowerCAmelCase_ :Dict = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = UniSpeechForCTC(lowercase__ ) else: lowerCAmelCase_ :List[str] = UniSpeechForPreTraining(lowercase__ ) if is_finetuned: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase_ :Optional[int] = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_unispeech.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
1
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
1
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = CodeGenTokenizer SCREAMING_SNAKE_CASE_ : Any = CodeGenTokenizerFast SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Dict = {"add_prefix_space": True} SCREAMING_SNAKE_CASE_ : Dict = False def A ( self : Dict ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] lowercase_ : Dict = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) lowercase_ : str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase_ : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def A ( self : Dict , **A : Tuple ) -> List[str]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def A ( self : str , **A : List[str] ) -> Dict: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def A ( self : Union[str, Any] , A : Union[str, Any] ) -> Union[str, Any]: lowercase_ : Dict = '''lower newer''' lowercase_ : int = '''lower newer''' return input_text, output_text def A ( self : Dict ) -> str: lowercase_ : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : List[str] = '''lower newer''' lowercase_ : List[str] = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowercase_ : Tuple = tokenizer.tokenize(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ : str = tokens + [tokenizer.unk_token] lowercase_ : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def A ( self : str ) -> Optional[Any]: if not self.test_rust_tokenizer: return lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer(add_prefix_space=__UpperCamelCase ) lowercase_ : List[str] = '''lower newer''' # Testing tokenization lowercase_ : List[str] = tokenizer.tokenize(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) lowercase_ : List[Any] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids without special tokens lowercase_ : str = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) lowercase_ : int = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids with special tokens lowercase_ : int = self.get_rust_tokenizer(add_prefix_space=__UpperCamelCase ) lowercase_ : int = tokenizer.encode(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) lowercase_ : Optional[int] = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing the unknown token lowercase_ : List[Any] = tokens + [rust_tokenizer.unk_token] lowercase_ : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def A ( self : Optional[Any] , *A : Optional[int] , **A : str ) -> Tuple: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A ( self : List[str] , A : List[str]=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : str = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # Simple input lowercase_ : Union[str, Any] = '''This is a simple input''' lowercase_ : Dict = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase_ : Tuple = ('''This is a simple input''', '''This is a pair''') lowercase_ : Union[str, Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) # Simple input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) # Simple input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) # Pair input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) def A ( self : str ) -> Union[str, Any]: lowercase_ : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input lowercase_ : Optional[Any] = '''This is a simple input''' lowercase_ : List[Any] = ['''This is a simple input looooooooong''', '''This is a simple input'''] lowercase_ : Optional[int] = ('''This is a simple input''', '''This is a pair''') lowercase_ : List[str] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] lowercase_ : List[str] = tokenizer.pad_token_id lowercase_ : int = tokenizer(__UpperCamelCase , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) lowercase_ : Any = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncate=__UpperCamelCase , return_tensors='''np''' ) lowercase_ : Tuple = tokenizer(*__UpperCamelCase , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) lowercase_ : int = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncate=__UpperCamelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def A ( self : List[Any] ) -> int: lowercase_ : Union[str, Any] = '''$$$''' lowercase_ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__UpperCamelCase , add_bos_token=__UpperCamelCase ) lowercase_ : Union[str, Any] = '''This is a simple input''' lowercase_ : Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase_ : Any = tokenizer.bos_token_id lowercase_ : Optional[Any] = tokenizer(__UpperCamelCase ) lowercase_ : Dict = tokenizer(__UpperCamelCase ) self.assertEqual(out_s.input_ids[0] , __UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase_ : Union[str, Any] = tokenizer.decode(out_s.input_ids ) lowercase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ : Dict = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) lowercase_ : List[Any] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' lowercase_ : Optional[Any] = '''\nif len_a > len_b: result = a\nelse: result = b''' lowercase_ : List[Any] = tokenizer.encode(__UpperCamelCase ) lowercase_ : Optional[int] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] lowercase_ : str = tokenizer.decode(__UpperCamelCase , truncate_before_pattern=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def A ( self : Optional[int] ) -> Tuple: pass
33
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase ( _SCREAMING_SNAKE_CASE : Features ): '''simple docstring''' _UpperCAmelCase = np.inf def set_batch_size(_SCREAMING_SNAKE_CASE : FeatureType ) -> None: nonlocal batch_size if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : NestedDataStructureLike[PathLike] , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : int , )->Union[str, Any]: super().__init__( __UpperCamelCase , split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = path_or_paths if isinstance(__UpperCamelCase , __UpperCamelCase ) else {self.split: path_or_paths} _UpperCAmelCase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] _UpperCAmelCase = Parquet( cache_dir=__UpperCamelCase , data_files=__UpperCamelCase , features=__UpperCamelCase , hash=__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : Union[str, Any] )->Dict: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Dataset , __UpperCamelCase : Union[PathLike, BinaryIO] , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Tuple , )->Optional[int]: _UpperCAmelCase = dataset _UpperCAmelCase = path_or_buf _UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCAmelCase = parquet_writer_kwargs def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: _UpperCAmelCase = self._write(file_obj=__UpperCamelCase , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) else: _UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) return written def lowercase__ ( self : int , __UpperCamelCase : BinaryIO , __UpperCamelCase : int , **__UpperCamelCase : int )->int: _UpperCAmelCase = 0 _UpperCAmelCase = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCamelCase ) _UpperCAmelCase = self.dataset.features.arrow_schema _UpperCAmelCase = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase , **__UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __UpperCamelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): _UpperCAmelCase = query_table( table=self.dataset._data , key=slice(__UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__UpperCamelCase ) written += batch.nbytes writer.close() return written
260
0
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : List[str] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : str) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : int) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : Optional[int]) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : List[str] , **lowercase_ : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Optional[Any] , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Dict , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[int] , **lowercase_ : str) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Dict) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Tuple , **lowercase_ : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : str , **lowercase_ : int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Optional[int] , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : int , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Optional[int] , **lowercase_ : Dict) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Any) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Any , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : List[str] , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Dict , **lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : Union[str, Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) def lowerCAmelCase__ ( *a__ , **a__ ) ->Optional[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Any: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Union[str, Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Union[str, Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[str]: '''simple docstring''' requires_backends(a__ , ["torch"] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : List[str] , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : List[str] , **lowercase_ : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Tuple , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : int) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Dict , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Optional[int]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Union[str, Any] , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : int , **lowercase_ : Optional[int]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : int , **lowercase_ : Tuple) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Optional[int]) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Tuple , **lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : List[Any] , **lowercase_ : int) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : int , **lowercase_ : int) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : int , **lowercase_ : List[str]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Any) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : int , **lowercase_ : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : int , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : List[str] , **lowercase_ : Optional[int]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Optional[Any] , **lowercase_ : List[str]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : str , **lowercase_ : int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : int , **lowercase_ : List[str]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : List[str]) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Optional[int] , **lowercase_ : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[int] , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : Dict , **lowercase_ : Dict) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : List[str]) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Any , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : str) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : List[str] , **lowercase_ : str) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Tuple) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Tuple , **lowercase_ : str) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Dict , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Dict , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Any , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[str] , **lowercase_ : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[Any] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Dict , **lowercase_ : Tuple) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : int , **lowercase_ : Optional[int]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Union[str, Any] , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Dict , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : List[str]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any]) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Dict , **lowercase_ : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : str , **lowercase_ : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : str , **lowercase_ : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Tuple , **lowercase_ : str) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : str , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Any) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Any , **lowercase_ : str) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Any) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Union[str, Any] , **lowercase_ : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : int) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : List[Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : Dict , **lowercase_ : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Dict , **lowercase_ : str) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[str] , **lowercase_ : int) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Tuple , **lowercase_ : Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"])
63
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Union[str, Any] ={ "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =[ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
237
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self ): lowercase = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_init_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_evaluate' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_predict' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_save' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_log' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_prediction_step' ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , snake_case=0 , snake_case=64 , snake_case=64 , snake_case=None , snake_case=False , **snake_case ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionModelConfig(a=snake_case , b=snake_case ) lowercase = RegressionPreTrainedModel(snake_case ) lowercase = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ['on_init_end', 'on_train_begin'] lowercase = 0 lowercase = len(trainer.get_eval_dataloader() ) lowercase = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_trainer() lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase = self.get_trainer(disable_tqdm=snake_case ) lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] lowercase = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=snake_case ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
195
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _A = {'UserAgent': UserAgent().random} def lowerCamelCase__ ( a__ : int ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=__a ).text UpperCamelCase_ = BeautifulSoup(__a , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["username"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["full_name"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["biography"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["business_email"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["external_url"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def lowerCamelCase_ ( self ): """simple docstring""" return self.user_data["is_private"] def lowerCamelCase__ ( a__ : str = "github" ) -> None: import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(snake_case_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _A = InstagramUser('''github''') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
368
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , __UpperCamelCase = 6 ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None self.create_linked_list(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = Node() UpperCamelCase_ = current_node UpperCamelCase_ = current_node UpperCamelCase_ = current_node for _ in range(1 , __UpperCamelCase ): UpperCamelCase_ = Node() UpperCamelCase_ = current_node UpperCamelCase_ = previous_node UpperCamelCase_ = current_node UpperCamelCase_ = self.front UpperCamelCase_ = previous_node def lowerCamelCase_ ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCamelCase_ ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCamelCase_ = self.rear.next if self.rear: UpperCamelCase_ = data def lowerCamelCase_ ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCamelCase_ = self.front.data UpperCamelCase_ = None return data UpperCamelCase_ = self.front UpperCamelCase_ = old_front.next UpperCamelCase_ = old_front.data UpperCamelCase_ = None return data def lowerCamelCase_ ( self ): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def lowerCamelCase_ ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowercase_ : def __init__( self ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if __name__ == "__main__": import doctest doctest.testmod()
261
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt'''} _snake_case = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } _snake_case = { '''facebook/esm2_t6_8M_UR50D''': 1024, '''facebook/esm2_t12_35M_UR50D''': 1024, } def _UpperCamelCase ( snake_case__ ) -> str: with open(snake_case__, "r" ) as f: __UpperCAmelCase : List[Any] = f.read().splitlines() return [l.strip() for l in lines] class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Optional[int] = ["input_ids", "attention_mask"] def __init__( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str]="<unk>" , __lowerCamelCase: str="<cls>" , __lowerCamelCase: Optional[Any]="<pad>" , __lowerCamelCase: Union[str, Any]="<mask>" , __lowerCamelCase: List[Any]="<eos>" , **__lowerCamelCase: Optional[int] , ) -> List[Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Optional[int] = load_vocab_file(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = dict(enumerate(self.all_tokens ) ) __UpperCAmelCase : List[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} __UpperCAmelCase : List[str] = unk_token __UpperCAmelCase : Union[str, Any] = cls_token __UpperCAmelCase : Union[str, Any] = pad_token __UpperCAmelCase : Any = mask_token __UpperCAmelCase : List[Any] = eos_token __UpperCAmelCase : Tuple = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> str: return self._id_to_token.get(__lowerCamelCase , self.unk_token ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str ) -> int: return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Any ) -> Union[str, Any]: return text.split() def _lowerCamelCase ( self: int , __lowerCamelCase: int=False ) -> Optional[Any]: return len(self._id_to_token ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> int: return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: int ) -> str: return self._id_to_token.get(__lowerCamelCase , self.unk_token ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : List[str] = [self.cls_token_id] __UpperCAmelCase : Dict = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCamelCase ( self: str , __lowerCamelCase: List , __lowerCamelCase: Optional[List] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __UpperCAmelCase : List[Any] = [1] + ([0] * len(__lowerCamelCase )) + [1] if token_ids_a is not None: mask += [0] * len(__lowerCamelCase ) + [1] return mask def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = os.path.join(__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(__lowerCamelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCamelCase ( self: Optional[int] ) -> int: return self.get_vocab_size(with_added_tokens=__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Union[List[str], List[AddedToken]] , __lowerCamelCase: bool = False ) -> int: return super()._add_tokens(__lowerCamelCase , special_tokens=__lowerCamelCase )
157
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = "" for word_or_phrase in separated: if not isinstance(snake_case__, snake_case__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
157
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @staticmethod @abstractmethod def _A ( UpperCAmelCase_ : ArgumentParser ): raise NotImplementedError() @abstractmethod def _A ( self : List[str] ): raise NotImplementedError()
319
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
1
from __future__ import annotations import collections import pprint from pathlib import Path def A__ ( __lowerCamelCase ): return "".join(sorted(__lowerCamelCase ) ) def A__ ( __lowerCamelCase ): return word_by_signature[signature(__lowerCamelCase )] __UpperCAmelCase = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
299
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __A = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __A = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __A = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __A = '' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): _A = ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): _A = ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
75
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __A = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __A = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __A = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __A = '' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): _A = ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): _A = ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
75
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[str] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class A ( __snake_case ): __magic_name__ = '''timesformer''' def __init__( self , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="divided_space_time" , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[Any] = image_size A : Any = patch_size A : List[str] = num_channels A : Tuple = num_frames A : Union[str, Any] = hidden_size A : Tuple = num_hidden_layers A : Any = num_attention_heads A : Optional[int] = intermediate_size A : List[Any] = hidden_act A : Optional[Any] = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : Any = initializer_range A : Optional[int] = layer_norm_eps A : Optional[int] = qkv_bias A : List[Any] = attention_type A : Optional[Any] = drop_path_rate
3
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return 0.0 def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) ) lowerCamelCase_ =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowerCamelCase_ =get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__snake_case ) plt.show() def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
75
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = """vit""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=7_68 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : List[Any]=30_72 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2_24 , SCREAMING_SNAKE_CASE_ : List[Any]=16 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : int=16 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) A: Any = hidden_size A: List[Any] = num_hidden_layers A: str = num_attention_heads A: str = intermediate_size A: Union[str, Any] = hidden_act A: int = hidden_dropout_prob A: Optional[int] = attention_probs_dropout_prob A: List[Any] = initializer_range A: Optional[int] = layer_norm_eps A: Dict = image_size A: Union[str, Any] = patch_size A: Any = num_channels A: List[str] = qkv_bias A: Tuple = encoder_stride class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = version.parse("""1.11""" ) @property def _snake_case ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self : List[str] ) -> float: '''simple docstring''' return 1E-4
334
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(example['content'] , truncation=a )['input_ids'] SCREAMING_SNAKE_CASE_ : int = len(example['content'] ) / len(output['input_ids'] ) return output lowerCAmelCase : List[Any] = HfArgumentParser(PretokenizationArguments) lowerCAmelCase : Tuple = parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any = multiprocessing.cpu_count() lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : Tuple = time.time() lowerCAmelCase : Dict = load_dataset(args.dataset_name, split='train') print(F'Dataset loaded in {time.time()-t_start:.2f}s') lowerCAmelCase : List[Any] = time.time() lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') lowerCAmelCase : List[Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
253
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaForSequenceClassification.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['model.post_net.linear.bias'] return model def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaForAudioFrameClassification.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Dict = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict['model.linear.bias'] return model def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaForXVector.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Tuple = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE_ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE_ : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE_ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE_ : Optional[int] = downstream_dict['objective.W'] return model @torch.no_grad() def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = checkpoint['Downstream'] SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaConfig.from_pretrained(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) SCREAMING_SNAKE_CASE_ : Tuple = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE_ : Tuple = convert_classification(a , a , a ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE_ : str = convert_diarization(a , a , a ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_xvector(a , a , a ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE_ : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
253
1
from __future__ import annotations from math import pi, sqrt def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowercase ( lowercase__ , lowercase__): """simple docstring""" A__ = 1 @register_to_config def __init__( self : int , __lowerCamelCase : Union[str, Any]=2000 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=20 , __lowerCamelCase : str=1E-3 ): '''simple docstring''' lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Any = None def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowerCamelCase__ : List[str] = torch.linspace(1 , self.config.sampling_eps , __lowerCamelCase , device=__lowerCamelCase ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase__ : Union[str, Any] = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase__ : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase__ : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase__ : Tuple = std.unsqueeze(-1 ) lowerCamelCase__ : int = -score / std # compute lowerCamelCase__ : str = -1.0 / len(self.timesteps ) lowerCamelCase__ : Tuple = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase__ : Optional[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase__ : Any = beta_t.unsqueeze(-1 ) lowerCamelCase__ : int = -0.5 * beta_t * x lowerCamelCase__ : str = torch.sqrt(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = drift - diffusion**2 * score lowerCamelCase__ : Any = x + drift * dt # add noise lowerCamelCase__ : Dict = randn_tensor(x.shape , layout=x.layout , generator=__lowerCamelCase , device=x.device , dtype=x.dtype ) lowerCamelCase__ : Union[str, Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
184
class _lowercase : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' lowerCamelCase__ : int = row lowerCamelCase__ : Optional[Any] = col lowerCamelCase__ : Union[str, Any] = graph def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' lowerCamelCase__ : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ : Tuple = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ : List[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __lowerCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): # And finally, count all islands. '''simple docstring''' lowerCamelCase__ : List[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) count += 1 return count
184
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __snake_case (_a ): def __init__( self : List[Any] , _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' _lowerCAmelCase : Any = data def __iter__( self : int ) -> Optional[Any]: '''simple docstring''' for element in self.data: yield element def _UpperCAmelCase (UpperCamelCase_ : List[Any]=True ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Accelerator(even_batches=UpperCamelCase_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ): '''simple docstring''' if iterable: _lowerCAmelCase : List[str] = DummyIterableDataset(torch.as_tensor(range(UpperCamelCase_ ) ) ) else: _lowerCAmelCase : int = TensorDataset(torch.as_tensor(range(UpperCamelCase_ ) ) ) _lowerCAmelCase : Tuple = DataLoader(UpperCamelCase_ , batch_size=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase_ ) return dl def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] , ): '''simple docstring''' _lowerCAmelCase : List[Any] = create_dataloader(accelerator=UpperCamelCase_ , dataset_size=UpperCamelCase_ , batch_size=UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = create_accelerator(even_batches=UpperCamelCase_ ) verify_dataloader_batch_sizes( UpperCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[Any] = create_accelerator(even_batches=UpperCamelCase_ ) _lowerCAmelCase : Any = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Tuple = accelerator.prepare(UpperCamelCase_ ) _lowerCAmelCase : str = create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCamelCase_ ): _lowerCAmelCase : Optional[Any] = ddp_model(batch[0].float() ) _lowerCAmelCase : int = output.sum() loss.backward() batch_idxs.append(UpperCamelCase_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=UpperCamelCase_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCamelCase_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Tuple = True _lowerCAmelCase : int = False _lowerCAmelCase : Union[str, Any] = create_accelerator(even_batches=UpperCamelCase_ ) _lowerCAmelCase : List[str] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase_ ) _lowerCAmelCase : str = create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Tuple = create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase_ ): _lowerCAmelCase : int = train_dl.batch_sampler.even_batches _lowerCAmelCase : Optional[int] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Tuple = True _lowerCAmelCase : int = False _lowerCAmelCase : int = create_accelerator(even_batches=UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase_ ) create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase_ ) _lowerCAmelCase : str = create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase_ ): _lowerCAmelCase : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : List[Any] = create_accelerator() _lowerCAmelCase : List[Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Optional[int] = accelerator.prepare(UpperCamelCase_ ) create_dataloader(UpperCamelCase_ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase_ ) with warnings.catch_warnings(record=UpperCamelCase_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase_ ): pass assert issubclass(w[-1].category , UpperCamelCase_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) _lowerCAmelCase : List[str] = accelerator.state.distributed_type _lowerCAmelCase : Any = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCamelCase_ ) _lowerCAmelCase : List[Any] = original_state if __name__ == "__main__": main()
352
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase : Optional[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = processor(text=_UpperCAmelCase ) _lowerCAmelCase : Dict = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Tuple = """lower newer""" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : str = processor.batch_decode(_UpperCAmelCase ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Dict = """lower newer""" _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
159
0