code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
# using dfs for finding eulerian path traversal
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=None ) -> Optional[Any]:
__UpperCAmelCase : str = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = True, True
__UpperCAmelCase : Optional[Any] = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase )
return path
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]:
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Dict = -1
for i in range(__lowerCAmelCase ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
__UpperCAmelCase : Dict = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]:
__UpperCAmelCase : int = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
__UpperCAmelCase , __UpperCAmelCase : Any = check_circuit_or_path(__lowerCAmelCase, __lowerCAmelCase )
if check == 3:
print("graph is not Eulerian" )
print("no path" )
return
__UpperCAmelCase : Optional[Any] = 1
if check == 2:
__UpperCAmelCase : str = odd_node
print("graph has a Euler path" )
if check == 1:
print("graph has a Euler cycle" )
__UpperCAmelCase : Dict = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase )
print(__lowerCAmelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : str = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
__UpperCAmelCase : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
__UpperCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
__UpperCAmelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
__UpperCAmelCase : int = {
1: [],
2: []
# all degree is zero
}
__UpperCAmelCase : Dict = 10
check_euler(__lowerCAmelCase, __lowerCAmelCase )
check_euler(__lowerCAmelCase, __lowerCAmelCase )
check_euler(__lowerCAmelCase, __lowerCAmelCase )
check_euler(__lowerCAmelCase, __lowerCAmelCase )
check_euler(__lowerCAmelCase, __lowerCAmelCase )
if __name__ == "__main__":
main()
| 157 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'''
),
'''distilbert-base-uncased-finetuned-sst-2-english''': (
'''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'''
),
}
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
UpperCamelCase__ = "distilbert"
UpperCamelCase__ = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ):
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = sinusoidal_pos_embds
_UpperCAmelCase = n_layers
_UpperCAmelCase = n_heads
_UpperCAmelCase = dim
_UpperCAmelCase = hidden_dim
_UpperCAmelCase = dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation
_UpperCAmelCase = initializer_range
_UpperCAmelCase = qa_dropout
_UpperCAmelCase = seq_classif_dropout
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase )
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
@property
def UpperCamelCase ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 39 | 0 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def lowercase__ ( _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase : int = []
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
f'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
f'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
f'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
f'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[Any] = []
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def lowercase__ ( _UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] = []
token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def lowercase__ ( ) -> List[Any]:
'''simple docstring'''
lowercase : int = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowercase : Dict = 'imagenet-1k-id2label.json'
lowercase : int = 10_00
lowercase : int = 'huggingface/label-files'
lowercase : Optional[int] = num_labels
lowercase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) )
lowercase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowercase : Union[str, Any] = idalabel
lowercase : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase : Tuple = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
lowercase : str = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
lowercase : List[str] = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
lowercase : str = [2, 2, 20]
lowercase : Optional[int] = [3, 12, 16]
lowercase : List[Any] = [1_92, 7_68, 10_24]
lowercase : Union[str, Any] = CvtForImageClassification(_UpperCAmelCase )
lowercase : Any = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
lowercase : int = image_size
lowercase : Optional[Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) )
lowercase : List[str] = OrderedDict()
lowercase : Dict = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
lowercase : Tuple = list_of_state_dict + cls_token(_UpperCAmelCase )
lowercase : Union[str, Any] = list_of_state_dict + embeddings(_UpperCAmelCase )
for cnt in range(config.depth[idx] ):
lowercase : int = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase )
lowercase : List[Any] = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
lowercase : Union[str, Any] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_UpperCAmelCase )
model.save_pretrained(_UpperCAmelCase )
image_processor.save_pretrained(_UpperCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_UpperCamelCase: int = argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=3_8_4,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_UpperCamelCase: Optional[Any] = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 53 |
"""simple docstring"""
_UpperCamelCase: Dict = 2_5_6
# Modulus to hash a string
_UpperCamelCase: Union[str, Any] = 1_0_0_0_0_0_3
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool:
'''simple docstring'''
lowercase : Dict = len(_UpperCAmelCase )
lowercase : Union[str, Any] = len(_UpperCAmelCase )
if p_len > t_len:
return False
lowercase : Union[str, Any] = 0
lowercase : Dict = 0
lowercase : Any = 1
# Calculating the hash of pattern and substring of text
for i in range(_UpperCAmelCase ):
lowercase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
lowercase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
lowercase : Tuple = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
lowercase : str = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowercase__ ( ) -> None:
'''simple docstring'''
lowercase : Any = 'abc1abc12'
lowercase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
lowercase : Optional[int] = 'alskfjaldsk23adsfabcabc'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 2)
lowercase : str = 'ABABX'
lowercase : Tuple = 'ABABZABABYABABX'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 3)
lowercase : int = 'AAAB'
lowercase : Union[str, Any] = 'ABAAAAAB'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 4)
lowercase : Union[str, Any] = 'abcdabcy'
lowercase : List[str] = 'abcxabcdabxabcdabcdabcy'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 5)
lowercase : Dict = 'Lü'
lowercase : Dict = 'Lüsai'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
lowercase : List[Any] = 'Lue'
assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 53 | 1 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase )
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = emb.weight.shape
SCREAMING_SNAKE_CASE_: Dict = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: List[str] = emb.weight.data
return lin_layer
def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE_: Any = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE_: List[Any] = key.replace("moe_layer.experts.0" , f"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE_: Dict = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE_: Optional[Any] = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE_: List[Any] = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE_: List[Any] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE_: Optional[int] = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE_: Optional[int] = state_dict[old_key]
return new_dict
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE_: Tuple = []
SCREAMING_SNAKE_CASE_: Any = 0
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
for expert in range(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = switch_checkpoint_path + f"-rank-{expert}.pt"
if os.path.isfile(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase )["model"]
remove_ignore_keys_(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(
_UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) )
torch.save(_UpperCAmelCase , _UpperCAmelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_UpperCAmelCase )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE_: Tuple = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Any = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_UpperCAmelCase ) == 1:
SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
torch.save(_UpperCAmelCase , _UpperCAmelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_UpperCAmelCase , _UpperCAmelCase )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE_: Tuple = {}
for idx, shard in enumerate(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: str = weights_name.replace(".bin" , f"-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin" )
SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{idx+1:05d}-of-???.bin" ) )
os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
for key in shard:
SCREAMING_SNAKE_CASE_: List[str] = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE_: List[Any] = {"total_size": total_size}
SCREAMING_SNAKE_CASE_: Optional[Any] = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE_: Union[str, Any] = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + "\n"
f.write(_UpperCAmelCase )
return metadata, index
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
lowerCAmelCase : Dict = parser.parse_args()
lowerCAmelCase , lowerCAmelCase : Dict = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
lowerCAmelCase : Union[str, Any] = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
lowerCAmelCase : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 13 |
from collections.abc import Callable
class __lowercase :
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None):
# Stores actual heap items.
SCREAMING_SNAKE_CASE_: list = []
# Stores indexes of each item for supporting updates and deletion.
SCREAMING_SNAKE_CASE_: dict = {}
# Stores current size of heap.
SCREAMING_SNAKE_CASE_: Optional[Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x)
def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int):
return int((i - 1) / 2) if i > 0 else None
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1)
return left if 0 < left < self.size else None
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2)
return right if 0 < right < self.size else None
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i]
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int):
return self.arr[i][1] < self.arr[j][1]
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = i
if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Optional[int] = left
if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Tuple = right
return valid_parent
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__)
while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__):
self._swap(lowerCAmelCase__ , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__)
while valid_parent != index:
self._swap(lowerCAmelCase__ , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int):
if item not in self.pos_map:
return
SCREAMING_SNAKE_CASE_: Any = self.pos_map[item]
SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowerCAmelCase__)
self._heapify_down(lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int):
if item not in self.pos_map:
return
SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item]
del self.pos_map[item]
SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1]
SCREAMING_SNAKE_CASE_: Tuple = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowerCAmelCase__)
self._heapify_down(lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int):
SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr)
if arr_len == self.size:
self.arr.append([item, self.key(lowerCAmelCase__)])
else:
SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)]
SCREAMING_SNAKE_CASE_: List[Any] = self.size
self.size += 1
self._heapify_up(self.size - 1)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
return self.arr[0] if self.size else None
def _SCREAMING_SNAKE_CASE ( self : Dict):
SCREAMING_SNAKE_CASE_: Dict = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0])
return top_item_tuple
def A_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
if len(lowerCamelCase__ ) <= 1:
return [tuple(lowerCamelCase__ )]
lowercase__ : Optional[int] = []
def generate(lowerCamelCase__ , lowerCamelCase__ ):
lowercase__ : str = [0] * n
res.append(tuple(lowerCamelCase__ ) )
lowercase__ : Optional[int] = 0
while i < n:
if c[i] < i:
if i % 2 == 0:
lowercase__ , lowercase__ : str = arr[i], arr[0]
else:
lowercase__ , lowercase__ : Optional[int] = arr[i], arr[c[i]]
res.append(tuple(lowerCamelCase__ ) )
c[i] += 1
lowercase__ : List[Any] = 0
else:
lowercase__ : str = 0
i += 1
generate(len(lowerCamelCase__ ) , lowerCamelCase__ )
return res
if __name__ == "__main__":
lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip()
lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')]
print(heaps(arr))
| 360 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 121 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A = logging.get_logger(__name__)
_A = {
"""alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""",
}
class _lowerCamelCase ( a_ ):
_lowerCamelCase :Tuple = "mgp-str"
def __init__( self : Dict , UpperCamelCase : int=[32, 1_28] , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : str=3 , UpperCamelCase : Tuple=27 , UpperCamelCase : List[Any]=38 , UpperCamelCase : Union[str, Any]=5_02_57 , UpperCamelCase : Optional[Any]=3_05_22 , UpperCamelCase : Optional[Any]=7_68 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Any=4.0 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Dict=1E-5 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : str=False , UpperCamelCase : Any=0.02 , **UpperCamelCase : Optional[Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(**UpperCamelCase )
lowerCAmelCase__ : List[str] = image_size
lowerCAmelCase__ : Any = patch_size
lowerCAmelCase__ : List[Any] = num_channels
lowerCAmelCase__ : Optional[int] = max_token_length
lowerCAmelCase__ : List[Any] = num_character_labels
lowerCAmelCase__ : str = num_bpe_labels
lowerCAmelCase__ : Tuple = num_wordpiece_labels
lowerCAmelCase__ : List[Any] = hidden_size
lowerCAmelCase__ : List[Any] = num_hidden_layers
lowerCAmelCase__ : Tuple = num_attention_heads
lowerCAmelCase__ : Optional[int] = mlp_ratio
lowerCAmelCase__ : List[str] = distilled
lowerCAmelCase__ : Union[str, Any] = layer_norm_eps
lowerCAmelCase__ : Union[str, Any] = drop_rate
lowerCAmelCase__ : str = qkv_bias
lowerCAmelCase__ : Optional[Any] = attn_drop_rate
lowerCAmelCase__ : Tuple = drop_path_rate
lowerCAmelCase__ : List[str] = output_aa_attentions
lowerCAmelCase__ : List[str] = initializer_range
| 242 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class _lowerCamelCase ( unittest.TestCase ):
def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : str=7 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=99 , UpperCamelCase : List[str]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Any=37 , UpperCamelCase : str="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : Optional[Any]=16 , UpperCamelCase : Dict=2 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : Dict=4 , ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : List[str] = parent
lowerCAmelCase__ : int = batch_size
lowerCAmelCase__ : Dict = seq_length
lowerCAmelCase__ : Any = is_training
lowerCAmelCase__ : Tuple = use_attention_mask
lowerCAmelCase__ : Optional[Any] = use_token_type_ids
lowerCAmelCase__ : Union[str, Any] = use_labels
lowerCAmelCase__ : List[str] = vocab_size
lowerCAmelCase__ : Any = hidden_size
lowerCAmelCase__ : Tuple = num_hidden_layers
lowerCAmelCase__ : Tuple = num_attention_heads
lowerCAmelCase__ : Tuple = intermediate_size
lowerCAmelCase__ : int = hidden_act
lowerCAmelCase__ : Optional[int] = hidden_dropout_prob
lowerCAmelCase__ : int = attention_probs_dropout_prob
lowerCAmelCase__ : int = max_position_embeddings
lowerCAmelCase__ : Optional[Any] = type_vocab_size
lowerCAmelCase__ : Optional[Any] = type_sequence_label_size
lowerCAmelCase__ : Any = initializer_range
lowerCAmelCase__ : List[Any] = num_choices
def _lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ : List[str] = None
if self.use_attention_mask:
lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ : Optional[Any] = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs
lowerCAmelCase__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs
lowerCAmelCase__ : str = True
lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class _lowerCamelCase ( a_ , unittest.TestCase ):
_lowerCamelCase :List[Any] = True
_lowerCamelCase :Tuple = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModelTester(self )
@slow
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowerCAmelCase__ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase )
lowerCAmelCase__ : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase )
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase )
lowerCAmelCase__ : Dict = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
lowerCAmelCase__ : Optional[int] = model(UpperCamelCase )[0]
lowerCAmelCase__ : Tuple = [1, 11, 5_02_65]
self.assertEqual(list(output.shape ) , UpperCamelCase )
# compare the actual values for a slice.
lowerCAmelCase__ : Any = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase )
lowerCAmelCase__ : Any = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
lowerCAmelCase__ : List[Any] = model(UpperCamelCase )[0]
# compare the actual values for a slice.
lowerCAmelCase__ : str = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) )
| 242 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__a: Optional[int] = TypeVar("""T""")
class UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self , __lowerCAmelCase ) -> str:
lowercase__ : str = data
lowercase__ : Union[str, Any] = None
def __str__( self ) -> str:
return F"""{self.data}"""
class UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
lowercase__ : Any = None
def __iter__( self ) -> Iterator[T]:
lowercase__ : Optional[int] = self.top
while node:
yield node.data
lowercase__ : Dict = node.next
def __str__( self ) -> str:
return "->".join([str(__lowerCAmelCase ) for item in self] )
def __len__( self ) -> int:
return len(tuple(iter(self ) ) )
def _lowerCAmelCase( self ) -> bool:
return self.top is None
def _lowerCAmelCase( self , __lowerCAmelCase ) -> None:
lowercase__ : List[Any] = Node(__lowerCAmelCase )
if not self.is_empty():
lowercase__ : Dict = self.top
lowercase__ : List[Any] = node
def _lowerCAmelCase( self ) -> T:
if self.is_empty():
raise IndexError('''pop from empty stack''' )
assert isinstance(self.top , __lowerCAmelCase )
lowercase__ : List[str] = self.top
lowercase__ : str = self.top.next
return pop_node.data
def _lowerCAmelCase( self ) -> T:
if self.is_empty():
raise IndexError('''peek from empty stack''' )
assert self.top is not None
return self.top.data
def _lowerCAmelCase( self ) -> None:
lowercase__ : List[str] = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 353 | '''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCAmelCase )
lowercase__ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
lowercase__ : str = dataset_size < in_memory_max_size
else:
lowercase__ : Optional[int] = False
lowercase__ : Optional[Any] = is_small_dataset(UpperCAmelCase )
assert result == expected
| 214 | 0 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Tuple:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =original_name.split('''.''' )[0]
UpperCAmelCase : int =key.split('''.''' )
UpperCAmelCase : List[str] =int(key_list[key_list.index(_UpperCamelCase ) - 2] )
UpperCAmelCase : Tuple =int(key_list[key_list.index(_UpperCamelCase ) - 1] )
UpperCAmelCase : Optional[Any] =orig_block_num - offset
UpperCAmelCase : List[str] =key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCAmelCase_ ( __lowerCAmelCase )-> int:
'''simple docstring'''
UpperCAmelCase : Dict =OrderedDict()
UpperCAmelCase : Dict =0, 0
for key, value in state_dict.items():
if key.startswith('''network''' ):
UpperCAmelCase : Tuple =key.replace('''network''' , '''poolformer.encoder''' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('''bias''' ) and "patch_embed" not in key:
patch_emb_offset += 1
UpperCAmelCase : List[Any] =key[: key.find('''proj''' )]
UpperCAmelCase : int =key.replace(_UpperCamelCase , f'''patch_embeddings.{total_embed_found}.''' )
UpperCAmelCase : str =key.replace('''proj''' , '''projection''' )
if key.endswith('''bias''' ):
total_embed_found += 1
if "patch_embeddings" in key:
UpperCAmelCase : List[Any] ='''poolformer.encoder.''' + key
if "mlp.fc1" in key:
UpperCAmelCase : str =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' )
if "mlp.fc2" in key:
UpperCAmelCase : Optional[Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' )
if "norm1" in key:
UpperCAmelCase : Dict =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm1''' , '''before_norm''' )
if "norm2" in key:
UpperCAmelCase : Union[str, Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm2''' , '''after_norm''' )
if "layer_scale_1" in key:
UpperCAmelCase : Dict =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' )
if "layer_scale_2" in key:
UpperCAmelCase : List[Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' )
if "head" in key:
UpperCAmelCase : Optional[Any] =key.replace('''head''' , '''classifier''' )
UpperCAmelCase : List[str] =value
return new_state_dict
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : Optional[int] ='''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : List[Any] =Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return image
@torch.no_grad()
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =PoolFormerConfig()
# set attributes based on model_name
UpperCAmelCase : Union[str, Any] ='''huggingface/label-files'''
UpperCAmelCase : Any =model_name[-3:]
UpperCAmelCase : Any =10_00
UpperCAmelCase : Optional[Any] ='''imagenet-1k-id2label.json'''
UpperCAmelCase : Union[str, Any] =(1, 10_00)
# set config attributes
UpperCAmelCase : Optional[Any] =json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Any ={int(_UpperCamelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : int =idalabel
UpperCAmelCase : Optional[int] ={v: k for k, v in idalabel.items()}
if size == "s12":
UpperCAmelCase : Optional[Any] =[2, 2, 6, 2]
UpperCAmelCase : Optional[int] =[64, 1_28, 3_20, 5_12]
UpperCAmelCase : Optional[int] =4.0
UpperCAmelCase : Any =0.9
elif size == "s24":
UpperCAmelCase : List[Any] =[4, 4, 12, 4]
UpperCAmelCase : str =[64, 1_28, 3_20, 5_12]
UpperCAmelCase : Union[str, Any] =4.0
UpperCAmelCase : Optional[Any] =0.9
elif size == "s36":
UpperCAmelCase : Optional[int] =[6, 6, 18, 6]
UpperCAmelCase : List[str] =[64, 1_28, 3_20, 5_12]
UpperCAmelCase : Dict =4.0
UpperCAmelCase : Union[str, Any] =1e-6
UpperCAmelCase : Union[str, Any] =0.9
elif size == "m36":
UpperCAmelCase : str =[6, 6, 18, 6]
UpperCAmelCase : Dict =[96, 1_92, 3_84, 7_68]
UpperCAmelCase : List[Any] =4.0
UpperCAmelCase : List[Any] =1e-6
UpperCAmelCase : str =0.95
elif size == "m48":
UpperCAmelCase : List[Any] =[8, 8, 24, 8]
UpperCAmelCase : Union[str, Any] =[96, 1_92, 3_84, 7_68]
UpperCAmelCase : Optional[int] =4.0
UpperCAmelCase : Dict =1e-6
UpperCAmelCase : Any =0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
UpperCAmelCase : Optional[Any] =PoolFormerImageProcessor(crop_pct=_UpperCamelCase )
# Prepare image
UpperCAmelCase : Tuple =prepare_img()
UpperCAmelCase : str =image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
UpperCAmelCase : List[Any] =torch.load(_UpperCamelCase , map_location=torch.device('''cpu''' ) )
# rename keys
UpperCAmelCase : Optional[int] =rename_keys(_UpperCamelCase )
# create HuggingFace model and load state dict
UpperCAmelCase : str =PoolFormerForImageClassification(_UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
model.eval()
# Define image processor
UpperCAmelCase : str =PoolFormerImageProcessor(crop_pct=_UpperCamelCase )
UpperCAmelCase : Any =image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values
# forward pass
UpperCAmelCase : List[Any] =model(_UpperCamelCase )
UpperCAmelCase : Union[str, Any] =outputs.logits
# define expected logit slices for different models
if size == "s12":
UpperCAmelCase : List[str] =torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
UpperCAmelCase : Optional[int] =torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
UpperCAmelCase : Dict =torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
UpperCAmelCase : Dict =torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
UpperCAmelCase : Dict =torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
model.save_pretrained(_UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 348 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase ( _a ):
lowerCamelCase_ : Any = '''megatron-bert'''
def __init__(self , __magic_name__=2_9056 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
snake_case_ : Union[str, Any] = vocab_size
snake_case_ : Dict = hidden_size
snake_case_ : Dict = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : int = hidden_act
snake_case_ : List[str] = intermediate_size
snake_case_ : Dict = hidden_dropout_prob
snake_case_ : str = attention_probs_dropout_prob
snake_case_ : str = max_position_embeddings
snake_case_ : Any = type_vocab_size
snake_case_ : int = initializer_range
snake_case_ : int = layer_norm_eps
snake_case_ : List[str] = position_embedding_type
snake_case_ : Dict = use_cache
| 279 | 0 |
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
lowercase__ = False
class __snake_case ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
def lowerCamelCase_ ( self) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self) -> Dict:
'''simple docstring'''
a__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion')
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowercase)
pipe.set_progress_bar_config(disable=lowercase)
a__: List[str] = 'A painting of a squirrel eating a burger '
a__: int = torch.manual_seed(0)
a__: int = pipe(
prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase)
a__: str = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase)
pipe.to(lowercase)
pipe.set_progress_bar_config(disable=lowercase)
a__: Union[str, Any] = generator.manual_seed(0)
a__: List[Any] = pipe(
prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def lowerCamelCase_ ( self) -> Optional[int]:
'''simple docstring'''
a__: List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(
'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa)
pipe.to(lowercase)
pipe.set_progress_bar_config(disable=lowercase)
a__: Optional[Any] = 'A painting of a squirrel eating a burger '
a__: Union[str, Any] = torch.manual_seed(0)
a__: int = pipe(
prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy').images
a__: Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
a__: List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 365 | """simple docstring"""
def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int:
a__: Any = limit + 1
a__: List[str] = [0] * limit
for first_term in range(1 , _SCREAMING_SNAKE_CASE ):
for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
a__: Any = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
a__: Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"{solution() = }")
| 203 | 0 |
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = 2
while i * i <= n:
_UpperCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def lowerCAmelCase__ ( ) -> str:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(a__ ) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
"""simple docstring"""
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
a : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ ):
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
self.check_model_type(lowerCAmelCase__ )
def __a ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Tuple:
a, a : List[str] = {}, {}
if padding is not None:
a : Union[str, Any] = padding
if truncation is not None:
a : Optional[int] = truncation
if top_k is not None:
a : int = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Union[str, Any]:
if isinstance(lowerCAmelCase__ , (Image.Image, str) ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
a : Optional[int] = {"image": image, "question": question}
else:
a : int = image
a : List[Any] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
return results
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Tuple:
a : str = load_image(inputs["image"] )
a : List[str] = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
a : Any = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework )
model_inputs.update(lowerCAmelCase__ )
return model_inputs
def __a ( self , lowerCAmelCase__ ) -> Any:
a : int = self.model(**lowerCAmelCase__ )
return model_outputs
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=5 ) -> str:
if top_k > self.model.config.num_labels:
a : List[Any] = self.model.config.num_labels
if self.framework == "pt":
a : List[Any] = model_outputs.logits.sigmoid()[0]
a, a : int = probs.topk(lowerCAmelCase__ )
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
a : Union[str, Any] = scores.tolist()
a : Any = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
| 79 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( _lowercase : list[list[int]] ) ->int:
'''simple docstring'''
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(_lowercase ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(_lowercase ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 79 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase__ = logging.getLogger(__name__)
@dataclass
class a :
_snake_case : str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
_snake_case : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
_snake_case : Optional[str] = field(
default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} )
_snake_case : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
_snake_case : bool = field(default=lowerCAmelCase_ , metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_snake_case : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
@dataclass
class a :
_snake_case : str = field(
metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} )
_snake_case : Optional[str] = field(
default=lowerCAmelCase_ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , )
_snake_case : int = field(
default=1_28 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
_snake_case : bool = field(
default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def __UpperCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
_UpperCAmelCase = import_module("""tasks""" )
try:
_UpperCAmelCase = getattr(lowercase ,model_args.task_type )
_UpperCAmelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" ,lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
_UpperCAmelCase = token_classification_task.get_labels(data_args.labels )
_UpperCAmelCase = dict(enumerate(lowercase ) )
_UpperCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowercase ,idalabel=lowercase ,labelaid={label: i for i, label in enumerate(lowercase )} ,cache_dir=model_args.cache_dir ,)
_UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast ,)
_UpperCAmelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=lowercase ,cache_dir=model_args.cache_dir ,)
# Get datasets
_UpperCAmelCase = (
TokenClassificationDataset(
token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,)
if training_args.do_train
else None
)
_UpperCAmelCase = (
TokenClassificationDataset(
token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,)
if training_args.do_eval
else None
)
def align_predictions(lowercase ,lowercase ) -> Tuple[List[int], List[int]]:
_UpperCAmelCase = np.argmax(lowercase ,axis=2 )
_UpperCAmelCase , _UpperCAmelCase = preds.shape
_UpperCAmelCase = [[] for _ in range(lowercase )]
_UpperCAmelCase = [[] for _ in range(lowercase )]
for i in range(lowercase ):
for j in range(lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(lowercase ) -> Dict:
_UpperCAmelCase , _UpperCAmelCase = align_predictions(p.predictions ,p.label_ids )
return {
"accuracy_score": accuracy_score(lowercase ,lowercase ),
"precision": precision_score(lowercase ,lowercase ),
"recall": recall_score(lowercase ,lowercase ),
"f1": fa_score(lowercase ,lowercase ),
}
# Data collator
_UpperCAmelCase = DataCollatorWithPadding(lowercase ,pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCAmelCase = Trainer(
model=lowercase ,args=lowercase ,train_dataset=lowercase ,eval_dataset=lowercase ,compute_metrics=lowercase ,data_collator=lowercase ,)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCAmelCase = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_UpperCAmelCase = trainer.evaluate()
_UpperCAmelCase = os.path.join(training_args.output_dir ,"""eval_results.txt""" )
if trainer.is_world_process_zero():
with open(lowercase ,"""w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" ,lowercase ,lowercase )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowercase )
# Predict
if training_args.do_predict:
_UpperCAmelCase = TokenClassificationDataset(
token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.test ,)
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = trainer.predict(lowercase )
_UpperCAmelCase , _UpperCAmelCase = align_predictions(lowercase ,lowercase )
_UpperCAmelCase = os.path.join(training_args.output_dir ,"""test_results.txt""" )
if trainer.is_world_process_zero():
with open(lowercase ,"""w""" ) as writer:
for key, value in metrics.items():
logger.info(""" %s = %s""" ,lowercase ,lowercase )
writer.write("""%s = %s\n""" % (key, value) )
# Save predictions
_UpperCAmelCase = os.path.join(training_args.output_dir ,"""test_predictions.txt""" )
if trainer.is_world_process_zero():
with open(lowercase ,"""w""" ) as writer:
with open(os.path.join(data_args.data_dir ,"""test.txt""" ) ,"""r""" ) as f:
token_classification_task.write_predictions_to_file(lowercase ,lowercase ,lowercase )
return results
def __UpperCAmelCase ( lowercase ):
"""simple docstring"""
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 289 | """simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
_snake_case : int = StableUnCLIPPipeline
_snake_case : str = TEXT_TO_IMAGE_PARAMS
_snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
_snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_snake_case : str = False
def lowerCAmelCase_ ( self : Optional[int] ):
_UpperCAmelCase = 32
_UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , )
torch.manual_seed(0 )
_UpperCAmelCase = DDPMScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , )
# regular denoising components
torch.manual_seed(0 )
_UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase )
_UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , )
torch.manual_seed(0 )
_UpperCAmelCase = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL()
_UpperCAmelCase = {
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ):
if str(__lowerCAmelCase ).startswith("""mps""" ):
_UpperCAmelCase = torch.manual_seed(__lowerCAmelCase )
else:
_UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_UpperCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase_ ( self : Optional[int] ):
_UpperCAmelCase = torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_UpperCAmelCase = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : List[Any] ):
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" )
_UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
_UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" )
_UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = pipe(
"""anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , )
_UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 289 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase( snake_case_ ):
lowercase__ = 42
class _UpperCAmelCase( nn.Module ):
def __init__( self , __a=3 , __a=3 , __a=("DownEncoderBlock2D",) , __a=(64,) , __a=2 , __a=32 , __a="silu" , __a=True , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = layers_per_block
_UpperCamelCase = torch.nn.Convad(
__a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase = None
_UpperCamelCase = nn.ModuleList([])
# down
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(__a):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(__a) - 1
_UpperCamelCase = get_down_block(
__a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , )
self.down_blocks.append(__a)
# mid
_UpperCamelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# out
_UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6)
_UpperCamelCase = nn.SiLU()
_UpperCamelCase = 2 * out_channels if double_z else out_channels
_UpperCamelCase = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1)
_UpperCamelCase = False
def UpperCAmelCase ( self , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = x
_UpperCamelCase = self.conv_in(__a)
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a):
def custom_forward(*__a):
return module(*__a)
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0'''):
for down_block in self.down_blocks:
_UpperCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a) , __a , use_reentrant=__a)
# middle
_UpperCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block) , __a , use_reentrant=__a)
else:
for down_block in self.down_blocks:
_UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__a) , __a)
# middle
_UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , __a)
else:
# down
for down_block in self.down_blocks:
_UpperCamelCase = down_block(__a)
# middle
_UpperCamelCase = self.mid_block(__a)
# post-process
_UpperCamelCase = self.conv_norm_out(__a)
_UpperCamelCase = self.conv_act(__a)
_UpperCamelCase = self.conv_out(__a)
return sample
class _UpperCAmelCase( nn.Module ):
def __init__( self , __a=3 , __a=3 , __a=("UpDecoderBlock2D",) , __a=(64,) , __a=2 , __a=32 , __a="silu" , __a="group" , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = layers_per_block
_UpperCamelCase = nn.Convad(
__a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase = None
_UpperCamelCase = nn.ModuleList([])
_UpperCamelCase = in_channels if norm_type == 'spatial' else None
# mid
_UpperCamelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# up
_UpperCamelCase = list(reversed(__a))
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__a):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = i == len(__a) - 1
_UpperCamelCase = get_up_block(
__a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , )
self.up_blocks.append(__a)
_UpperCamelCase = output_channel
# out
if norm_type == "spatial":
_UpperCamelCase = SpatialNorm(block_out_channels[0] , __a)
else:
_UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6)
_UpperCamelCase = nn.SiLU()
_UpperCamelCase = nn.Convad(block_out_channels[0] , __a , 3 , padding=1)
_UpperCamelCase = False
def UpperCAmelCase ( self , __a , __a=None) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = z
_UpperCamelCase = self.conv_in(__a)
_UpperCamelCase = next(iter(self.up_blocks.parameters())).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a):
def custom_forward(*__a):
return module(*__a)
return custom_forward
if is_torch_version('''>=''' , '''1.11.0'''):
# middle
_UpperCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block) , __a , __a , use_reentrant=__a)
_UpperCamelCase = sample.to(__a)
# up
for up_block in self.up_blocks:
_UpperCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a) , __a , __a , use_reentrant=__a)
else:
# middle
_UpperCamelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block) , __a , __a)
_UpperCamelCase = sample.to(__a)
# up
for up_block in self.up_blocks:
_UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__a) , __a , __a)
else:
# middle
_UpperCamelCase = self.mid_block(__a , __a)
_UpperCamelCase = sample.to(__a)
# up
for up_block in self.up_blocks:
_UpperCamelCase = up_block(__a , __a)
# post-process
if latent_embeds is None:
_UpperCamelCase = self.conv_norm_out(__a)
else:
_UpperCamelCase = self.conv_norm_out(__a , __a)
_UpperCamelCase = self.conv_act(__a)
_UpperCamelCase = self.conv_out(__a)
return sample
class _UpperCAmelCase( nn.Module ):
def __init__( self , __a , __a , __a , __a=None , __a="random" , __a=False , __a=True) -> Dict:
'''simple docstring'''
super().__init__()
_UpperCamelCase = n_e
_UpperCamelCase = vq_embed_dim
_UpperCamelCase = beta
_UpperCamelCase = legacy
_UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e)
_UpperCamelCase = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap)))
_UpperCamelCase = self.used.shape[0]
_UpperCamelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
_UpperCamelCase = self.re_embed
_UpperCamelCase = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''')
else:
_UpperCamelCase = n_e
_UpperCamelCase = sane_index_shape
def UpperCAmelCase ( self , __a) -> str:
'''simple docstring'''
_UpperCamelCase = inds.shape
assert len(__a) > 1
_UpperCamelCase = inds.reshape(ishape[0] , -1)
_UpperCamelCase = self.used.to(__a)
_UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long()
_UpperCamelCase = match.argmax(-1)
_UpperCamelCase = match.sum(2) < 1
if self.unknown_index == "random":
_UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device)
else:
_UpperCamelCase = self.unknown_index
return new.reshape(__a)
def UpperCAmelCase ( self , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = inds.shape
assert len(__a) > 1
_UpperCamelCase = inds.reshape(ishape[0] , -1)
_UpperCamelCase = self.used.to(__a)
if self.re_embed > self.used.shape[0]: # extra token
_UpperCamelCase = 0 # simply set to zero
_UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a)
return back.reshape(__a)
def UpperCAmelCase ( self , __a) -> Tuple:
'''simple docstring'''
_UpperCamelCase = z.permute(0 , 2 , 3 , 1).contiguous()
_UpperCamelCase = z.view(-1 , self.vq_embed_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
_UpperCamelCase = torch.argmin(torch.cdist(__a , self.embedding.weight) , dim=1)
_UpperCamelCase = self.embedding(__a).view(z.shape)
_UpperCamelCase = None
_UpperCamelCase = None
# compute loss for embedding
if not self.legacy:
_UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
else:
_UpperCamelCase = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
_UpperCamelCase = z + (z_q - z).detach()
# reshape back to match original input shape
_UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous()
if self.remap is not None:
_UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis
_UpperCamelCase = self.remap_to_used(__a)
_UpperCamelCase = min_encoding_indices.reshape(-1 , 1) # flatten
if self.sane_index_shape:
_UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3])
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def UpperCAmelCase ( self , __a , __a) -> Optional[Any]:
'''simple docstring'''
if self.remap is not None:
_UpperCamelCase = indices.reshape(shape[0] , -1) # add batch axis
_UpperCamelCase = self.unmap_to_all(__a)
_UpperCamelCase = indices.reshape(-1) # flatten again
# get quantized latent vectors
_UpperCamelCase = self.embedding(__a)
if shape is not None:
_UpperCamelCase = z_q.view(__a)
# reshape back to match original input shape
_UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous()
return z_q
class _UpperCAmelCase( snake_case_ ):
def __init__( self , __a , __a=False) -> List[str]:
'''simple docstring'''
_UpperCamelCase = parameters
_UpperCamelCase = torch.chunk(__a , 2 , dim=1)
_UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0)
_UpperCamelCase = deterministic
_UpperCamelCase = torch.exp(0.5 * self.logvar)
_UpperCamelCase = torch.exp(self.logvar)
if self.deterministic:
_UpperCamelCase = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype)
def UpperCAmelCase ( self , __a = None) -> torch.FloatTensor:
'''simple docstring'''
_UpperCamelCase = randn_tensor(
self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype)
_UpperCamelCase = self.mean + self.std * sample
return x
def UpperCAmelCase ( self , __a=None) -> List[Any]:
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3])
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def UpperCAmelCase ( self , __a , __a=[1, 2, 3]) -> int:
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0])
_UpperCamelCase = np.log(2.0 * np.pi)
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=__a)
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
return self.mean
| 356 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = (
'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'
'It takes two arguments named `image` which should be the original image, and `label` which should be a text '
'describing the elements what should be identified in the segmentation mask. The tool returns the mask.'
)
lowercase__ = 'CIDAS/clipseg-rd64-refined'
lowercase__ = 'image_segmenter'
lowercase__ = CLIPSegForImageSegmentation
lowercase__ = ['image', 'text']
lowercase__ = ['image']
def __init__( self , *__a , **__a) -> Any:
'''simple docstring'''
requires_backends(self , ['''vision'''])
super().__init__(*__a , **__a)
def UpperCAmelCase ( self , __a , __a) -> Dict:
'''simple docstring'''
return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''')
def UpperCAmelCase ( self , __a) -> Tuple:
'''simple docstring'''
with torch.no_grad():
_UpperCamelCase = self.model(**__a).logits
return logits
def UpperCAmelCase ( self , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = outputs.cpu().detach().numpy()
_UpperCamelCase = 0
_UpperCamelCase = 1
return Image.fromarray((array * 2_55).astype(np.uinta))
| 100 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class a__ :
def __init__( self : Tuple , a : Optional[int] , a : Optional[Any]=13 , a : List[Any]=64 , a : str=2 , a : int=3 , a : Union[str, Any]=True , a : List[str]=True , a : str=32 , a : List[Any]=5 , a : int=4 , a : Optional[int]=37 , a : Any="gelu" , a : List[Any]=0.1 , a : Tuple=0.1 , a : int=10 , a : Optional[int]=0.02 , a : int=[1, 16, 4, 4] , a : Dict=None , ):
"""simple docstring"""
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = scope
__lowerCamelCase = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
__lowerCamelCase = (self.image_size // 32) ** 2
__lowerCamelCase = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 16, 32],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=a , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Any , a : Optional[int] , a : Tuple ):
"""simple docstring"""
__lowerCamelCase = ViTHybridModel(config=a )
model.to(a )
model.eval()
__lowerCamelCase = model(a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any , a : Dict , a : Dict , a : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = self.type_sequence_label_size
__lowerCamelCase = ViTHybridForImageClassification(a )
model.to(a )
model.eval()
__lowerCamelCase = model(a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : Optional[Any] =(ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
lowerCamelCase : Tuple =(
{"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase : List[Any] =False
lowerCamelCase : Tuple =False
lowerCamelCase : List[str] =False
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = ViTHybridModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(a )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase = _config_zero_init(a )
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(config=a )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
__lowerCamelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = ViTHybridModel.from_pretrained(a )
self.assertIsNotNone(a )
def __lowerCAmelCase ( ) -> Optional[int]:
__lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class a__ ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
a )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=a , return_tensors='''pt''' ).to(a )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**a )
# verify the logits
__lowerCamelCase = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , a )
__lowerCamelCase = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
@slow
@require_accelerate
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
__lowerCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
__lowerCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' )
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=a , return_tensors='''pt''' )
__lowerCamelCase = model(**a )
__lowerCamelCase = outputs.logits
# model predicts one of the 1000 ImageNet classes
__lowerCamelCase = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
| 67 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase ={
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase =[
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
__UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 67 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A : int = logging.get_logger(__name__)
__A : Optional[int] = {
'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json',
}
class __UpperCamelCase ( _A ):
SCREAMING_SNAKE_CASE = "instructblip_vision_model"
def __init__(self : int , __SCREAMING_SNAKE_CASE : str=1_4_0_8 , __SCREAMING_SNAKE_CASE : Optional[int]=6_1_4_4 , __SCREAMING_SNAKE_CASE : Optional[Any]=3_9 , __SCREAMING_SNAKE_CASE : Dict=1_6 , __SCREAMING_SNAKE_CASE : Tuple=2_2_4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_4 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=1E-6 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : List[str]=1E-10 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , **__SCREAMING_SNAKE_CASE : Optional[int] , ):
super().__init__(**__SCREAMING_SNAKE_CASE)
A = hidden_size
A = intermediate_size
A = num_hidden_layers
A = num_attention_heads
A = patch_size
A = image_size
A = initializer_range
A = attention_dropout
A = layer_norm_eps
A = hidden_act
A = qkv_bias
@classmethod
def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : Tuple):
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE)
A , A = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type") == "instructblip":
A = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
class __UpperCamelCase ( _A ):
SCREAMING_SNAKE_CASE = "instructblip_qformer"
def __init__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=3_0_5_2_2 , __SCREAMING_SNAKE_CASE : str=7_6_8 , __SCREAMING_SNAKE_CASE : Dict=1_2 , __SCREAMING_SNAKE_CASE : int=1_2 , __SCREAMING_SNAKE_CASE : Tuple=3_0_7_2 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 , __SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , __SCREAMING_SNAKE_CASE : str=1E-12 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : str=1_4_0_8 , **__SCREAMING_SNAKE_CASE : Tuple , ):
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
A = vocab_size
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = hidden_act
A = intermediate_size
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = max_position_embeddings
A = initializer_range
A = layer_norm_eps
A = position_embedding_type
A = cross_attention_frequency
A = encoder_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE__ (cls : Any , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : Any):
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE)
A , A = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type") == "instructblip":
A = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
class __UpperCamelCase ( _A ):
SCREAMING_SNAKE_CASE = "instructblip"
SCREAMING_SNAKE_CASE = True
def __init__(self : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=3_2 , **__SCREAMING_SNAKE_CASE : List[str]):
super().__init__(**__SCREAMING_SNAKE_CASE)
if vision_config is None:
A = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.")
if qformer_config is None:
A = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.")
if text_config is None:
A = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
A = InstructBlipVisionConfig(**__SCREAMING_SNAKE_CASE)
A = InstructBlipQFormerConfig(**__SCREAMING_SNAKE_CASE)
A = text_config["model_type"] if "model_type" in text_config else "opt"
A = CONFIG_MAPPING[text_model_type](**__SCREAMING_SNAKE_CASE)
A = self.text_config.tie_word_embeddings
A = self.text_config.is_encoder_decoder
A = num_query_tokens
A = self.vision_config.hidden_size
A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
A = 1.0
A = 0.0_2
@classmethod
def SCREAMING_SNAKE_CASE__ (cls : List[Any] , __SCREAMING_SNAKE_CASE : InstructBlipVisionConfig , __SCREAMING_SNAKE_CASE : InstructBlipQFormerConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Tuple , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = copy.deepcopy(self.__dict__)
A = self.vision_config.to_dict()
A = self.qformer_config.to_dict()
A = self.text_config.to_dict()
A = self.__class__.model_type
return output
| 57 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Union[str, Any] = {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __UpperCamelCase ( _A ):
SCREAMING_SNAKE_CASE = "speech_to_text_2"
SCREAMING_SNAKE_CASE = ["past_key_values"]
SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__(self : Any , __SCREAMING_SNAKE_CASE : List[str]=1_0_0_0_0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Dict=2_0_4_8 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : int=1_0_2_4 , **__SCREAMING_SNAKE_CASE : str , ):
A = vocab_size
A = d_model
A = decoder_ffn_dim
A = decoder_layers
A = decoder_attention_heads
A = dropout
A = attention_dropout
A = activation_dropout
A = activation_function
A = init_std
A = decoder_layerdrop
A = use_cache
A = decoder_layers
A = scale_embedding # scale factor will be sqrt(d_model) if True
A = max_target_positions
super().__init__(
pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
| 57 | 1 |
'''simple docstring'''
def snake_case__ ( _A: int = 1000 ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase = 2**power
lowerCAmelCase = str(__lowerCAmelCase )
lowerCAmelCase = list(__lowerCAmelCase )
lowerCAmelCase = 0
for i in list_num:
sum_of_num += int(__lowerCAmelCase )
return sum_of_num
if __name__ == "__main__":
__lowercase = int(input('''Enter the power of 2: ''').strip())
print('''2 ^ ''', power, ''' = ''', 2**power)
__lowercase = solution(power)
print('''Sum of the digits is: ''', result)
| 272 |
from pathlib import Path
import fire
def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int ):
"""simple docstring"""
lowerCAmelCase_ = Path(__lowerCAmelCase )
lowerCAmelCase_ = Path(__lowerCAmelCase )
dest_dir.mkdir(exist_ok=__lowerCAmelCase )
for path in src_dir.iterdir():
lowerCAmelCase_ = [x.rstrip() for x in list(path.open().readlines() )][:n]
lowerCAmelCase_ = dest_dir.joinpath(path.name )
print(__lowerCAmelCase )
dest_path.open("w" ).write("\n".join(__lowerCAmelCase ) )
if __name__ == "__main__":
fire.Fire(minify)
| 231 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class UpperCAmelCase_ ( A_ ):
lowercase__ = '''audio-spectrogram-transformer'''
def __init__( self : Tuple , snake_case_ : Tuple=768 , snake_case_ : Tuple=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Optional[int]=3_072 , snake_case_ : int="gelu" , snake_case_ : Optional[Any]=0.0 , snake_case_ : List[str]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : int=16 , snake_case_ : Any=True , snake_case_ : Dict=10 , snake_case_ : List[Any]=10 , snake_case_ : str=1_024 , snake_case_ : Optional[int]=128 , **snake_case_ : Optional[Any] , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**snake_case_ )
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = layer_norm_eps
A__ = patch_size
A__ = qkv_bias
A__ = frequency_stride
A__ = time_stride
A__ = max_length
A__ = num_mel_bins
| 230 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class UpperCAmelCase_ ( A_ ):
lowercase__ = '''dpt'''
def __init__( self : List[Any] , snake_case_ : Union[str, Any]=768 , snake_case_ : Tuple=12 , snake_case_ : Tuple=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Dict="gelu" , snake_case_ : Tuple=0.0 , snake_case_ : int=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : Tuple=384 , snake_case_ : Tuple=16 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=False , snake_case_ : Any=True , snake_case_ : Any=[2, 5, 8, 11] , snake_case_ : Union[str, Any]="project" , snake_case_ : Union[str, Any]=[4, 2, 1, 0.5] , snake_case_ : List[str]=[96, 192, 384, 768] , snake_case_ : int=256 , snake_case_ : Tuple=-1 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : List[Any]=0.4 , snake_case_ : Optional[Any]=255 , snake_case_ : List[str]=0.1 , snake_case_ : List[str]=[1, 1_024, 24, 24] , snake_case_ : Union[str, Any]=[0, 1] , snake_case_ : Any=None , **snake_case_ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**snake_case_ )
A__ = hidden_size
A__ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("Initializing the config with a `BiT` backbone." )
A__ = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
A__ = BitConfig(**snake_case_ )
elif isinstance(snake_case_ , snake_case_ ):
logger.info("Initializing the config with a `BiT` backbone." )
A__ = BitConfig(**snake_case_ )
elif isinstance(snake_case_ , snake_case_ ):
A__ = backbone_config
else:
raise ValueError(
F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" )
A__ = backbone_featmap_shape
A__ = neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." )
else:
A__ = None
A__ = None
A__ = []
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = layer_norm_eps
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = qkv_bias
A__ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" )
A__ = readout_type
A__ = reassemble_factors
A__ = neck_hidden_sizes
A__ = fusion_hidden_size
A__ = head_in_index
A__ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
A__ = use_auxiliary_head
A__ = auxiliary_loss_weight
A__ = semantic_loss_ignore_index
A__ = semantic_classifier_dropout
def __magic_name__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
A__ = self.backbone_config.to_dict()
A__ = self.__class__.model_type
return output
| 230 | 1 |
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = prime_factors(_A )
if is_square_free(_A ):
return -1 if len(_A ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
def UpperCamelCase_( snake_case__: int = 2_00 ) -> int:
UpperCAmelCase__ = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
UpperCAmelCase__ = [0] * (pence + 1)
UpperCAmelCase__ = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(snake_case__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 335 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
UpperCamelCase_ = 0
UpperCamelCase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
UpperCamelCase_ = tuple[int, int]
class a_ :
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
_lowerCAmelCase : Optional[int] = pos_x
_lowerCAmelCase : List[str] = pos_y
_lowerCAmelCase : Tuple = (pos_y, pos_x)
_lowerCAmelCase : List[Any] = goal_x
_lowerCAmelCase : int = goal_y
_lowerCAmelCase : Union[str, Any] = g_cost
_lowerCAmelCase : List[Any] = parent
_lowerCAmelCase : List[Any] = self.calculate_heuristic()
_lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost
def __UpperCamelCase ( self ):
_lowerCAmelCase : List[str] = self.pos_x - self.goal_x
_lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(snake_case_ ) + abs(snake_case_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , snake_case_ ):
return self.f_cost < other.f_cost
class a_ :
def __init__( self , snake_case_ , snake_case_ ):
_lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ )
_lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ )
_lowerCAmelCase : List[str] = [self.start]
_lowerCAmelCase : list[Node] = []
_lowerCAmelCase : List[str] = False
def __UpperCamelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
_lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(snake_case_ )
self.closed_nodes.append(snake_case_ )
_lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(snake_case_ )
else:
# retrieve the best current path
_lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(snake_case_ )
else:
self.open_nodes.append(snake_case_ )
return [self.start.pos]
def __UpperCamelCase ( self , snake_case_ ):
_lowerCAmelCase : Union[str, Any] = []
for action in delta:
_lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1]
_lowerCAmelCase : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) )
return successors
def __UpperCamelCase ( self , snake_case_ ):
_lowerCAmelCase : List[Any] = node
_lowerCAmelCase : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_lowerCAmelCase : Optional[int] = current_node.parent
path.reverse()
return path
class a_ :
def __init__( self , snake_case_ , snake_case_ ):
_lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ )
_lowerCAmelCase : int = AStar(snake_case_ , snake_case_ )
_lowerCAmelCase : Optional[int] = False
def __UpperCamelCase ( self ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
_lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 )
_lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
snake_case_ , snake_case_ )
self.fwd_astar.closed_nodes.append(snake_case_ )
self.bwd_astar.closed_nodes.append(snake_case_ )
_lowerCAmelCase : List[str] = current_bwd_node
_lowerCAmelCase : Dict = current_fwd_node
_lowerCAmelCase : Any = {
self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ),
self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(snake_case_ )
else:
# retrieve the best current path
_lowerCAmelCase : List[Any] = astar.open_nodes.pop(
astar.open_nodes.index(snake_case_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(snake_case_ )
else:
astar.open_nodes.append(snake_case_ )
return [self.fwd_astar.start.pos]
def __UpperCamelCase ( self , snake_case_ , snake_case_ ):
_lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ )
_lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ )
bwd_path.pop()
bwd_path.reverse()
_lowerCAmelCase : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
UpperCamelCase_ = (0, 0)
UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
UpperCamelCase_ = time.time()
UpperCamelCase_ = AStar(init, goal)
UpperCamelCase_ = a_star.search()
UpperCamelCase_ = time.time() - start_time
print(F'AStar execution time = {end_time:f} seconds')
UpperCamelCase_ = time.time()
UpperCamelCase_ = BidirectionalAStar(init, goal)
UpperCamelCase_ = time.time() - bd_start_time
print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 309 |
'''simple docstring'''
import argparse
import os
import re
UpperCamelCase_ = """src/diffusers"""
# Pattern that looks at the indentation in a line.
UpperCamelCase_ = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""")
def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str:
_lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase )
return "" if search is None else search.groups()[0]
def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str:
_lowerCAmelCase : Union[str, Any] = 0
_lowerCAmelCase : Tuple = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(_lowerCamelCase ):
index += 1
_lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )]
else:
_lowerCAmelCase : List[str] = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : Union[str, Any] = [lines[index]]
index += 1
while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(_lowerCamelCase ) )
if index < len(_lowerCamelCase ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Dict = []
else:
blocks.append("""\n""".join(_lowerCamelCase ) )
_lowerCAmelCase : Tuple = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_lowerCamelCase ) > 0:
blocks.append("""\n""".join(_lowerCamelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_lowerCamelCase ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any:
def _inner(_lowerCamelCase : Any ):
return key(_lowerCamelCase ).lower().replace("""_""" , """""" )
return _inner
def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]:
# If no key is provided, we use a noop.
def noop(_lowerCamelCase : List[Any] ):
return x
if key is None:
_lowerCAmelCase : Union[str, Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()]
_lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase )
return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase )
def _UpperCAmelCase ( _lowerCamelCase : str ) -> str:
# This inner function sort imports between [ ].
def _replace(_lowerCamelCase : Union[str, Any] ):
_lowerCAmelCase : Optional[Any] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]"
_lowerCAmelCase : Optional[int] = import_statement.split("""\n""" )
if len(_lowerCamelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1
_lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )
_lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_lowerCamelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : Dict = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] )
return "\n".join(_lowerCamelCase )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase )
return import_statement
def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]:
with open(_lowerCamelCase , """r""" ) as f:
_lowerCAmelCase : Optional[Any] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(
_lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_lowerCamelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : List[str] = main_blocks[block_idx]
_lowerCAmelCase : int = block.split("""\n""" )
# Get to the start of the imports.
_lowerCAmelCase : Any = 0
while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase )
else:
line_idx += 1
if line_idx >= len(_lowerCamelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None]
_lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : List[Any] = 0
_lowerCAmelCase : List[str] = []
for i in range(len(_lowerCamelCase ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(_lowerCamelCase )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(_lowerCamelCase ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_lowerCamelCase , """w""" ) as f:
f.write("""\n""".join(_lowerCamelCase ) )
def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any:
_lowerCAmelCase : List[Any] = []
for root, _, files in os.walk(_lowerCamelCase ):
if "__init__.py" in files:
_lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase )
if result:
_lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )]
if len(_lowerCamelCase ) > 0:
raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
UpperCamelCase_ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 309 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase : int = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=8 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowercase_ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=5_12 , __lowerCAmelCase=5_12 ) -> Any:
'''simple docstring'''
lowercase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
lowercase_ = np.array(pil_image.convert("""RGB""" ) )
lowercase_ = arr.astype(np.floataa ) / 127.5 - 1
lowercase_ = np.transpose(__lowerCAmelCase , [2, 0, 1] )
lowercase_ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 )
return image
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , )
lowercase_ = 2 ** (len(self.movq.config.block_out_channels) - 1)
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = min(int(num_inference_steps * strength) , lowerCAmelCase_)
lowercase_ = max(num_inference_steps - init_timestep , 0)
lowercase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=None):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_)}''')
lowercase_ = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_)
lowercase_ = batch_size * num_images_per_prompt
if image.shape[1] == 4:
lowercase_ = image
else:
if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(lowerCAmelCase_) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(lowerCAmelCase_)}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''')
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = [
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCAmelCase_)
]
lowercase_ = torch.cat(lowerCAmelCase_ , dim=0)
else:
lowercase_ = self.movq.encode(lowerCAmelCase_).latent_dist.sample(lowerCAmelCase_)
lowercase_ = self.movq.config.scaling_factor * init_latents
lowercase_ = torch.cat([init_latents] , dim=0)
lowercase_ = init_latents.shape
lowercase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_)
# get latents
lowercase_ = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = init_latents
return latents
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple=0):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""")
lowercase_ = torch.device(F'''cuda:{gpu_id}''')
lowercase_ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any]=0):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""")
lowercase_ = torch.device(F'''cuda:{gpu_id}''')
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase_)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowercase_ = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowercase_ , lowercase_ = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_)
# We'll offload the last model manually.
lowercase_ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook"""):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCAmelCase_ , """_hf_hook""")
and hasattr(module._hf_hook , """execution_device""")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowerCAmelCase_)
def __call__( self : int , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ):
"""simple docstring"""
lowercase_ = self._execution_device
lowercase_ = guidance_scale > 1.0
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = torch.cat(lowerCAmelCase_ , dim=0)
lowercase_ = image_embeds.shape[0]
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = torch.cat(lowerCAmelCase_ , dim=0)
if do_classifier_free_guidance:
lowercase_ = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0)
lowercase_ = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0)
lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase_)
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = [image]
if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor)) for i in image):
raise ValueError(
F'''Input is in incorrect format: {[type(lowerCAmelCase_) for i in image]}. Currently, we only support PIL image and pytorch tensor''')
lowercase_ = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) for i in image] , dim=0)
lowercase_ = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_)
lowercase_ = self.movq.encode(lowerCAmelCase_)["""latents"""]
lowercase_ = latents.repeat_interleave(lowerCAmelCase_ , dim=0)
self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_)
lowercase_ , lowercase_ = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt)
lowercase_ , lowercase_ = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor)
lowercase_ = self.prepare_latents(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_)
for i, t in enumerate(self.progress_bar(lowerCAmelCase_)):
# expand the latents if we are doing classifier free guidance
lowercase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
lowercase_ = {"""image_embeds""": image_embeds}
lowercase_ = self.unet(
sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0]
if do_classifier_free_guidance:
lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1)
lowercase_ , lowercase_ = noise_pred.chunk(2)
lowercase_ , lowercase_ = variance_pred.chunk(2)
lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , """variance_type""")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
lowercase_ = self.scheduler.step(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0]
# post-processing
lowercase_ = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_)["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''')
if output_type in ["np", "pil"]:
lowercase_ = image * 0.5 + 0.5
lowercase_ = image.clamp(0 , 1)
lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
lowercase_ = self.numpy_to_pil(lowerCAmelCase_)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_)
| 313 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313 | 1 |
"""simple docstring"""
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( _UpperCAmelCase ):
def __init__( self , lowercase , lowercase=768 ) -> int:
super().__init__(lowercase )
lowerCAmelCase = proj_size
lowerCAmelCase = CLIPVisionModel(lowercase )
lowerCAmelCase = PaintByExampleMapper(lowercase )
lowerCAmelCase = nn.LayerNorm(config.hidden_size )
lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def _snake_case ( self , lowercase , lowercase=False ) -> Optional[Any]:
lowerCAmelCase = self.model(pixel_values=lowercase )
lowerCAmelCase = clip_output.pooler_output
lowerCAmelCase = self.mapper(latent_states[:, None] )
lowerCAmelCase = self.final_layer_norm(lowercase )
lowerCAmelCase = self.proj_out(lowercase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class lowercase ( nn.Module ):
def __init__( self , lowercase ) -> str:
super().__init__()
lowerCAmelCase = (config.num_hidden_layers + 1) // 5
lowerCAmelCase = config.hidden_size
lowerCAmelCase = 1
lowerCAmelCase = nn.ModuleList(
[
BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn="""gelu""" , attention_bias=lowercase )
for _ in range(lowercase )
] )
def _snake_case ( self , lowercase ) -> Optional[int]:
for block in self.blocks:
lowerCAmelCase = block(lowercase )
return hidden_states
| 46 |
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> int:
return int(input_a == input_a == 0 )
def UpperCamelCase ( ) -> None:
print('Truth Table of NOR Gate:' )
print('| Input 1 | Input 2 | Output |' )
print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 119 | 0 |
"""simple docstring"""
from math import factorial
SCREAMING_SNAKE_CASE__:List[str] = {str(digit): factorial(digit) for digit in range(10)}
def _lowerCamelCase( a ):
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError("Parameter number must be int" )
if number < 0:
raise ValueError("Parameter number must be greater than or equal to 0" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) )
def _lowerCamelCase( a = 6_0 , a = 1_0_0_0_0_0_0 ):
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError("Parameters chain_length and number_limit must be int" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"Parameters chain_length and number_limit must be greater than 0" )
# the counter for the chains with the exact desired length
__a = 0
# the cached sizes of the previous chains
__a = {}
for start_chain_element in range(1 , _lowerCAmelCase ):
# The temporary set will contain the elements of the chain
__a = set()
__a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
__a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(_lowerCAmelCase )
chain_set_length += 1
__a = digit_factorial_sum(_lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
__a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution()}''')
| 371 | """simple docstring"""
import os
def _lowerCamelCase( ):
with open(os.path.dirname(a ) + "/grid.txt" ) as f:
__a = [] # noqa: E741
for _ in range(2_0 ):
l.append([int(a ) for x in f.readline().split()] )
__a = 0
# right
for i in range(2_0 ):
for j in range(1_7 ):
__a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
__a = temp
# down
for i in range(1_7 ):
for j in range(2_0 ):
__a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
__a = temp
# diagonal 1
for i in range(1_7 ):
for j in range(1_7 ):
__a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
__a = temp
# diagonal 2
for i in range(1_7 ):
for j in range(3 , 2_0 ):
__a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
__a = temp
return maximum
if __name__ == "__main__":
print(solution())
| 268 | 0 |
'''simple docstring'''
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Tuple:
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match'''
UpperCAmelCase : Any = nn.Parameter(_lowercase )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match'''
UpperCAmelCase : Dict = nn.Parameter(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple:
# set torch weights for 1-to-1 comparison
UpperCAmelCase : int = np.asarray(weights[0] )
UpperCAmelCase : Dict = np.asarray(weights[1] )
UpperCAmelCase : Any = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , )
set_param(
torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
# set torch weights for 1-to-1 comparison
UpperCAmelCase : int = np.asarray(weights[0] )
UpperCAmelCase : List[str] = np.asarray(weights[1] )
UpperCAmelCase : Any = np.asarray(weights[2] )
UpperCAmelCase : Any = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , )
set_param(
torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
# layernorm 1
UpperCAmelCase : int = weights[0][0][0]
UpperCAmelCase : str = np.asarray(layer_norm_a[0] )
UpperCAmelCase : Any = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , )
# lsh weights + output
UpperCAmelCase : Any = weights[0][1]
if len(_lowercase ) < 4:
set_layer_weights_in_torch_lsh(_lowercase , torch_block.attention , _lowercase )
else:
set_layer_weights_in_torch_local(_lowercase , torch_block.attention , _lowercase )
# intermediate weighs
UpperCAmelCase : Optional[int] = weights[2][0][1][2]
# Chunked Feed Forward
if len(_lowercase ) == 4:
UpperCAmelCase : Optional[Any] = intermediate_weights[2]
# layernorm 2
UpperCAmelCase : Dict = np.asarray(intermediate_weights[0][0] )
UpperCAmelCase : Optional[int] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , )
# intermediate dense
UpperCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[1][0] )
UpperCAmelCase : Optional[int] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , )
# intermediate out
UpperCAmelCase : Dict = np.asarray(intermediate_weights[4][0] )
UpperCAmelCase : Any = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
# reformer model
UpperCAmelCase : List[Any] = torch_model.reformer
# word embeds
UpperCAmelCase : int = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowercase ) , )
if isinstance(weights[3] , _lowercase ):
UpperCAmelCase : List[str] = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
UpperCAmelCase : Optional[int] = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'''{position_embeddings[emb_idx]} emb does not match'''
UpperCAmelCase : Optional[int] = nn.Parameter(torch.tensor(_lowercase ) )
UpperCAmelCase : Optional[Any] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
_lowercase ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
UpperCAmelCase : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(_lowercase , _lowercase , _lowercase )
# output layer norm
UpperCAmelCase : List[str] = np.asarray(weights[7][0] )
UpperCAmelCase : List[Any] = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , )
# output embeddings
UpperCAmelCase : int = np.asarray(weights[9][0] )
UpperCAmelCase : List[str] = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
# Initialise PyTorch model
UpperCAmelCase : Dict = ReformerConfig.from_json_file(_lowercase )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCAmelCase : str = ReformerModelWithLMHead(_lowercase )
with open(_lowercase , """rb""" ) as f:
UpperCAmelCase : Optional[int] = pickle.load(_lowercase )["""weights"""]
set_model_weights_in_torch(_lowercase , _lowercase , config.hidden_size )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _lowercase )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained Reformer model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
a : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 265 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = StableDiffusionDiffEditPipeline
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
lowercase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowercase = frozenset([] )
def _lowercase( self ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , )
UpperCAmelCase : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , )
UpperCAmelCase : List[Any] = DDIMInverseScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_zero=A , )
torch.manual_seed(0 )
UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
UpperCAmelCase : Optional[Any] = CLIPTextModel(A )
UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
UpperCAmelCase : int = {
"""unet""": unet,
"""scheduler""": scheduler,
"""inverse_scheduler""": inverse_scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _lowercase( self , A , A=0 ) -> Optional[Any]:
UpperCAmelCase : Any = floats_tensor((1, 16, 16) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Any = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A ) ).to(A )
if str(A ).startswith("""mps""" ):
UpperCAmelCase : List[Any] = torch.manual_seed(A )
else:
UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : int = {
"""prompt""": """a dog and a newt""",
"""mask_image""": mask,
"""image_latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowercase( self , A , A=0 ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" )
if str(A ).startswith("""mps""" ):
UpperCAmelCase : Optional[int] = torch.manual_seed(A )
else:
UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : Any = {
"""image""": image,
"""source_prompt""": """a cat and a frog""",
"""target_prompt""": """a dog and a newt""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""num_maps_per_mask""": 2,
"""mask_encode_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowercase( self , A , A=0 ) -> str:
UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" )
if str(A ).startswith("""mps""" ):
UpperCAmelCase : Optional[int] = torch.manual_seed(A )
else:
UpperCAmelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : str = {
"""image""": image,
"""prompt""": """a cat and a frog""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""decode_latents""": True,
"""output_type""": """numpy""",
}
return inputs
def _lowercase( self ) -> List[Any]:
if not hasattr(self.pipeline_class , """_optional_components""" ):
return
UpperCAmelCase : Dict = self.get_dummy_components()
UpperCAmelCase : int = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A , A , A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
UpperCAmelCase : Any = self.get_dummy_inputs(A )
UpperCAmelCase : Optional[Any] = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
UpperCAmelCase : Dict = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A , A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , )
UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A )
UpperCAmelCase : Tuple = pipe_loaded(**A )[0]
UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max()
self.assertLess(A , 1e-4 )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = """cpu"""
UpperCAmelCase : Optional[Any] = self.get_dummy_components()
UpperCAmelCase : List[str] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Union[str, Any] = self.get_dummy_mask_inputs(A )
UpperCAmelCase : List[Any] = pipe.generate_mask(**A )
UpperCAmelCase : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
UpperCAmelCase : Optional[int] = np.array([0] * 9 )
UpperCAmelCase : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = """cpu"""
UpperCAmelCase : List[str] = self.get_dummy_components()
UpperCAmelCase : Optional[Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Optional[int] = self.get_dummy_inversion_inputs(A )
UpperCAmelCase : List[str] = pipe.invert(**A ).images
UpperCAmelCase : Union[str, Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase : Dict = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
UpperCAmelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A , 1e-3 )
def _lowercase( self ) -> Dict:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def _lowercase( self ) -> int:
UpperCAmelCase : List[Any] = """cpu"""
UpperCAmelCase : int = self.get_dummy_components()
UpperCAmelCase : List[Any] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""}
UpperCAmelCase : int = DPMSolverMultistepScheduler(**A )
UpperCAmelCase : int = DPMSolverMultistepInverseScheduler(**A )
UpperCAmelCase : List[str] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Tuple = self.get_dummy_inversion_inputs(A )
UpperCAmelCase : Any = pipe.invert(**A ).images
UpperCAmelCase : Dict = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase : Any = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A , 1e-3 )
@require_torch_gpu
@slow
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def _lowercase( cls ) -> Dict:
UpperCAmelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" )
UpperCAmelCase : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) )
UpperCAmelCase : List[str] = raw_image
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Dict = torch.manual_seed(0 )
UpperCAmelCase : int = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa )
UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Tuple = """a bowl of fruit"""
UpperCAmelCase : List[Any] = """a bowl of pears"""
UpperCAmelCase : str = pipe.generate_mask(
image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , )
UpperCAmelCase : Tuple = pipe.invert(
prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A ).latents
UpperCAmelCase : Any = pipe(
prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0]
UpperCAmelCase : List[str] = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa )
UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : int = """a bowl of fruit"""
UpperCAmelCase : int = """a bowl of pears"""
UpperCAmelCase : str = pipe.generate_mask(
image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , )
UpperCAmelCase : Any = pipe.invert(
prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A , num_inference_steps=25 , ).latents
UpperCAmelCase : str = pipe(
prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0]
UpperCAmelCase : Tuple = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 265 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
snake_case__ : Tuple = None
snake_case__ : int = logging.get_logger(__name__)
snake_case__ : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
snake_case__ : Dict = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
snake_case__ : Optional[int] = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
snake_case__ : Optional[Any] = "▁"
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ['''input_ids''', '''token_type_ids''']
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : Dict="[SEP]" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Dict="[CLS]" , UpperCamelCase_ : Union[str, Any]="[MASK]" , **UpperCamelCase_ : Union[str, Any] , ):
lowerCAmelCase : List[str] = (
AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ )
if isinstance(lowerCamelCase_ , lowerCamelCase_ )
else mask_token
)
super().__init__(
lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , )
lowerCAmelCase : str = do_lower_case
lowerCAmelCase : Union[str, Any] = remove_space
lowerCAmelCase : List[str] = keep_accents
lowerCAmelCase : Tuple = vocab_file
lowerCAmelCase : Dict = False if not self.vocab_file else True
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] = None ):
lowerCAmelCase : Tuple = [self.sep_token_id]
lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int = None ):
lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] = None ):
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase : int = os.path.join(
lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ):
copyfile(self.vocab_file , lowerCamelCase_ )
return (out_vocab_file,)
| 355 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314 | 0 |
import numpy
# List of input, output pairs
lowerCamelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCamelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCamelCase__ = [2, 4, 1, 5]
lowerCamelCase__ = len(train_data)
lowerCamelCase__ = 0.009
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]="train" ):
"""simple docstring"""
return calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - output(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ):
"""simple docstring"""
__a = 0
for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=m ):
"""simple docstring"""
__a = 0
for i in range(_SCREAMING_SNAKE_CASE ):
if index == -1:
summation_value += _error(_SCREAMING_SNAKE_CASE )
else:
summation_value += _error(_SCREAMING_SNAKE_CASE ) * train_data[i][0][index]
return summation_value
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ):
"""simple docstring"""
__a = summation_of_cost_derivative(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / m
return cost_derivative_value
def lowerCAmelCase__ ( ):
"""simple docstring"""
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__a = 0.00_0002
__a = 0
__a = 0
while True:
j += 1
__a = [0, 0, 0, 0]
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) ):
__a = get_cost_derivative(i - 1 )
__a = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE , rtol=_SCREAMING_SNAKE_CASE , ):
break
__a = temp_parameter_vector
print(("""Number of iterations:""", j) )
def lowerCAmelCase__ ( ):
"""simple docstring"""
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
print(("""Actual output value:""", output(_SCREAMING_SNAKE_CASE , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 302 |
from __future__ import annotations
lowerCamelCase__ = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ):
'''simple docstring'''
__a = graph
# mapping node to its parent in resulting breadth first tree
__a = {}
__a = source_vertex
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = {self.source_vertex}
__a = None
__a = [self.source_vertex] # first in first out queue
while queue:
__a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowercase )
__a = vertex
queue.append(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
__a = self.parent.get(__lowercase )
if target_vertex_parent is None:
__a = (
F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowercase )
return self.shortest_path(__lowercase ) + F"->{target_vertex}"
if __name__ == "__main__":
lowerCamelCase__ = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 302 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Tuple = OrderedDict(
[
("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""),
("""beit""", """BeitFeatureExtractor"""),
("""chinese_clip""", """ChineseCLIPFeatureExtractor"""),
("""clap""", """ClapFeatureExtractor"""),
("""clip""", """CLIPFeatureExtractor"""),
("""clipseg""", """ViTFeatureExtractor"""),
("""conditional_detr""", """ConditionalDetrFeatureExtractor"""),
("""convnext""", """ConvNextFeatureExtractor"""),
("""cvt""", """ConvNextFeatureExtractor"""),
("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""),
("""data2vec-vision""", """BeitFeatureExtractor"""),
("""deformable_detr""", """DeformableDetrFeatureExtractor"""),
("""deit""", """DeiTFeatureExtractor"""),
("""detr""", """DetrFeatureExtractor"""),
("""dinat""", """ViTFeatureExtractor"""),
("""donut-swin""", """DonutFeatureExtractor"""),
("""dpt""", """DPTFeatureExtractor"""),
("""encodec""", """EncodecFeatureExtractor"""),
("""flava""", """FlavaFeatureExtractor"""),
("""glpn""", """GLPNFeatureExtractor"""),
("""groupvit""", """CLIPFeatureExtractor"""),
("""hubert""", """Wav2Vec2FeatureExtractor"""),
("""imagegpt""", """ImageGPTFeatureExtractor"""),
("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""),
("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""),
("""levit""", """LevitFeatureExtractor"""),
("""maskformer""", """MaskFormerFeatureExtractor"""),
("""mctct""", """MCTCTFeatureExtractor"""),
("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""),
("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""),
("""mobilevit""", """MobileViTFeatureExtractor"""),
("""nat""", """ViTFeatureExtractor"""),
("""owlvit""", """OwlViTFeatureExtractor"""),
("""perceiver""", """PerceiverFeatureExtractor"""),
("""poolformer""", """PoolFormerFeatureExtractor"""),
("""regnet""", """ConvNextFeatureExtractor"""),
("""resnet""", """ConvNextFeatureExtractor"""),
("""segformer""", """SegformerFeatureExtractor"""),
("""sew""", """Wav2Vec2FeatureExtractor"""),
("""sew-d""", """Wav2Vec2FeatureExtractor"""),
("""speech_to_text""", """Speech2TextFeatureExtractor"""),
("""speecht5""", """SpeechT5FeatureExtractor"""),
("""swiftformer""", """ViTFeatureExtractor"""),
("""swin""", """ViTFeatureExtractor"""),
("""swinv2""", """ViTFeatureExtractor"""),
("""table-transformer""", """DetrFeatureExtractor"""),
("""timesformer""", """VideoMAEFeatureExtractor"""),
("""tvlt""", """TvltFeatureExtractor"""),
("""unispeech""", """Wav2Vec2FeatureExtractor"""),
("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""),
("""van""", """ConvNextFeatureExtractor"""),
("""videomae""", """VideoMAEFeatureExtractor"""),
("""vilt""", """ViltFeatureExtractor"""),
("""vit""", """ViTFeatureExtractor"""),
("""vit_mae""", """ViTFeatureExtractor"""),
("""vit_msn""", """ViTFeatureExtractor"""),
("""wav2vec2""", """Wav2Vec2FeatureExtractor"""),
("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""),
("""wavlm""", """Wav2Vec2FeatureExtractor"""),
("""whisper""", """WhisperFeatureExtractor"""),
("""xclip""", """CLIPFeatureExtractor"""),
("""yolos""", """YolosFeatureExtractor"""),
]
)
_lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
A__ = model_type_to_module_name(lowercase_ )
A__ = importlib.import_module(f""".{module_name}""" , '''transformers.models''' )
try:
return getattr(lowercase_ , lowercase_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(lowercase_ , '''__name__''' , lowercase_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
A__ = importlib.import_module('''transformers''' )
if hasattr(lowercase_ , lowercase_ ):
return getattr(lowercase_ , lowercase_ )
return None
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , **lowercase_ , ) -> str:
"""simple docstring"""
A__ = get_file_from_repo(
lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(lowercase_ , encoding='''utf-8''' ) as reader:
return json.load(lowercase_ )
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any]) ->List[str]:
'''simple docstring'''
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''')
@classmethod
@replace_list_option_in_docstrings(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( cls : str , UpperCAmelCase__ : int , **UpperCAmelCase__ : List[str]) ->Union[str, Any]:
'''simple docstring'''
A__ = kwargs.pop('''config''' , UpperCAmelCase__)
A__ = kwargs.pop('''trust_remote_code''' , UpperCAmelCase__)
A__ = True
A__ , A__ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = config_dict.get('''feature_extractor_type''' , UpperCAmelCase__)
A__ = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}):
A__ = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = AutoConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__)
# It could be in `config.feature_extractor_type``
A__ = getattr(UpperCAmelCase__ , '''feature_extractor_type''' , UpperCAmelCase__)
if hasattr(UpperCAmelCase__ , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map:
A__ = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
A__ = feature_extractor_class_from_name(UpperCAmelCase__)
A__ = feature_extractor_auto_map is not None
A__ = feature_extractor_class is not None or type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING
A__ = resolve_trust_remote_code(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
if has_remote_code and trust_remote_code:
A__ = get_class_from_dynamic_module(
UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__)
A__ = kwargs.pop('''code_revision''' , UpperCAmelCase__)
if os.path.isdir(UpperCAmelCase__):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING:
A__ = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase__)]
return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
raise ValueError(
f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}""")
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any) ->List[str]:
'''simple docstring'''
FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase__ , UpperCAmelCase__)
| 231 |
from __future__ import annotations
from typing import Any
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
create_state_space_tree(lowercase_ , [] , 0 )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
if index == len(lowercase_ ):
print(lowercase_ )
return
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
_lowerCamelCase : list[Any] = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(["""A""", """B""", """C"""])
generate_all_subsequences(seq)
| 231 | 1 |
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
_a = PriorTransformer
_a = """hidden_states"""
@property
def A__ ( self ) -> List[Any]:
'''simple docstring'''
_lowercase =4
_lowercase =8
_lowercase =7
_lowercase =floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def A__ ( self , lowerCAmelCase=0 ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(lowerCAmelCase )
_lowercase =4
_lowercase =8
_lowercase =7
_lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def A__ ( self ) -> Dict:
'''simple docstring'''
return (4, 8)
@property
def A__ ( self ) -> int:
'''simple docstring'''
return (4, 8)
def A__ ( self ) -> Tuple:
'''simple docstring'''
_lowercase ={
'num_attention_heads': 2,
'attention_head_dim': 4,
'num_layers': 2,
'embedding_dim': 8,
'num_embeddings': 7,
'additional_embeddings': 4,
}
_lowercase =self.dummy_input
return init_dict, inputs_dict
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
_lowercase , _lowercase =PriorTransformer.from_pretrained(
'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(lowerCAmelCase )
_lowercase =model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def A__ ( self ) -> List[Any]:
'''simple docstring'''
_lowercase , _lowercase =self.prepare_init_args_and_inputs_for_common()
_lowercase =self.model_class(**lowerCAmelCase )
_lowercase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase =[*signature.parameters.keys()]
_lowercase =['hidden_states', 'timestep']
self.assertListEqual(arg_names[:2] , lowerCAmelCase )
def A__ ( self ) -> List[Any]:
'''simple docstring'''
_lowercase =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' )
_lowercase =model.to(lowerCAmelCase )
if hasattr(lowerCAmelCase , 'set_default_attn_processor' ):
model.set_default_attn_processor()
_lowercase =self.get_dummy_seed_input()
with torch.no_grad():
_lowercase =model(**lowerCAmelCase )[0]
_lowercase =output[0, :5].flatten().cpu()
print(lowerCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
_lowercase =torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] )
self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1e-2 ) )
@slow
class __lowerCAmelCase ( unittest.TestCase ):
def A__ ( self , lowerCAmelCase=1 , lowerCAmelCase=768 , lowerCAmelCase=77 , lowerCAmelCase=0 ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(lowerCAmelCase )
_lowercase =batch_size
_lowercase =embedding_dim
_lowercase =num_embeddings
_lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase )
_lowercase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def A__ ( self ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
# fmt: on
] )
def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple:
'''simple docstring'''
_lowercase =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' )
model.to(lowerCAmelCase )
_lowercase =self.get_dummy_seed_input(seed=lowerCAmelCase )
with torch.no_grad():
_lowercase =model(**lowerCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
_lowercase =sample[0, :8].flatten().cpu()
print(lowerCAmelCase )
_lowercase =torch.tensor(lowerCAmelCase )
assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-3 )
| 205 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 205 | 1 |
def a__ ( A__, A__ ):
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def a__ ( A__, A__, A__ ):
SCREAMING_SNAKE_CASE_ : Dict = 0
while b > 0:
if b & 1:
SCREAMING_SNAKE_CASE_ : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 367 |
# Lint as: python3
import itertools
import os
import re
lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])')
lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)')
lowerCAmelCase__ : int =re.compile(R'(_{2,})')
lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$'
lowerCAmelCase__ : List[Any] =R'<>:/\|?*'
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ )
SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ )
return name.lower()
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ )
SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' )
def a__ ( A__ ):
if os.path.basename(A__ ) != name:
raise ValueError(F'''Should be a dataset name, not a path: {name}''' )
return camelcase_to_snakecase(A__ )
def a__ ( A__, A__ ):
if os.path.basename(A__ ) != name:
raise ValueError(F'''Should be a dataset name, not a path: {name}''' )
if not re.match(_split_re, A__ ):
raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' )
return F'''{filename_prefix_for_name(A__ )}-{split}'''
def a__ ( A__, A__, A__, A__=None ):
SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ )
if filetype_suffix:
prefix += F'''.{filetype_suffix}'''
SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ )
return F'''{filepath}*'''
def a__ ( A__, A__, A__, A__=None, A__=None ):
SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ )
SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ )
if shard_lengths:
SCREAMING_SNAKE_CASE_ : Dict = len(A__ )
SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )]
if filetype_suffix:
SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames]
return filenames
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix
if filetype_suffix:
filename += F'''.{filetype_suffix}'''
return [filename]
| 162 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
import random
from typing import Any
class snake_case :
"""simple docstring"""
def __init__( self : List[Any] ):
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def __lowerCAmelCase ( self : Tuple ):
return self.head == self.tail
def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Any ):
self.data.append(lowerCamelCase__ )
UpperCAmelCase__ = self.tail + 1
def __lowerCAmelCase ( self : Optional[Any] ):
UpperCAmelCase__ = self.data[self.head]
UpperCAmelCase__ = self.head + 1
return ret
def __lowerCAmelCase ( self : List[str] ):
return self.tail - self.head
def __lowerCAmelCase ( self : int ):
print(self.data )
print('**************' )
print(self.data[self.head : self.tail] )
class snake_case :
"""simple docstring"""
def __init__( self : int ,lowerCamelCase__ : Any ):
UpperCAmelCase__ = data
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = 1
def __lowerCAmelCase ( self : str ):
return self.data
def __lowerCAmelCase ( self : Tuple ):
return self.left
def __lowerCAmelCase ( self : Any ):
return self.right
def __lowerCAmelCase ( self : Union[str, Any] ):
return self.height
def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Any ):
UpperCAmelCase__ = data
def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : MyNode | None ):
UpperCAmelCase__ = node
def __lowerCAmelCase ( self : str ,lowerCamelCase__ : MyNode | None ):
UpperCAmelCase__ = node
def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : int ):
UpperCAmelCase__ = height
def a_ ( lowerCamelCase ):
if node is None:
return 0
return node.get_height()
def a_ ( lowerCamelCase , lowerCamelCase ):
if a > b:
return a
return b
def a_ ( lowerCamelCase ):
print('left rotation node:' , node.get_data() )
UpperCAmelCase__ = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase )
return ret
def a_ ( lowerCamelCase ):
print('right rotation node:' , node.get_data() )
UpperCAmelCase__ = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase )
return ret
def a_ ( lowerCamelCase ):
UpperCAmelCase__ = node.get_left()
assert left_child is not None
node.set_left(left_rotation(lowerCamelCase ) )
return right_rotation(lowerCamelCase )
def a_ ( lowerCamelCase ):
UpperCAmelCase__ = node.get_right()
assert right_child is not None
node.set_right(right_rotation(lowerCamelCase ) )
return left_rotation(lowerCamelCase )
def a_ ( lowerCamelCase , lowerCamelCase ):
if node is None:
return MyNode(lowerCamelCase )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , lowerCamelCase ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
UpperCAmelCase__ = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
UpperCAmelCase__ = right_rotation(lowerCamelCase )
else:
UpperCAmelCase__ = lr_rotation(lowerCamelCase )
else:
node.set_right(insert_node(node.get_right() , lowerCamelCase ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
UpperCAmelCase__ = node.get_right()
assert right_child is not None
if data < right_child.get_data():
UpperCAmelCase__ = rl_rotation(lowerCamelCase )
else:
UpperCAmelCase__ = left_rotation(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase )
return node
def a_ ( lowerCamelCase ):
while True:
UpperCAmelCase__ = root.get_right()
if right_child is None:
break
UpperCAmelCase__ = right_child
return root.get_data()
def a_ ( lowerCamelCase ):
while True:
UpperCAmelCase__ = root.get_left()
if left_child is None:
break
UpperCAmelCase__ = left_child
return root.get_data()
def a_ ( lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = root.get_left()
UpperCAmelCase__ = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
UpperCAmelCase__ = get_left_most(lowerCamelCase )
root.set_data(lowerCamelCase )
root.set_right(del_node(lowerCamelCase , lowerCamelCase ) )
elif left_child is not None:
UpperCAmelCase__ = left_child
elif right_child is not None:
UpperCAmelCase__ = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('No such data' )
return root
else:
root.set_left(del_node(lowerCamelCase , lowerCamelCase ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(lowerCamelCase , lowerCamelCase ) )
if get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
UpperCAmelCase__ = left_rotation(lowerCamelCase )
else:
UpperCAmelCase__ = rl_rotation(lowerCamelCase )
elif get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
UpperCAmelCase__ = right_rotation(lowerCamelCase )
else:
UpperCAmelCase__ = lr_rotation(lowerCamelCase )
UpperCAmelCase__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(lowerCamelCase )
return root
class snake_case :
"""simple docstring"""
def __init__( self : Optional[Any] ):
UpperCAmelCase__ = None
def __lowerCAmelCase ( self : Any ):
return get_height(self.root )
def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Any ):
print('insert:' + str(lowerCamelCase__ ) )
UpperCAmelCase__ = insert_node(self.root ,lowerCamelCase__ )
def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Any ):
print('delete:' + str(lowerCamelCase__ ) )
if self.root is None:
print('Tree is empty!' )
return
UpperCAmelCase__ = del_node(self.root ,lowerCamelCase__ )
def __str__( self : str ,): # a level traversale, gives a more intuitive look on the tree
UpperCAmelCase__ = ''
UpperCAmelCase__ = MyQueue()
q.push(self.root )
UpperCAmelCase__ = self.get_height()
if layer == 0:
return output
UpperCAmelCase__ = 0
while not q.is_empty():
UpperCAmelCase__ = q.pop()
UpperCAmelCase__ = ' ' * int(math.pow(2 ,layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(lowerCamelCase__ )
q.push(lowerCamelCase__ )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
UpperCAmelCase__ = cnt + 1
for i in range(100 ):
if cnt == math.pow(2 ,lowerCamelCase__ ) - 1:
UpperCAmelCase__ = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def a_ ( ):
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
lowerCAmelCase__ : List[Any] = AVLtree()
lowerCAmelCase__ : List[Any] = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 98 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase__ : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : List[Any] = [
'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMAEForPreTraining',
'ViTMAELayer',
'ViTMAEModel',
'ViTMAEPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : int = [
'TFViTMAEForPreTraining',
'TFViTMAEModel',
'TFViTMAEPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
lowerCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98 | 1 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 3_2 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_5_5 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , snake_case__ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , snake_case__ : bool = True , snake_case__ : Tuple=7 , snake_case__ : List[str]=3_0 , snake_case__ : Optional[int]=4_0_0 , snake_case__ : Optional[Any]=3 , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : List[Any] = do_resize
UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_8_8}
UpperCAmelCase__ : Tuple = size_divisor
UpperCAmelCase__ : int = do_rescale
UpperCAmelCase__ : List[str] = rescale_factor
UpperCAmelCase__ : List[str] = do_normalize
UpperCAmelCase__ : Optional[int] = do_center_crop
UpperCAmelCase__ : List[Any] = image_mean
UpperCAmelCase__ : Dict = image_std
UpperCAmelCase__ : Optional[Any] = do_pad
UpperCAmelCase__ : Any = batch_size
UpperCAmelCase__ : List[str] = num_channels
UpperCAmelCase__ : Optional[int] = min_resolution
UpperCAmelCase__ : List[str] = max_resolution
def __a ( self : Optional[int] ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=False ):
'''simple docstring'''
if not batched:
UpperCAmelCase__ : Tuple = self.size["shortest_edge"]
UpperCAmelCase__ : List[str] = image_inputs[0]
if isinstance(snake_case__ , Image.Image ):
UpperCAmelCase__ : Dict = image.size
else:
UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2]
UpperCAmelCase__ : Optional[Any] = size / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ : Union[str, Any] = size, scale * w
else:
UpperCAmelCase__ : Optional[int] = scale * h, size
UpperCAmelCase__ : Optional[Any] = int((1_3_3_3 / 8_0_0) * size )
if max(snake_case__ , snake_case__ ) > max_size:
UpperCAmelCase__ : int = max_size / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = newh * scale
UpperCAmelCase__ : Union[str, Any] = neww * scale
UpperCAmelCase__ : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 )
UpperCAmelCase__ : List[str] = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
UpperCAmelCase__ : Union[str, Any] = []
for image in image_inputs:
UpperCAmelCase__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase__ : Union[str, Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0]
UpperCAmelCase__ : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =BridgeTowerImageProcessor if is_vision_available() else None
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = BridgeTowerImageProcessingTester(self )
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "image_mean" ) )
self.assertTrue(hasattr(snake_case__ , "image_std" ) )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_resize" ) )
self.assertTrue(hasattr(snake_case__ , "size" ) )
self.assertTrue(hasattr(snake_case__ , "size_divisor" ) )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
# Test not batched input
UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ : Any = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values
UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 369 |
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 298 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase__ = logging.get_logger(__name__)
class A_ ( _snake_case , _snake_case ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = "maskformer-swin"
UpperCAmelCase_ : Any = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : str , lowercase_ : List[str]=224 , lowercase_ : List[str]=4 , lowercase_ : List[str]=3 , lowercase_ : Tuple=96 , lowercase_ : Optional[Any]=[2, 2, 6, 2] , lowercase_ : Optional[int]=[3, 6, 12, 24] , lowercase_ : Union[str, Any]=7 , lowercase_ : str=4.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Any=0.1 , lowercase_ : int="gelu" , lowercase_ : Union[str, Any]=False , lowercase_ : str=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , **lowercase_ : Union[str, Any] , ) -> int:
super().__init__(**lowercase_ )
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : Any = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : Optional[int] = embed_dim
UpperCAmelCase : Optional[Any] = depths
UpperCAmelCase : Optional[Any] = len(lowercase_ )
UpperCAmelCase : Tuple = num_heads
UpperCAmelCase : Tuple = window_size
UpperCAmelCase : List[str] = mlp_ratio
UpperCAmelCase : Dict = qkv_bias
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = drop_path_rate
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Dict = use_absolute_embeddings
UpperCAmelCase : Tuple = layer_norm_eps
UpperCAmelCase : Any = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
UpperCAmelCase : List[str] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 151 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
_lowerCamelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
def __init__( self : Tuple , *lowercase : Optional[int] , **lowercase : Any ):
'''simple docstring'''
warnings.warn(
'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ChineseCLIPImageProcessor instead.' , lowercase , )
super().__init__(*lowercase , **lowercase ) | 282 | 0 |
from __future__ import annotations
from collections.abc import Callable
__UpperCAmelCase = list[list[float | int]]
def __UpperCamelCase ( lowercase__ : Matrix , lowercase__ : Matrix ) -> Matrix:
'''simple docstring'''
lowerCAmelCase_ : int = len(lowercase__ )
lowerCAmelCase_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase__ )]
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : float
for row in range(lowercase__ ):
for col in range(lowercase__ ):
lowerCAmelCase_ : Tuple = matrix[row][col]
lowerCAmelCase_ : Union[str, Any] = vector[row][0]
lowerCAmelCase_ : Dict = 0
lowerCAmelCase_ : str = 0
while row < size and col < size:
# pivoting
lowerCAmelCase_ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase__ , lowercase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , lowercase__ ):
lowerCAmelCase_ : str = augmented[rowa][col] / augmented[row][col]
lowerCAmelCase_ : int = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , lowercase__ ):
for row in range(lowercase__ ):
lowerCAmelCase_ : List[Any] = augmented[row][col] / augmented[col][col]
for cola in range(lowercase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase__ )
]
def __UpperCamelCase ( lowercase__ : list[int] ) -> Callable[[int], int]:
'''simple docstring'''
lowerCAmelCase_ : int = len(lowercase__ )
lowerCAmelCase_ : Matrix = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )]
lowerCAmelCase_ : Matrix = [[0] for _ in range(lowercase__ )]
lowerCAmelCase_ : Matrix
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : int
for x_val, y_val in enumerate(lowercase__ ):
for col in range(lowercase__ ):
lowerCAmelCase_ : Tuple = (x_val + 1) ** (size - col - 1)
lowerCAmelCase_ : Any = y_val
lowerCAmelCase_ : Optional[Any] = solve(lowercase__ , lowercase__ )
def interpolated_func(lowercase__ : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(lowercase__ ) )
return interpolated_func
def __UpperCamelCase ( lowercase__ : int ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __UpperCamelCase ( lowercase__ : Callable[[int], int] = question_function , lowercase__ : int = 10 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : list[int] = [func(lowercase__ ) for x_val in range(1 , order + 1 )]
lowerCAmelCase_ : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : Callable[[int], int]
lowerCAmelCase_ : int
for poly in polynomials:
lowerCAmelCase_ : int = 1
while func(lowercase__ ) == poly(lowercase__ ):
x_val += 1
ret += poly(lowercase__ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class A_ (__a ,__a ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionSAGPipeline
SCREAMING_SNAKE_CASE__ : List[str] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ : Any = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCAmelCase_ : int = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
UpperCAmelCase_ : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_UpperCamelCase )
UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ : Any = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ):
"""simple docstring"""
if str(_UpperCamelCase ).startswith("mps" ):
UpperCAmelCase_ : Any = torch.manual_seed(_UpperCamelCase )
else:
UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
UpperCAmelCase_ : Union[str, Any] = {
"prompt": ".",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.0,
"sag_scale": 1.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
UpperCAmelCase_ : List[Any] = sag_pipe.to(_UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCamelCase )
UpperCAmelCase_ : Tuple = "."
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(0 )
UpperCAmelCase_ : Any = sag_pipe(
[prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" )
UpperCAmelCase_ : Union[str, Any] = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ : str = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
UpperCAmelCase_ : Any = sag_pipe.to(_UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCamelCase )
UpperCAmelCase_ : Optional[Any] = "."
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Dict = sag_pipe(
[prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" )
UpperCAmelCase_ : Any = output.images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ : List[Any] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
UpperCAmelCase_ : List[Any] = sag_pipe.to(_UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=_UpperCamelCase )
UpperCAmelCase_ : Dict = "."
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , )
UpperCAmelCase_ : Optional[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 61 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ["XGLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ["XGLMTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XGLMForCausalLM",
"XGLMModel",
"XGLMPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
"FlaxXGLMForCausalLM",
"FlaxXGLMModel",
"FlaxXGLMPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 231 | 0 |
import re
from filelock import FileLock
try:
import nltk
UpperCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
UpperCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
re.sub("""<n>""" , """""" , A__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(A__ ) )
| 359 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
__lowerCamelCase = [False] * len(A__ )
__lowerCamelCase = [-1] * len(A__ )
def dfs(A__ : Optional[int] , A__ : Optional[int] ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(A__ , 1 - c )
for i in range(len(A__ ) ):
if not visited[i]:
dfs(A__ , 0 )
for i in range(len(A__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 29 | 0 |
"""simple docstring"""
def UpperCamelCase ( UpperCAmelCase ) ->list[list]:
"""simple docstring"""
a_ = current_set.copy()
for row_index, row in enumerate(UpperCAmelCase ):
a_ = row[0]
for column_index, column in enumerate(UpperCAmelCase ):
if magnitude == 0:
a_ = column
continue
a_ = column / magnitude
# Subtract to cancel term
a_ = current_set[0]
a_ = [first_row]
a_ = current_set[1::]
for row in current_set:
a_ = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(UpperCAmelCase )
continue
for column_index in range(len(UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
a_ = final_set[0]
a_ = []
a_ = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
a_ = simplify(UpperCAmelCase )
for i in range(len(UpperCAmelCase ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , UpperCAmelCase )
a_ = resultant
return final_set
def UpperCamelCase ( UpperCAmelCase ) ->list:
"""simple docstring"""
if len(UpperCAmelCase ) == 0:
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
a_ = len(UpperCAmelCase ) + 1
if any(len(UpperCAmelCase ) != _length for item in equations ):
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
for row in equations:
if any(not isinstance(UpperCAmelCase , (int, float) ) for column in row ):
raise ValueError("solve_simultaneous() requires lists of integers" )
if len(UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
a_ = equations.copy()
if any(0 in row for row in data_set ):
a_ = data_set.copy()
a_ = []
for row_index, row in enumerate(UpperCAmelCase ):
if 0 not in row:
a_ = data_set.pop(UpperCAmelCase )
break
if not full_row:
raise ValueError("solve_simultaneous() requires at least 1 full equation" )
data_set.insert(0 , UpperCAmelCase )
a_ = data_set.copy()
a_ = simplify(UpperCAmelCase )
a_ = simplified[::-1]
a_ = []
for row in simplified:
a_ = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
a_ = row.copy()[: len(UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(UpperCAmelCase ) == 0:
solutions.append(0 )
continue
a_ = temp_row[1::]
a_ = temp_row[::-1]
for column_index, column in enumerate(UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(UpperCAmelCase )
a_ = []
for item in solutions:
final.append(float(round(UpperCAmelCase , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase_ = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]])) | 243 |
"""simple docstring"""
import baseaa
def UpperCamelCase ( UpperCAmelCase ) ->bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode("utf-8" ) )
def UpperCamelCase ( UpperCAmelCase ) ->str:
"""simple docstring"""
return baseaa.baadecode(UpperCAmelCase ).decode("utf-8" )
if __name__ == "__main__":
UpperCamelCase_ = 'Hello World!'
UpperCamelCase_ = baseaa_encode(test)
print(encoded)
UpperCamelCase_ = baseaa_decode(encoded)
print(decoded) | 243 | 1 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298 |
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
__A : Tuple = {
'''cola''': 2,
'''mnli''': 3,
'''mrpc''': 2,
'''sst-2''': 2,
'''sts-b''': 1,
'''qqp''': 2,
'''qnli''': 2,
'''rte''': 2,
'''wnli''': 2,
}
logging.set_verbosity_info()
def lowercase ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[int]=None ):
# Initialise PyTorch model
lowercase_ : List[Any] = XLNetConfig.from_json_file(__snake_case )
lowercase_ : List[str] = finetuning_task.lower() if finetuning_task is not None else ''''''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
lowercase_ : Any = finetuning_task
lowercase_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
lowercase_ : Tuple = XLNetForSequenceClassification(__snake_case )
elif "squad" in finetuning_task:
lowercase_ : Union[str, Any] = finetuning_task
lowercase_ : Optional[int] = XLNetForQuestionAnswering(__snake_case )
else:
lowercase_ : Optional[Any] = XLNetLMHeadModel(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
lowercase_ : Tuple = os.path.join(__snake_case , __snake_case )
lowercase_ : Dict = os.path.join(__snake_case , __snake_case )
print(F'''Save PyTorch model to {os.path.abspath(__snake_case )}''' )
torch.save(model.state_dict() , __snake_case )
print(F'''Save configuration file to {os.path.abspath(__snake_case )}''' )
with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--xlnet_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained XLNet model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the folder to store the PyTorch model or dataset/vocab.''',
)
parser.add_argument(
'''--finetuning_task''',
default=None,
type=str,
help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''',
)
__A : List[Any] = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 33 |
"""simple docstring"""
def lowercase ( __snake_case : Optional[int] ):
lowercase_ : int = 0
lowercase_ : Optional[Any] = len(__snake_case )
for i in range(n - 1 ):
for j in range(i + 1 , __snake_case ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def lowercase ( __snake_case : str ):
if len(__snake_case ) <= 1:
return arr, 0
lowercase_ : Optional[Any] = len(__snake_case ) // 2
lowercase_ : List[Any] = arr[0:mid]
lowercase_ : Union[str, Any] = arr[mid:]
lowercase_ , lowercase_ : Tuple = count_inversions_recursive(__snake_case )
lowercase_ , lowercase_ : List[Any] = count_inversions_recursive(__snake_case )
lowercase_ , lowercase_ : List[Any] = _count_cross_inversions(__snake_case , __snake_case )
lowercase_ : List[Any] = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def lowercase ( __snake_case : str , __snake_case : Optional[int] ):
lowercase_ : Optional[Any] = []
lowercase_ : Any = 0
while i < len(__snake_case ) and j < len(__snake_case ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__snake_case ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__snake_case ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def lowercase ( ):
lowercase_ : Union[str, Any] = [1_0, 2, 1, 5, 5, 2, 1_1]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowercase_ : int = count_inversions_bf(__snake_case )
lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , __snake_case )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowercase_ : Dict = count_inversions_bf(__snake_case )
lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , __snake_case )
# an empty list should also have zero inversions
lowercase_ : List[Any] = []
lowercase_ : Any = count_inversions_bf(__snake_case )
lowercase_ , lowercase_ : List[str] = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , __snake_case )
if __name__ == "__main__":
main()
| 33 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = KandinskyVaaControlnetImgaImgPipeline
lowerCamelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint']
lowerCamelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint']
lowerCamelCase = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowerCamelCase = False
@property
def snake_case__ ( self : List[str] )-> Any:
'''simple docstring'''
return 3_2
@property
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
return 3_2
@property
def snake_case__ ( self : Union[str, Any] )-> int:
'''simple docstring'''
return self.time_input_dim
@property
def snake_case__ ( self : Any )-> Optional[int]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
return 1_0_0
@property
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
torch.manual_seed(0 )
A__ = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
A__ = UNetaDConditionModel(**lowercase_ )
return model
@property
def snake_case__ ( self : str )-> List[Any]:
'''simple docstring'''
return {
"block_out_channels": [3_2, 3_2, 6_4, 6_4],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def snake_case__ ( self : str )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
A__ = self.dummy_unet
A__ = self.dummy_movq
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_schedule': 'linear',
'beta_start': 0.00_085,
'beta_end': 0.012,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
A__ = DDIMScheduler(**lowercase_ )
A__ = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case__ ( self : int,lowercase_ : List[Any],lowercase_ : Dict=0 )-> Any:
'''simple docstring'''
A__ = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(lowercase_ ) ).to(lowercase_ )
A__ = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to(
lowercase_ )
# create init_image
A__ = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(lowercase_ ) ).to(lowercase_ )
A__ = image.cpu().permute(0,2,3,1 )[0]
A__ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) )
# create hint
A__ = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(lowercase_ ) ).to(lowercase_ )
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 6_4,
'width': 6_4,
'num_inference_steps': 1_0,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
A__ = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = pipe(**self.get_dummy_inputs(lowercase_ ) )
A__ = output.images
A__ = pipe(
**self.get_dummy_inputs(lowercase_ ),return_dict=lowercase_,)[0]
A__ = image[0, -3:, -3:, -1]
A__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
A__ = np.array(
[0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> Optional[int]:
'''simple docstring'''
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' )
A__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
A__ = init_image.resize((5_1_2, 5_1_2) )
A__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
A__ = torch.from_numpy(np.array(lowercase_ ) ).float() / 255.0
A__ = hint.permute(2,0,1 ).unsqueeze(0 )
A__ = 'A robot, 4k photo'
A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior',torch_dtype=torch.floataa )
pipe_prior.to(lowercase_ )
A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth',torch_dtype=torch.floataa )
A__ = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
A__ = torch.Generator(device='cpu' ).manual_seed(0 )
A__ , A__ = pipe_prior(
lowercase_,image=lowercase_,strength=0.85,generator=lowercase_,negative_prompt='',).to_tuple()
A__ = pipeline(
image=lowercase_,image_embeds=lowercase_,negative_image_embeds=lowercase_,hint=lowercase_,generator=lowercase_,num_inference_steps=1_0_0,height=5_1_2,width=5_1_2,strength=0.5,output_type='np',)
A__ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(lowercase_,lowercase_ )
| 282 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1)
lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A :
"""simple docstring"""
lowerCamelCase = 42
lowerCamelCase = 42
class A :
"""simple docstring"""
def __init__( self : List[str],lowercase_ : Iterable[int] )-> None:
'''simple docstring'''
A__ = None
for i in sorted(lowercase_,reverse=lowercase_ ):
A__ = Node(lowercase_,self.head )
def __iter__( self : List[str] )-> Iterator[int]:
'''simple docstring'''
A__ = self.head
while node:
yield node.data
A__ = node.next_node
def __len__( self : str )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self : Optional[int] )-> str:
'''simple docstring'''
return " -> ".join([str(lowercase_ ) for node in self] )
def _snake_case( SCREAMING_SNAKE_CASE__ : SortedLinkedList , SCREAMING_SNAKE_CASE__ : SortedLinkedList ) -> SortedLinkedList:
'''simple docstring'''
return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 282 | 1 |
"""simple docstring"""
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
a__ : Optional[Any] = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Any = "vision-encoder-decoder"
snake_case__ : str = True
def __init__( self : Any , **UpperCAmelCase__ : Dict ) -> Optional[Any]:
super().__init__(**__a )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F"""A configuraton of type {self.model_type} cannot be instantiated because """
F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
__SCREAMING_SNAKE_CASE = kwargs.pop("encoder" )
__SCREAMING_SNAKE_CASE = encoder_config.pop("model_type" )
__SCREAMING_SNAKE_CASE = kwargs.pop("decoder" )
__SCREAMING_SNAKE_CASE = decoder_config.pop("model_type" )
__SCREAMING_SNAKE_CASE = AutoConfig.for_model(__a , **__a )
__SCREAMING_SNAKE_CASE = AutoConfig.for_model(__a , **__a )
__SCREAMING_SNAKE_CASE = True
@classmethod
def UpperCAmelCase_ ( cls : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , **UpperCAmelCase__ : Tuple ) -> List[str]:
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" )
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a )
def UpperCAmelCase_ ( self : List[str] ) -> Any:
__SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
__SCREAMING_SNAKE_CASE = self.encoder.to_dict()
__SCREAMING_SNAKE_CASE = self.decoder.to_dict()
__SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Any = version.parse("1.11")
@property
def UpperCAmelCase_ ( self : int ) -> str:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCAmelCase_ ( self : Any ) -> Any:
return 1E-4
@property
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]:
return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} )
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self : int ) -> str:
__SCREAMING_SNAKE_CASE = OrderedDict()
__SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"}
__SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"}
__SCREAMING_SNAKE_CASE = {0: "batch", 1: "encoder_sequence"}
return common_inputs
def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict = -1 , UpperCAmelCase__ : Any = -1 , UpperCAmelCase__ : Optional[int] = False , UpperCAmelCase__ : List[Any] = None , ) -> Tuple:
import torch
__SCREAMING_SNAKE_CASE = OrderedDict()
__SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(
__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a )
__SCREAMING_SNAKE_CASE = dummy_input["input_ids"].shape
__SCREAMING_SNAKE_CASE = (batch, encoder_sequence, self._config.encoder_hidden_size)
__SCREAMING_SNAKE_CASE = dummy_input.pop("input_ids" )
__SCREAMING_SNAKE_CASE = dummy_input.pop("attention_mask" )
__SCREAMING_SNAKE_CASE = torch.zeros(__a )
return common_inputs
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
pass
def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple ) -> str:
return VisionEncoderDecoderEncoderOnnxConfig(__a )
def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] = "default" ) -> int:
__SCREAMING_SNAKE_CASE = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(__a , __a )
| 54 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
_snake_case = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class UpperCAmelCase_ ( a):
def __init__( self, __a = 101):
'''simple docstring'''
_lowerCAmelCase : str = length
def __len__( self):
'''simple docstring'''
return self.length
def __getitem__( self, __a):
'''simple docstring'''
return i
class UpperCAmelCase_ :
def __call__( self, __a):
'''simple docstring'''
return {"input_ids": torch.tensor(__a), "labels": torch.tensor(__a)}
class UpperCAmelCase_ ( nn.Module):
def __init__( self):
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
_lowerCAmelCase : str = nn.Linear(120, 80)
def snake_case__ ( self, __a, __a=None):
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0, device=input_ids.device), input_ids
else:
return input_ids
class UpperCAmelCase_ ( a):
@require_torch_neuroncore
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split()
_lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir()
_lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split()
_lowerCAmelCase : List[Any] = ["torchrun"] + distributed_args + args
execute_subprocess_async(__a, env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
class UpperCAmelCase_ ( a):
@require_torch_multi_gpu
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split()
_lowerCAmelCase : Any = self.get_auto_remove_tmp_dir()
_lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split()
_lowerCAmelCase : Any = ["torchrun"] + distributed_args + args
execute_subprocess_async(__a, env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
_snake_case = HfArgumentParser((TrainingArguments,))
_snake_case = parser.parse_args_into_dataclasses()[0]
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
_snake_case = DummyDataset(dataset_length)
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(range(len(_lowerCamelCase ) ) )
_lowerCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" )
return {"success": success}
_snake_case = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
_snake_case = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_snake_case = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_snake_case = 2
_snake_case = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_snake_case = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_snake_case = None
| 36 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
lowercase__ :Tuple = imread(r"digital_image_processing/image_data/lena_small.jpg")
lowercase__ :int = cvtColor(img, COLOR_BGR2GRAY)
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = cn.convert_to_negative(__a )
# assert negative_img array for at least one True
assert negative_img.any()
def UpperCamelCase ( ):
'''simple docstring'''
with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(__a , 110 ) ).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''' )
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
lowercase = canny.canny(__a )
# assert canny array for at least one True
assert canny_array.any()
def UpperCamelCase ( ):
'''simple docstring'''
assert gg.gaussian_filter(__a , 5 , sigma=0.9 ).all()
def UpperCamelCase ( ):
'''simple docstring'''
# laplace diagonals
lowercase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
lowercase = conv.img_convolve(__a , __a ).astype(__a )
assert res.any()
def UpperCamelCase ( ):
'''simple docstring'''
assert med.median_filter(__a , 3 ).any()
def UpperCamelCase ( ):
'''simple docstring'''
lowercase , lowercase = sob.sobel_filter(__a )
assert grad.any() and theta.any()
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = sp.make_sepia(__a , 20 )
assert sepia.all()
def UpperCamelCase ( lowerCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ):
'''simple docstring'''
lowercase = bs.Burkes(imread(__a , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def UpperCamelCase ( lowerCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ):
'''simple docstring'''
lowercase = rs.NearestNeighbour(imread(__a , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
lowercase = imread(__a , 0 )
# Test for get_neighbors_pixel function() return not None
lowercase = 0
lowercase = 0
lowercase = image[x_coordinate][y_coordinate]
lowercase = lbp.get_neighbors_pixel(
__a , __a , __a , __a )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lowercase = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
lowercase = lbp.local_binary_value(__a , __a , __a )
assert lbp_image.any()
| 350 |
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
lowercase = torch.exp(lowerCAmelCase__ )
lowercase = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i)
lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(lowerCAmelCase__ ) - B / A
class lowercase ( nn.Module ):
def __init__( self ,A__):
super().__init__()
lowercase = config.output_attentions
lowercase = config.output_hidden_states
lowercase = nn.ModuleList([BertLayer(A__) for _ in range(config.num_hidden_layers)])
lowercase = nn.ModuleList([BertHighway(A__) for _ in range(config.num_hidden_layers)])
lowercase = [-1 for _ in range(config.num_hidden_layers)]
def A__ ( self ,A__):
if (type(A__) is float) or (type(A__) is int):
for i in range(len(self.early_exit_entropy)):
lowercase = x
else:
lowercase = x
def A__ ( self ,A__):
lowercase = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name])
def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=None ,):
lowercase = ()
lowercase = ()
lowercase = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
lowercase = all_hidden_states + (hidden_states,)
lowercase = layer_module(
A__ ,A__ ,head_mask[i] ,A__ ,A__)
lowercase = layer_outputs[0]
if self.output_attentions:
lowercase = all_attentions + (layer_outputs[1],)
lowercase = (hidden_states,)
if self.output_hidden_states:
lowercase = current_outputs + (all_hidden_states,)
if self.output_attentions:
lowercase = current_outputs + (all_attentions,)
lowercase = self.highway[i](A__)
# logits, pooled_output
if not self.training:
lowercase = highway_exit[0]
lowercase = entropy(A__)
lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
lowercase = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(A__ ,i + 1)
else:
lowercase = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
lowercase = all_hidden_states + (hidden_states,)
lowercase = (hidden_states,)
if self.output_hidden_states:
lowercase = outputs + (all_hidden_states,)
if self.output_attentions:
lowercase = outputs + (all_attentions,)
lowercase = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
'''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , )
class lowercase ( SCREAMING_SNAKE_CASE__ ):
def __init__( self ,A__):
super().__init__(A__)
lowercase = config
lowercase = BertEmbeddings(A__)
lowercase = DeeBertEncoder(A__)
lowercase = BertPooler(A__)
self.init_weights()
def A__ ( self):
self.encoder.init_highway_pooler(self.pooler)
def A__ ( self):
return self.embeddings.word_embeddings
def A__ ( self ,A__):
lowercase = value
def A__ ( self ,A__):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(A__)
@add_start_docstrings_to_model_forward(A__)
def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''')
elif input_ids is not None:
lowercase = input_ids.size()
elif inputs_embeds is not None:
lowercase = inputs_embeds.size()[:-1]
else:
raise ValueError('''You have to specify either input_ids or inputs_embeds''')
lowercase = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase = torch.ones(A__ ,device=A__)
if encoder_attention_mask is None:
lowercase = torch.ones(A__ ,device=A__)
if token_type_ids is None:
lowercase = torch.zeros(A__ ,dtype=torch.long ,device=A__)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase = self.get_extended_attention_mask(A__ ,A__ ,A__)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
lowercase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
lowercase = encoder_attention_mask[:, None, None, :]
lowercase = encoder_extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
lowercase = (1.0 - encoder_extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase = self.get_head_mask(A__ ,self.config.num_hidden_layers)
lowercase = self.embeddings(
input_ids=A__ ,position_ids=A__ ,token_type_ids=A__ ,inputs_embeds=A__)
lowercase = self.encoder(
A__ ,attention_mask=A__ ,head_mask=A__ ,encoder_hidden_states=A__ ,encoder_attention_mask=A__ ,)
lowercase = encoder_outputs[0]
lowercase = self.pooler(A__)
lowercase = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowercase ( SCREAMING_SNAKE_CASE__ ):
def __init__( self ,A__ ,A__):
lowercase = message
lowercase = exit_layer # start from 1!
class lowercase ( nn.Module ):
def __init__( self ,A__):
super().__init__()
lowercase = BertPooler(A__)
lowercase = nn.Dropout(config.hidden_dropout_prob)
lowercase = nn.Linear(config.hidden_size ,config.num_labels)
def A__ ( self ,A__):
# Pooler
lowercase = encoder_outputs[0]
lowercase = self.pooler(A__)
# "return" pooler_output
# BertModel
lowercase = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
lowercase = bmodel_output[1]
lowercase = self.dropout(A__)
lowercase = self.classifier(A__)
return logits, pooled_output
@add_start_docstrings(
'''Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , )
class lowercase ( SCREAMING_SNAKE_CASE__ ):
def __init__( self ,A__):
super().__init__(A__)
lowercase = config.num_labels
lowercase = config.num_hidden_layers
lowercase = DeeBertModel(A__)
lowercase = nn.Dropout(config.hidden_dropout_prob)
lowercase = nn.Linear(config.hidden_size ,self.config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(A__)
def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=-1 ,A__=False ,):
lowercase = self.num_layers
try:
lowercase = self.bert(
A__ ,attention_mask=A__ ,token_type_ids=A__ ,position_ids=A__ ,head_mask=A__ ,inputs_embeds=A__ ,)
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
lowercase = outputs[1]
lowercase = self.dropout(A__)
lowercase = self.classifier(A__)
lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowercase = e.message
lowercase = e.exit_layer
lowercase = outputs[0]
if not self.training:
lowercase = entropy(A__)
lowercase = []
lowercase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowercase = MSELoss()
lowercase = loss_fct(logits.view(-1) ,labels.view(-1))
else:
lowercase = CrossEntropyLoss()
lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1))
# work with highway exits
lowercase = []
for highway_exit in outputs[-1]:
lowercase = highway_exit[0]
if not self.training:
highway_logits_all.append(A__)
highway_entropy.append(highway_exit[2])
if self.num_labels == 1:
# We are doing regression
lowercase = MSELoss()
lowercase = loss_fct(highway_logits.view(-1) ,labels.view(-1))
else:
lowercase = CrossEntropyLoss()
lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels) ,labels.view(-1))
highway_losses.append(A__)
if train_highway:
lowercase = (sum(highway_losses[:-1]),) + outputs
# exclude the final highway, of course
else:
lowercase = (loss,) + outputs
if not self.training:
lowercase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowercase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 97 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=4 , ) -> Optional[int]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_attention_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_choices
def a ( self : Tuple ) -> int:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_attention_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
if self.use_token_type_ids:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a ( self : Any ) -> Optional[int]:
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class _lowercase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Tuple = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a ( self : Optional[Any] ) -> List[Any]:
__lowerCAmelCase = FlaxAlbertModelTester(self )
@slow
def a ( self : Optional[int] ) -> str:
for model_class_name in self.all_model_classes:
__lowerCAmelCase = model_class_name.from_pretrained("""albert-base-v2""" )
__lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@require_flax
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def a ( self : str ) -> Optional[int]:
__lowerCAmelCase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" )
__lowerCAmelCase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0]
__lowerCAmelCase = (1, 11, 7_68)
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 229 | '''simple docstring'''
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class _lowercase :
'''simple docstring'''
_SCREAMING_SNAKE_CASE : float
_SCREAMING_SNAKE_CASE : TreeNode | None = None
_SCREAMING_SNAKE_CASE : TreeNode | None = None
def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> bool:
'''simple docstring'''
def is_valid_tree(snake_case_ : TreeNode | None ) -> bool:
if node is None:
return True
if not isinstance(snake_case_ , snake_case_ ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(snake_case_ ):
raise ValueError(
"""Each node should be type of TreeNode and data should be float.""" )
def is_binary_search_tree_recursive_check(
snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , snake_case_ )
)
return is_binary_search_tree_recursive_check(snake_case_ , -float("""inf""" ) , float("""inf""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 229 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase ) -> Optional[Any]:
A_ : Any = data
A_ : Node | None = None
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> List[str]:
A_ : Tuple = None
A_ : str = None
def __iter__( self ) -> Iterator[Any]:
A_ : Dict = self.head
while self.head:
yield node.data
A_ : Optional[Any] = node.next
if node == self.head:
break
def __len__( self ) -> int:
return sum(1 for _ in self )
def __repr__( self ) -> str:
return "->".join(str(_lowerCamelCase ) for item in iter(self ) )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None:
self.insert_nth(len(self ) , _lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None:
self.insert_nth(0 , _lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None:
if index < 0 or index > len(self ):
raise IndexError("""list index out of range.""" )
A_ : Optional[int] = Node(_lowerCamelCase )
if self.head is None:
A_ : str = new_node # first node points itself
A_ : Union[str, Any] = new_node
elif index == 0: # insert at head
A_ : List[Any] = self.head
A_ : List[Any] = new_node
else:
A_ : List[str] = self.head
for _ in range(index - 1 ):
A_ : Optional[int] = temp.next
A_ : Tuple = temp.next
A_ : str = new_node
if index == len(self ) - 1: # insert at tail
A_ : Optional[int] = new_node
def UpperCAmelCase_ ( self ) -> List[Any]:
return self.delete_nth(0 )
def UpperCAmelCase_ ( self ) -> Any:
return self.delete_nth(len(self ) - 1 )
def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any:
if not 0 <= index < len(self ):
raise IndexError("""list index out of range.""" )
A_ : int = self.head
if self.head == self.tail: # just one node
A_ : int = None
elif index == 0: # delete head node
A_ : Union[str, Any] = self.tail.next.next
A_ : Tuple = self.head.next
else:
A_ : Optional[int] = self.head
for _ in range(index - 1 ):
A_ : Tuple = temp.next
A_ : Any = temp.next
A_ : Tuple = temp.next.next
if index == len(self ) - 1: # delete at tail
A_ : List[str] = temp
return delete_node.data
def UpperCAmelCase_ ( self ) -> bool:
return len(self ) == 0
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
A_ : Any = CircularLinkedList()
assert len(a_ ) == 0
assert circular_linked_list.is_empty() is True
assert str(a_ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(a_ ) == i
circular_linked_list.insert_nth(a_ , i + 1 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Any = 0
def UpperCAmelCase_ ( self ) -> Dict:
A_ : str = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : Optional[int] = Path(_lowerCamelCase ) / """preprocessor_config.json"""
A_ : List[str] = Path(_lowerCamelCase ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) )
A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[int]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : List[str] = Path(_lowerCamelCase ) / """preprocessor_config.json"""
A_ : Tuple = Path(_lowerCamelCase ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) )
A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : int = CLIPConfig()
# Create a dummy config file with image_proceesor_type
A_ : Dict = Path(_lowerCamelCase ) / """preprocessor_config.json"""
A_ : Any = Path(_lowerCamelCase ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
A_ : str = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict()
config_dict.pop("""image_processor_type""" )
A_ : Dict = CLIPImageProcessor(**_lowerCamelCase )
# save in new folder
model_config.save_pretrained(_lowerCamelCase )
config.save_pretrained(_lowerCamelCase )
A_ : Any = AutoImageProcessor.from_pretrained(_lowerCamelCase )
# make sure private variable is not incorrectly saved
A_ : int = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : List[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , )
A_ : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
with self.assertRaisesRegex(
_lowerCamelCase , """clip-base is not a local folder and is not a valid model identifier""" ):
A_ : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" )
def UpperCAmelCase_ ( self ) -> Dict:
with self.assertRaisesRegex(
_lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , revision="""aaaaaa""" )
def UpperCAmelCase_ ( self ) -> Any:
with self.assertRaisesRegex(
_lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
A_ : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def UpperCAmelCase_ ( self ) -> Dict:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_lowerCamelCase ):
A_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_lowerCamelCase ):
A_ : List[Any] = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase )
A_ : str = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_lowerCamelCase )
A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def UpperCAmelCase_ ( self ) -> Dict:
try:
AutoConfig.register("""custom""" , _lowerCamelCase )
AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_lowerCamelCase ):
AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : Optional[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json"""
A_ : Dict = Path(_lowerCamelCase ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) )
A_ : Optional[int] = CustomImageProcessor.from_pretrained(_lowerCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_lowerCamelCase )
A_ : List[str] = AutoImageProcessor.from_pretrained(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase_ ( self ) -> List[str]:
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = True
try:
AutoConfig.register("""custom""" , _lowerCamelCase )
AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase )
# If remote code is not set, the default is to use local
A_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
A_ : Optional[Any] = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
A_ : Optional[Any] = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(_lowerCamelCase , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 164 | 0 |
"""simple docstring"""
UpperCAmelCase : Optional[Any] = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 115 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Any = {
'configuration_blenderbot': [
'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotConfig',
'BlenderbotOnnxConfig',
],
'tokenization_blenderbot': ['BlenderbotTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = ['BlenderbotTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotForCausalLM',
'BlenderbotForConditionalGeneration',
'BlenderbotModel',
'BlenderbotPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = [
'TFBlenderbotForConditionalGeneration',
'TFBlenderbotModel',
'TFBlenderbotPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = [
'FlaxBlenderbotForConditionalGeneration',
'FlaxBlenderbotModel',
'FlaxBlenderbotPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 115 | 1 |
"""simple docstring"""
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
UpperCamelCase__ = 'http://www.mocksite.com/file1.txt'
UpperCamelCase__ = '"text": ["foo", "foo"]'
UpperCamelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8'
class A :
__UpperCAmelCase : Union[str, Any] = 2_00
__UpperCAmelCase : Union[str, Any] = {'Content-Length': '100'}
__UpperCAmelCase : Any = {}
def lowercase_ (self : Optional[int] , **__UpperCAmelCase : Dict ) -> Tuple:
"""simple docstring"""
return [bytes(__UpperCAmelCase , "utf-8" )]
def lowerCAmelCase_ ( *__A, **__A ) -> str:
'''simple docstring'''
return MockResponse()
@pytest.mark.parametrize("urls_type", [str, list, dict] )
def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]:
'''simple docstring'''
import requests
monkeypatch.setattr(__A, "request", __A )
UpperCAmelCase__ = URL
if issubclass(__A, __A ):
UpperCAmelCase__ = url
elif issubclass(__A, __A ):
UpperCAmelCase__ = [url]
elif issubclass(__A, __A ):
UpperCAmelCase__ = {"train": url}
UpperCAmelCase__ = "dummy"
UpperCAmelCase__ = "downloads"
UpperCAmelCase__ = tmp_path
UpperCAmelCase__ = DownloadConfig(
cache_dir=os.path.join(__A, __A ), use_etag=__A, )
UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A )
UpperCAmelCase__ = dl_manager.download(__A )
UpperCAmelCase__ = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(__A, __A ):
UpperCAmelCase__ = [downloaded_paths]
UpperCAmelCase__ = [urls]
elif isinstance(__A, __A ):
assert "train" in downloaded_paths.keys()
UpperCAmelCase__ = downloaded_paths.values()
UpperCAmelCase__ = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(__A, __A ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
UpperCAmelCase__ = Path(__A )
UpperCAmelCase__ = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
UpperCAmelCase__ = downloaded_path.read_text()
assert content == CONTENT
UpperCAmelCase__ = downloaded_path.with_suffix(".json" )
assert metadata_downloaded_path.exists()
UpperCAmelCase__ = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize("paths_type", [str, list, dict] )
def lowerCAmelCase_ ( __A, __A, __A ) -> Any:
'''simple docstring'''
UpperCAmelCase__ = str(__A )
if issubclass(__A, __A ):
UpperCAmelCase__ = filename
elif issubclass(__A, __A ):
UpperCAmelCase__ = [filename]
elif issubclass(__A, __A ):
UpperCAmelCase__ = {"train": filename}
UpperCAmelCase__ = "dummy"
UpperCAmelCase__ = xz_file.parent
UpperCAmelCase__ = "extracted"
UpperCAmelCase__ = DownloadConfig(
cache_dir=__A, use_etag=__A, )
UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A )
UpperCAmelCase__ = dl_manager.extract(__A )
UpperCAmelCase__ = paths
for extracted_paths in [extracted_paths]:
if isinstance(__A, __A ):
UpperCAmelCase__ = [extracted_paths]
UpperCAmelCase__ = [paths]
elif isinstance(__A, __A ):
assert "train" in extracted_paths.keys()
UpperCAmelCase__ = extracted_paths.values()
UpperCAmelCase__ = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(__A, __A ):
assert extracted_path == dl_manager.extracted_paths[input_path]
UpperCAmelCase__ = Path(__A )
UpperCAmelCase__ = extracted_path.parts
assert parts[-1] == hash_url_to_filename(__A, etag=__A )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
UpperCAmelCase__ = extracted_path.read_text()
UpperCAmelCase__ = text_file.read_text()
assert extracted_file_content == expected_file_content
def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]:
'''simple docstring'''
assert path.endswith(".jsonl" )
for num_items, line in enumerate(__A, start=1 ):
UpperCAmelCase__ = json.loads(line.decode("utf-8" ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] )
def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ = request.getfixturevalue(__A )
UpperCAmelCase__ = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ):
_test_jsonl(__A, __A )
assert num_jsonl == 2
@pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] )
def lowerCAmelCase_ ( __A, __A ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase__ = request.getfixturevalue(__A )
UpperCAmelCase__ = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__A ), start=1 ):
_test_jsonl(__A, __A )
assert num_tar == 1
assert num_jsonl == 2
def lowerCAmelCase_ ( __A ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase__ = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(__A ), start=1 ):
assert os.path.basename(__A ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 350 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli'
__UpperCAmelCase : Optional[Any] = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
__UpperCAmelCase : Optional[int] = 'text_classifier'
__UpperCAmelCase : int = AutoTokenizer
__UpperCAmelCase : Dict = AutoModelForSequenceClassification
__UpperCAmelCase : int = ['text', ['text']]
__UpperCAmelCase : Optional[int] = ['text']
def lowercase_ (self : List[Any] ) -> List[str]:
"""simple docstring"""
super().setup()
UpperCAmelCase__ = self.model.config
UpperCAmelCase__ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
UpperCAmelCase__ = int(__UpperCAmelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = labels
return self.pre_processor(
[text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , )
def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase__ = outputs.logits
UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 143 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : str = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : Any = 250004
_lowercase : List[Any] = 250020
@require_sentencepiece
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = MBartaaTokenizer
UpperCamelCase__ = MBartaaTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : int = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = """<s>"""
lowercase_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(lowercase_ ) , 1054 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Tuple = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ )
lowercase_ : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowercase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowercase_ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
lowercase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
# fmt: off
lowercase_ : Tuple = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowercase_ : Dict = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowercase_ : Tuple = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowercase_ : Optional[int] = tempfile.mkdtemp()
lowercase_ : str = tokenizer_r.save_pretrained(lowercase_ )
lowercase_ : Tuple = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowercase_ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
lowercase_ : Optional[int] = tokenizer_r.from_pretrained(lowercase_ )
lowercase_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=True
lowercase_ : Union[str, Any] = tempfile.mkdtemp()
lowercase_ : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
lowercase_ : Union[str, Any] = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
lowercase_ : Tuple = tokenizer_r.from_pretrained(lowercase_ )
lowercase_ : str = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=False
lowercase_ : Optional[int] = tempfile.mkdtemp()
lowercase_ : Any = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
lowercase_ : Optional[Any] = tokenizer_p.save_pretrained(lowercase_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowercase_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ )
lowercase_ : str = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __magic_name__ ( unittest.TestCase):
UpperCamelCase__ = '''facebook/mbart-large-50-one-to-many-mmt'''
UpperCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
UpperCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
UpperCamelCase__ = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2]
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int ):
lowercase_ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
lowercase_ : Optional[Any] = 1
return cls
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
self.assertIn(lowercase_ , self.tokenizer.all_special_ids )
lowercase_ : Optional[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
lowercase_ : List[Any] = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ )
lowercase_ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertNotIn(self.tokenizer.eos_token , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : int = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , lowercase_ )
lowercase_ : Dict = 10
lowercase_ : int = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0]
self.assertEqual(ids[0] , lowercase_ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(lowercase_ ) , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Union[str, Any] = tempfile.mkdtemp()
lowercase_ : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowercase_ )
lowercase_ : List[Any] = MBartaaTokenizer.from_pretrained(lowercase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors="""pt""" )
lowercase_ : List[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : int = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
lowercase_ : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
lowercase_ : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowercase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Optional[Any] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="""pt""" )
lowercase_ : str = self.tokenizer(
text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="""pt""" )
lowercase_ : List[Any] = targets["""input_ids"""]
lowercase_ : Union[str, Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Union[str, Any] = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(lowercase_ ) , {
# en_XX, A, test, EOS
"""input_ids""": [[250004, 62, 3034, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250001,
} , )
| 239 | '''simple docstring'''
import math
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowercase_ : List[Any] = F'''Input value of [number={number}] must be an integer'''
raise TypeError(UpperCAmelCase__ )
if number < 1:
lowercase_ : Tuple = F'''Input value of [number={number}] must be > 0'''
raise ValueError(UpperCAmelCase__ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
lowercase_ : Union[str, Any] = int(math.log(number // 3 , 2 ) ) + 2
lowercase_ : Any = [3, 5]
lowercase_ : List[Any] = 2
lowercase_ : Optional[Any] = 3
for block in range(1 , UpperCAmelCase__ ):
for _ in range(UpperCAmelCase__ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
_lowercase : Optional[Any] = 0
try:
_lowercase : str = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 239 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase : str = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__magic_name__ = "wavlm"
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_lowerCAmelCase : int = hidden_size
_lowerCAmelCase : Optional[int] = feat_extract_norm
_lowerCAmelCase : Optional[Any] = feat_extract_activation
_lowerCAmelCase : List[str] = list(__UpperCAmelCase )
_lowerCAmelCase : Tuple = list(__UpperCAmelCase )
_lowerCAmelCase : List[str] = list(__UpperCAmelCase )
_lowerCAmelCase : List[str] = conv_bias
_lowerCAmelCase : Any = num_buckets
_lowerCAmelCase : List[Any] = max_bucket_distance
_lowerCAmelCase : List[Any] = num_conv_pos_embeddings
_lowerCAmelCase : Optional[Any] = num_conv_pos_embedding_groups
_lowerCAmelCase : List[Any] = len(self.conv_dim )
_lowerCAmelCase : Union[str, Any] = num_hidden_layers
_lowerCAmelCase : List[str] = intermediate_size
_lowerCAmelCase : Tuple = hidden_act
_lowerCAmelCase : str = num_attention_heads
_lowerCAmelCase : Tuple = hidden_dropout
_lowerCAmelCase : Optional[Any] = attention_dropout
_lowerCAmelCase : Any = activation_dropout
_lowerCAmelCase : Optional[int] = feat_proj_dropout
_lowerCAmelCase : List[Any] = final_dropout
_lowerCAmelCase : str = layerdrop
_lowerCAmelCase : Optional[Any] = layer_norm_eps
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : List[Any] = num_ctc_classes
_lowerCAmelCase : Union[str, Any] = vocab_size
_lowerCAmelCase : Optional[int] = do_stable_layer_norm
_lowerCAmelCase : Dict = use_weighted_layer_sum
_lowerCAmelCase : Any = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase : Dict = apply_spec_augment
_lowerCAmelCase : Union[str, Any] = mask_time_prob
_lowerCAmelCase : List[str] = mask_time_length
_lowerCAmelCase : Union[str, Any] = mask_time_min_masks
_lowerCAmelCase : Dict = mask_feature_prob
_lowerCAmelCase : Any = mask_feature_length
# parameters for pretraining with codevector quantized representations
_lowerCAmelCase : int = num_codevectors_per_group
_lowerCAmelCase : Tuple = num_codevector_groups
_lowerCAmelCase : List[str] = contrastive_logits_temperature
_lowerCAmelCase : List[str] = num_negatives
_lowerCAmelCase : Any = codevector_dim
_lowerCAmelCase : str = proj_codevector_dim
_lowerCAmelCase : Any = diversity_loss_weight
# ctc loss
_lowerCAmelCase : Dict = ctc_loss_reduction
_lowerCAmelCase : List[str] = ctc_zero_infinity
# adapter
_lowerCAmelCase : Optional[Any] = add_adapter
_lowerCAmelCase : List[Any] = adapter_kernel_size
_lowerCAmelCase : int = adapter_stride
_lowerCAmelCase : List[Any] = num_adapter_layers
_lowerCAmelCase : List[str] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase : Dict = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase : List[Any] = list(__UpperCAmelCase )
_lowerCAmelCase : Union[str, Any] = list(__UpperCAmelCase )
_lowerCAmelCase : Dict = list(__UpperCAmelCase )
_lowerCAmelCase : Optional[int] = xvector_output_dim
@property
def a ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 366 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 0 |
import math
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: str = 0
SCREAMING_SNAKE_CASE_: List[Any] = 0
while num > 0:
SCREAMING_SNAKE_CASE_: int = num % 8
SCREAMING_SNAKE_CASE_: Dict = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
SCREAMING_SNAKE_CASE_: Any = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"0o{int(__lowerCamelCase )}"
def A_ ( ):
print("\n2 in octal is:" )
print(decimal_to_octal(2 ) ) # = 2
print("\n8 in octal is:" )
print(decimal_to_octal(8 ) ) # = 10
print("\n65 in octal is:" )
print(decimal_to_octal(65 ) ) # = 101
print("\n216 in octal is:" )
print(decimal_to_octal(2_16 ) ) # = 330
print("\n512 in octal is:" )
print(decimal_to_octal(5_12 ) ) # = 1000
print("\n" )
if __name__ == "__main__":
main()
| 13 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowercase : List[Any] = {
"configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"],
"tokenization_tapas": ["TapasTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TapasForMaskedLM",
"TapasForQuestionAnswering",
"TapasForSequenceClassification",
"TapasModel",
"TapasPreTrainedModel",
"load_tf_weights_in_tapas",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 238 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 358 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
UpperCAmelCase_ = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 247 | 0 |
'''simple docstring'''
def __snake_case( _lowerCAmelCase ) -> int:
if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return 0
elif n == 2:
return 1
else:
snake_case__ : Optional[int] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __snake_case( _lowerCAmelCase ) -> int:
snake_case__ : Union[str, Any] = 0
snake_case__ : List[str] = 2
while digits < n:
index += 1
snake_case__ : Any = len(str(fibonacci(_lowerCAmelCase ) ) )
return index
def __snake_case( _lowerCAmelCase = 1_000 ) -> int:
return fibonacci_digits_index(_lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 35 |
import os
import sys
lowercase__ :Tuple = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowercase__ :List[Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 101 | 0 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def UpperCamelCase__( UpperCamelCase__ : Tuple )->List[Any]:
if not is_accelerate_available():
return method
A__ = version.parse(accelerate.__version__ ).base_version
if version.parse(UpperCamelCase__ ) < version.parse('''0.17.0''' ):
return method
def wrapper(self : Tuple , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Dict ):
if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ):
self._hf_hook.pre_forward(self )
return method(self , *UpperCamelCase__ , **UpperCamelCase__ )
return wrapper
| 39 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ):
__SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer''']
__SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor'''
__SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''')
def __init__( self,__lowerCamelCase,__lowerCamelCase ):
A__ = False
super().__init__(__lowerCamelCase,__lowerCamelCase )
def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,):
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None and not self.image_processor.is_vqa:
A__ = self.tokenizer
A__ = self.tokenizer(
text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,)
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
A__ = self.image_processor(
__lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase )
else:
# add pixel_values and bbox
A__ = self.image_processor(
__lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase )
if text is not None and not self.image_processor.is_vqa:
A__ = self.tokenizer(
text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,)
if "attention_mask" in text_encoding:
A__ = text_encoding.pop('''attention_mask''' )
if "input_ids" in text_encoding:
A__ = text_encoding.pop('''input_ids''' )
else:
A__ = None
if text_encoding is not None:
encoding_image_processor.update(__lowerCamelCase )
return encoding_image_processor
def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ):
return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase )
def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ):
return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase )
@property
def UpperCamelCase ( self ):
A__ = self.tokenizer.model_input_names
A__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 39 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {
"""configuration_xlm_roberta""": [
"""XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XLMRobertaConfig""",
"""XLMRobertaOnnxConfig""",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["""XLMRobertaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["""XLMRobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMRobertaForCausalLM""",
"""XLMRobertaForMaskedLM""",
"""XLMRobertaForMultipleChoice""",
"""XLMRobertaForQuestionAnswering""",
"""XLMRobertaForSequenceClassification""",
"""XLMRobertaForTokenClassification""",
"""XLMRobertaModel""",
"""XLMRobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMRobertaForCausalLM""",
"""TFXLMRobertaForMaskedLM""",
"""TFXLMRobertaForMultipleChoice""",
"""TFXLMRobertaForQuestionAnswering""",
"""TFXLMRobertaForSequenceClassification""",
"""TFXLMRobertaForTokenClassification""",
"""TFXLMRobertaModel""",
"""TFXLMRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxXLMRobertaForMaskedLM""",
"""FlaxXLMRobertaForCausalLM""",
"""FlaxXLMRobertaForMultipleChoice""",
"""FlaxXLMRobertaForQuestionAnswering""",
"""FlaxXLMRobertaForSequenceClassification""",
"""FlaxXLMRobertaForTokenClassification""",
"""FlaxXLMRobertaModel""",
"""FlaxXLMRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths
SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train"""
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Union[str, Any] = streaming
SCREAMING_SNAKE_CASE : Optional[int] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : int = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Tuple = streaming
SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
pass
| 323 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class __UpperCamelCase :
def __init__( self , __a=2 , __a=3 , __a=64 , __a=None ):
'''simple docstring'''
__a : str = np.random.default_rng(__UpperCAmelCase )
__a : List[str] = length
__a : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__a : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ):
'''simple docstring'''
return self.length
def __getitem__( self , __a ):
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class __UpperCamelCase ( torch.nn.Module ):
def __init__( self , __a=0 , __a=0 , __a=False ):
'''simple docstring'''
super().__init__()
__a : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__a : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__a : Any = True
def __UpperCAmelCase ( self , __a=None ):
'''simple docstring'''
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
__a : Optional[int] = False
return x * self.a[0] + self.b[0]
class __UpperCamelCase ( torch.nn.Module ):
def __init__( self , __a=0 , __a=0 , __a=False ):
'''simple docstring'''
super().__init__()
__a : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__a : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__a : str = True
def __UpperCAmelCase ( self , __a=None ):
'''simple docstring'''
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
__a : int = False
return x * self.a + self.b
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int = 16 ):
from datasets import load_dataset
from transformers import AutoTokenizer
__a : int = AutoTokenizer.from_pretrained('bert-base-cased' )
__a : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__a : Tuple = load_dataset('csv' , data_files=lowerCAmelCase__ )
__a : Optional[Any] = datasets["""train"""].unique('label' )
__a : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(_SCREAMING_SNAKE_CASE : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a : List[Any] = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='max_length' )
if "label" in examples:
__a : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(_SCREAMING_SNAKE_CASE : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(lowerCAmelCase__ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__a : Optional[Any] = DataLoader(tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__a : List[Any] = DataLoader(tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 366 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
__lowercase : Optional[Any] = True
except (ImportError, ModuleNotFoundError):
__lowercase : Dict = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ):
re.sub('<n>' , '' , _SCREAMING_SNAKE_CASE ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
| 294 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
class __a :
def __init__( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : str = value
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
class __a :
def __init__( self : str , __magic_name__ : Node ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Dict = tree
def UpperCAmelCase__ ( self : int , __magic_name__ : Node | None ) -> int:
"""simple docstring"""
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 125 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : Dict = 3
UpperCAmelCase_ : Dict = (32, 32)
UpperCAmelCase_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ )
return image
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
def extract(*__magic_name__ : Dict , **__magic_name__ : Any ):
class __a :
def __init__( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = torch.ones([0] )
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
self.pixel_values.to(__magic_name__ )
return self
return Out()
return extract
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Optional[Any] = self.dummy_cond_unet
UpperCAmelCase_ : Any = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
UpperCAmelCase_ : List[Any] = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : str = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : List[str] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : Optional[Any] = output.images
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Dict = self.dummy_cond_unet
UpperCAmelCase_ : str = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Any = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(pipe.scheduler , __magic_name__ )
assert pipe.safety_checker is None
UpperCAmelCase_ : str = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_cond_unet
UpperCAmelCase_ : Tuple = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Tuple = self.dummy_vae
UpperCAmelCase_ : Optional[Any] = self.dummy_text_encoder
UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
UpperCAmelCase_ : Union[str, Any] = unet.half()
UpperCAmelCase_ : Any = vae.half()
UpperCAmelCase_ : Tuple = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
UpperCAmelCase_ : str = 40_03_66_03_46
UpperCAmelCase_ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Any = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
UpperCAmelCase_ : Tuple = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : int ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity'''
UpperCAmelCase_ : Tuple = 27_34_97_17_55
UpperCAmelCase_ : List[str] = 7
UpperCAmelCase_ : Any = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
UpperCAmelCase_ : List[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[str] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
UpperCAmelCase_ : str = 10_44_35_52_34
UpperCAmelCase_ : int = 12
UpperCAmelCase_ : int = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Any = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 125 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A =logging.get_logger(__name__)
__A ={'''tokenizer_file''': '''tokenizer.json'''}
__A ={
'''tokenizer_file''': {
'''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''',
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''',
},
}
class _SCREAMING_SNAKE_CASE ( _a ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = ['input_ids', 'attention_mask']
lowerCAmelCase__ = None
def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<unk>" , lowercase="<s>" , lowercase="</s>" , lowercase="<pad>" , lowercase=False , lowercase=False , **lowercase , ) -> Any:
super().__init__(
snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , pad_token=snake_case_ , add_prefix_space=snake_case_ , clean_up_tokenization_spaces=snake_case_ , **snake_case_ , )
lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space:
lowerCamelCase_ = getattr(snake_case_ , pre_tok_state.pop("type" ) )
lowerCamelCase_ = add_prefix_space
lowerCamelCase_ = pre_tok_class(**snake_case_ )
lowerCamelCase_ = add_prefix_space
def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]:
lowerCamelCase_ = kwargs.get("is_split_into_words" , snake_case_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
" pretokenized inputs." )
return super()._batch_encode_plus(*snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Tuple:
lowerCamelCase_ = kwargs.get("is_split_into_words" , snake_case_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
" pretokenized inputs." )
return super()._encode_plus(*snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[Any]:
lowerCamelCase_ = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int:
lowerCamelCase_ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] )
if len(snake_case_ ) > self.model_max_length:
lowerCamelCase_ = input_ids[-self.model_max_length :]
return input_ids
| 371 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A =logging.get_logger(__name__)
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase_ = 1_9_2
lowerCamelCase_ = 7_6_8
lowerCamelCase_ = 1_2
lowerCamelCase_ = 3
lowerCamelCase_ = [8_0_0, 1_3_3_3]
lowerCamelCase_ = False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase_ = 3_3_0
lowerCamelCase_ = 1_4
lowerCamelCase_ = 6
lowerCamelCase_ = 1_3_2_0
elif "yolos_s" in yolos_name:
lowerCamelCase_ = 3_8_4
lowerCamelCase_ = 1_5_3_6
lowerCamelCase_ = 1_2
lowerCamelCase_ = 6
elif "yolos_b" in yolos_name:
lowerCamelCase_ = [8_0_0, 1_3_4_4]
lowerCamelCase_ = 9_1
lowerCamelCase_ = "huggingface/label-files"
lowerCamelCase_ = "coco-detection-id2label.json"
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) )
lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase_ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase_ = in_proj_bias[: config.hidden_size]
lowerCamelCase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :]
lowerCamelCase_ = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_ ( lowerCamelCase__ ):
if "backbone" in name:
lowerCamelCase_ = name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase_ = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase_ = name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase_ = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase_ = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
for key in orig_state_dict.copy().keys():
lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ )
if "qkv" in key:
lowerCamelCase_ = key.split("." )
lowerCamelCase_ = int(key_split[2] )
lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase_ = val[:dim, :]
lowerCamelCase_ = val[
dim : dim * 2, :
]
lowerCamelCase_ = val[-dim:, :]
else:
lowerCamelCase_ = val[:dim]
lowerCamelCase_ = val[dim : dim * 2]
lowerCamelCase_ = val[-dim:]
else:
lowerCamelCase_ = val
return orig_state_dict
def lowerCamelCase_ ( ):
lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw )
return im
@torch.no_grad()
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
lowerCamelCase_ = get_yolos_config(lowerCamelCase__ )
# load original state_dict
lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ )
model.eval()
lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ )
model.load_state_dict(lowerCamelCase__ )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2
lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ )
lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase_ = model(**lowerCamelCase__ )
lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes
lowerCamelCase_ , lowerCamelCase_ = None, None
if yolos_name == "yolos_ti":
lowerCamelCase_ = torch.tensor(
[[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] )
lowerCamelCase_ = torch.tensor(
[[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase_ = torch.tensor(
[[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] )
lowerCamelCase_ = torch.tensor(
[[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase_ = torch.tensor(
[[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] )
lowerCamelCase_ = torch.tensor(
[[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase_ = torch.tensor(
[[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] )
lowerCamelCase_ = torch.tensor(
[[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] )
elif yolos_name == "yolos_base":
lowerCamelCase_ = torch.tensor(
[[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] )
lowerCamelCase_ = torch.tensor(
[[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] )
else:
raise ValueError(F'Unknown yolos_name: {yolos_name}' )
assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 )
Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ )
print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCamelCase__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCamelCase__ )
if push_to_hub:
lowerCamelCase_ = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase_ = model_mapping[yolos_name]
image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" )
model.push_to_hub(lowerCamelCase__ , organization="hustvl" )
if __name__ == "__main__":
__A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__A =parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 47 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case ={
'configuration_clipseg': [
'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP',
'CLIPSegConfig',
'CLIPSegTextConfig',
'CLIPSegVisionConfig',
],
'processing_clipseg': ['CLIPSegProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST',
'CLIPSegModel',
'CLIPSegPreTrainedModel',
'CLIPSegTextModel',
'CLIPSegVisionModel',
'CLIPSegForImageSegmentation',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 4 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
__lowerCAmelCase : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif']
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=1 ) -> str:
"""simple docstring"""
__magic_name__ = tokenizer
__magic_name__ = dataset
__magic_name__ = len(UpperCamelCase__ ) if n_tasks is None else n_tasks
__magic_name__ = n_copies
def __iter__( self : List[Any] ) -> List[str]:
"""simple docstring"""
__magic_name__ = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() )
__magic_name__ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> List[str]:
"""simple docstring"""
__magic_name__ = start_length
__magic_name__ = eof_strings
__magic_name__ = tokenizer
def __call__( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
__magic_name__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
__magic_name__ = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(UpperCamelCase__ )
def a__ ( A_ ):
'''simple docstring'''
__magic_name__ = re.split("""(%s)""" % """|""".join(A_ ), A_ )
# last string should be ""
return "".join(string_list[:-2] )
def a__ ( A_, A_, A_, A_, A_, A_=20, **A_ ):
'''simple docstring'''
__magic_name__ = defaultdict(A_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(A_ ) ):
with torch.no_grad():
__magic_name__ = batch["""ids"""].shape[-1]
__magic_name__ = accelerator.unwrap_model(A_ ).generate(
input_ids=batch["""ids"""][:, : batch["""input_len"""]], num_return_sequences=A_, **A_ )
# each task is generated batch_size times
__magic_name__ = batch["""task_id"""].repeat(A_ )
__magic_name__ = accelerator.pad_across_processes(
A_, dim=1, pad_index=tokenizer.pad_token_id )
__magic_name__ , __magic_name__ = accelerator.gather((generated_tokens, generated_tasks) )
__magic_name__ = generated_tokens.cpu().numpy()
__magic_name__ = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(A_, A_ ):
gen_token_dict[task].append(A_ )
__magic_name__ = [[] for _ in range(A_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
__magic_name__ = tokenizer.decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ )
code_gens[task].append(remove_last_block(A_ ) )
return code_gens
def a__ ( ):
'''simple docstring'''
__magic_name__ = HfArgumentParser(A_ )
__magic_name__ = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
__magic_name__ = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
__magic_name__ = """false"""
if args.num_workers is None:
__magic_name__ = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
__magic_name__ = Accelerator()
set_seed(args.seed, device_specific=A_ )
# Load model and tokenizer
__magic_name__ = AutoTokenizer.from_pretrained(args.model_ckpt )
__magic_name__ = tokenizer.eos_token
__magic_name__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
__magic_name__ = {
"""do_sample""": args.do_sample,
"""temperature""": args.temperature,
"""max_new_tokens""": args.max_new_tokens,
"""top_p""": args.top_p,
"""top_k""": args.top_k,
"""stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0, A_, A_ )] ),
}
# Load evaluation dataset and metric
__magic_name__ = load_dataset("""openai_humaneval""" )
__magic_name__ = load_metric("""code_eval""" )
__magic_name__ = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] )
__magic_name__ = args.n_samples // args.batch_size
__magic_name__ = TokenizedDataset(A_, human_eval["""test"""], n_copies=A_, n_tasks=A_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
__magic_name__ = DataLoader(A_, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
__magic_name__ = code_eval_metric.compute(references=[""""""], predictions=[[""""""]] )
except ValueError as exception:
print(
"""Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"""
""" flag to enable code evaluation.""" )
raise exception
__magic_name__ , __magic_name__ = accelerator.prepare(A_, A_ )
__magic_name__ = complete_code(
A_, A_, A_, A_, n_tasks=A_, batch_size=args.batch_size, **A_, )
if accelerator.is_main_process:
__magic_name__ = []
for task in tqdm(range(A_ ) ):
__magic_name__ = human_eval["""test"""][task]["""test"""]
__magic_name__ = f'''check({human_eval['test'][task]['entry_point']})'''
references.append("""\n""" + test_func + """\n""" + entry_point )
# Evaluate completions with "code_eval" metric
__magic_name__ , __magic_name__ = code_eval_metric.compute(
references=A_, predictions=A_, num_workers=args.num_workers )
print(f'''Results: {pass_at_k}''' )
# Save results to json file
with open(args.output_file, """w""" ) as fp:
json.dump(A_, A_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 88 | 0 |
from __future__ import annotations
from collections import Counter
from random import random
class __lowercase :
"""simple docstring"""
def __init__( self ) -> str:
snake_case : Optional[Any] = {}
def UpperCAmelCase ( self , A ) -> None:
snake_case : int = {}
def UpperCAmelCase ( self , A , A , A ) -> None:
if nodea not in self.connections:
self.add_node(A )
if nodea not in self.connections:
self.add_node(A )
snake_case : Tuple = probability
def UpperCAmelCase ( self ) -> list[str]:
return list(self.connections )
def UpperCAmelCase ( self , A ) -> str:
snake_case : List[Any] = 0
snake_case : Union[str, Any] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> dict[str, int]:
snake_case : str = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(lowercase ,lowercase ,lowercase )
snake_case : Any = Counter(graph.get_nodes() )
snake_case : List[str] = start
for _ in range(lowercase ):
snake_case : List[Any] = graph.transition(lowercase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 176 |
from collections import defaultdict
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool:
snake_case : List[str] = first_str.lower().strip()
snake_case : List[str] = second_str.lower().strip()
# Remove whitespace
snake_case : Any = first_str.replace(""" """ ,"""""" )
snake_case : List[str] = second_str.replace(""" """ ,"""""" )
# Strings of different lengths are not anagrams
if len(lowercase ) != len(lowercase ):
return False
# Default values for count should be 0
snake_case : defaultdict[str, int] = defaultdict(lowercase )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(lowercase ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCamelCase : List[Any] = input('Enter the first string ').strip()
lowerCamelCase : Optional[int] = input('Enter the second string ').strip()
lowerCamelCase : Optional[Any] = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 176 | 1 |
"""simple docstring"""
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = [randint(-10_00 , 10_00 ) for i in range(10 )]
_snake_case : str = randint(-50_00 , 50_00 )
return (arr, r)
A_ = make_dataset()
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ):
"""simple docstring"""
for triplet in permutations(snake_case__ , 3 ):
if sum(snake_case__ ) == target:
return tuple(sorted(snake_case__ ) )
return (0, 0, 0)
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ):
"""simple docstring"""
arr.sort()
_snake_case : Any = len(snake_case__ )
for i in range(n - 1 ):
_snake_case , _snake_case : Optional[int] = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Tuple = """
from __main__ import dataset, triplet_sum1, triplet_sum2
"""
_snake_case : Optional[Any] = """
triplet_sum1(*dataset)
"""
_snake_case : int = """
triplet_sum2(*dataset)
"""
_snake_case : List[str] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 )
_snake_case : Optional[Any] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 )
return (min(snake_case__ ), min(snake_case__ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
A_ = solution_times()
print(F'''The time for naive implementation is {times[0]}.''')
print(F'''The time for optimized implementation is {times[1]}.''')
| 64 |
"""simple docstring"""
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
A_ = logging.get_logger(__name__)
class lowercase:
'''simple docstring'''
lowercase__ = 42
lowercase__ = None
@staticmethod
def UpperCamelCase_ ( ):
'''simple docstring'''
raise NotImplementedError
def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str, **a_: Dict ):
'''simple docstring'''
raise NotImplementedError
def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ):
'''simple docstring'''
raise NotImplementedError
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." )
@classmethod
def UpperCamelCase_ ( cls: Tuple ):
'''simple docstring'''
return f"`pip install {cls.pip_package or cls.name}`"
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "optuna"
@staticmethod
def UpperCamelCase_ ( ):
'''simple docstring'''
return is_optuna_available()
def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: int, a_: str, **a_: List[str] ):
'''simple docstring'''
return run_hp_search_optuna(a_, a_, a_, **a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Any ):
'''simple docstring'''
return default_hp_space_optuna(a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "ray"
lowercase__ = "'ray[tune]'"
@staticmethod
def UpperCamelCase_ ( ):
'''simple docstring'''
return is_ray_available()
def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: int, a_: str, **a_: List[Any] ):
'''simple docstring'''
return run_hp_search_ray(a_, a_, a_, **a_ )
def UpperCamelCase_ ( self: str, a_: Tuple ):
'''simple docstring'''
return default_hp_space_ray(a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "sigopt"
@staticmethod
def UpperCamelCase_ ( ):
'''simple docstring'''
return is_sigopt_available()
def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: str, **a_: int ):
'''simple docstring'''
return run_hp_search_sigopt(a_, a_, a_, **a_ )
def UpperCamelCase_ ( self: str, a_: List[str] ):
'''simple docstring'''
return default_hp_space_sigopt(a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "wandb"
@staticmethod
def UpperCamelCase_ ( ):
'''simple docstring'''
return is_wandb_available()
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: str, **a_: Union[str, Any] ):
'''simple docstring'''
return run_hp_search_wandb(a_, a_, a_, **a_ )
def UpperCamelCase_ ( self: str, a_: Any ):
'''simple docstring'''
return default_hp_space_wandb(a_ )
A_ = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(snake_case__ ) > 0:
_snake_case : Any = available_backends[0].name
if len(snake_case__ ) > 1:
logger.info(
F"{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default." )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
F" - To install {backend.name} run {backend.pip_install()}"
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 64 | 1 |
"""simple docstring"""
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
UpperCAmelCase =500_000
UpperCAmelCase , UpperCAmelCase =os.path.split(__file__)
UpperCAmelCase =os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def _A ( _a : datasets.Dataset , **_a : Optional[int] ):
"""simple docstring"""
A = dataset.map(**_a )
@get_duration
def _A ( _a : datasets.Dataset , **_a : Union[str, Any] ):
"""simple docstring"""
A = dataset.filter(**_a )
def _A ( ):
"""simple docstring"""
A = {"""num examples""": SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
A = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} )
A = generate_example_dataset(
os.path.join(_a , """dataset.arrow""" ) , _a , num_examples=_a )
A = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_a )
def tokenize(_a : Dict ):
return tokenizer(examples["""text"""] )
A = map(_a )
A = map(_a , batched=_a )
A = map(_a , function=lambda _a : None , batched=_a )
with dataset.formatted_as(type="""numpy""" ):
A = map(_a , function=lambda _a : None , batched=_a )
with dataset.formatted_as(type="""pandas""" ):
A = map(_a , function=lambda _a : None , batched=_a )
with dataset.formatted_as(type="""torch""" , columns="""numbers""" ):
A = map(_a , function=lambda _a : None , batched=_a )
with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ):
A = map(_a , function=lambda _a : None , batched=_a )
A = map(_a , function=_a , batched=_a )
A = filter(_a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(_a , """wb""" ) as f:
f.write(json.dumps(_a ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 77 |
"""simple docstring"""
from __future__ import annotations
import math
from collections.abc import Callable
def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ):
"""simple docstring"""
A = x_start
A = fnc(_a )
A = 0.0
for _ in range(_a ):
# Approximates curve as a sequence of linear lines and sums their length
A = (x_end - x_start) / steps + xa
A = fnc(_a )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
A = xa
A = fxa
return length
if __name__ == "__main__":
def _A ( _a : Tuple ):
"""simple docstring"""
return math.sin(1_0 * x )
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")
UpperCAmelCase =10
while i <= 100_000:
print(f"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10
| 77 | 1 |
"""simple docstring"""
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class __A :
def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=64 , a__=5 , a__=4 , a__=64 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ):
_lowerCAmelCase : Optional[int] = parent
_lowerCAmelCase : Optional[Any] = batch_size
_lowerCAmelCase : Optional[int] = seq_length
_lowerCAmelCase : str = is_training
_lowerCAmelCase : List[str] = use_input_mask
_lowerCAmelCase : Union[str, Any] = use_token_type_ids
_lowerCAmelCase : Any = use_labels
_lowerCAmelCase : Any = vocab_size
_lowerCAmelCase : str = hidden_size
_lowerCAmelCase : str = num_hidden_layers
_lowerCAmelCase : Union[str, Any] = num_attention_heads
_lowerCAmelCase : Optional[int] = intermediate_size
_lowerCAmelCase : Tuple = hidden_act
_lowerCAmelCase : int = hidden_dropout_prob
_lowerCAmelCase : List[Any] = attention_probs_dropout_prob
_lowerCAmelCase : str = max_position_embeddings
_lowerCAmelCase : int = type_vocab_size
_lowerCAmelCase : Any = type_sequence_label_size
_lowerCAmelCase : List[str] = initializer_range
_lowerCAmelCase : List[Any] = num_labels
_lowerCAmelCase : Optional[Any] = num_choices
_lowerCAmelCase : Optional[Any] = scope
def __A ( self ):
return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" )
def __A ( self ):
_lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase : Dict = None
if self.use_input_mask:
_lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : List[Any] = None
if self.use_labels:
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase : int = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ):
_lowerCAmelCase : List[Any] = MPNetModel(config=a__ )
model.to(a__ )
model.eval()
_lowerCAmelCase : Union[str, Any] = model(a__ , a__ )
_lowerCAmelCase : int = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ):
_lowerCAmelCase : Optional[int] = MPNetForQuestionAnswering(config=a__ )
model.to(a__ )
model.eval()
_lowerCAmelCase : str = model(
a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ):
_lowerCAmelCase : Optional[int] = self.num_labels
_lowerCAmelCase : Union[str, Any] = MPNetForSequenceClassification(a__ )
model.to(a__ )
model.eval()
_lowerCAmelCase : List[str] = model(a__ , attention_mask=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ):
_lowerCAmelCase : Union[str, Any] = self.num_choices
_lowerCAmelCase : Tuple = MPNetForMultipleChoice(config=a__ )
model.to(a__ )
model.eval()
_lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase : Optional[Any] = model(
a__ , attention_mask=a__ , labels=a__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ):
_lowerCAmelCase : Union[str, Any] = self.num_labels
_lowerCAmelCase : List[str] = MPNetForTokenClassification(config=a__ )
model.to(a__ )
model.eval()
_lowerCAmelCase : Dict = model(a__ , attention_mask=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self ):
_lowerCAmelCase : Tuple = self.prepare_config_and_inputs()
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : int = config_and_inputs
_lowerCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : List[Any] = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
_UpperCamelCase : Optional[int] = (
{
"feature-extraction": MPNetModel,
"fill-mask": MPNetForMaskedLM,
"question-answering": MPNetForQuestionAnswering,
"text-classification": MPNetForSequenceClassification,
"token-classification": MPNetForTokenClassification,
"zero-shot": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase : Dict = False
_UpperCamelCase : List[str] = True
def __A ( self ):
_lowerCAmelCase : int = MPNetModelTester(self )
_lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , hidden_size=37 )
def __A ( self ):
self.config_tester.run_common_tests()
def __A ( self ):
_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*a__ )
def __A ( self ):
_lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*a__ )
def __A ( self ):
_lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*a__ )
def __A ( self ):
_lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*a__ )
def __A ( self ):
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*a__ )
@require_torch
class __A ( unittest.TestCase ):
@slow
def __A ( self ):
_lowerCAmelCase : Optional[Any] = MPNetModel.from_pretrained("""microsoft/mpnet-base""" )
_lowerCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_lowerCAmelCase : Optional[int] = model(a__ )[0]
_lowerCAmelCase : List[Any] = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , a__ )
_lowerCAmelCase : str = torch.tensor(
[[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
| 44 | """simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : List[Any] = KandinskyImgaImgPipeline
_UpperCamelCase : Optional[Any] = ["prompt", "image_embeds", "negative_image_embeds", "image"]
_UpperCamelCase : List[Any] = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
]
_UpperCamelCase : Dict = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
_UpperCamelCase : Union[str, Any] = False
@property
def __A ( self ):
return 32
@property
def __A ( self ):
return 32
@property
def __A ( self ):
return self.time_input_dim
@property
def __A ( self ):
return self.time_input_dim * 4
@property
def __A ( self ):
return 100
@property
def __A ( self ):
_lowerCAmelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def __A ( self ):
torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
_lowerCAmelCase : int = MultilingualCLIP(a__ )
_lowerCAmelCase : Union[str, Any] = text_encoder.eval()
return text_encoder
@property
def __A ( self ):
torch.manual_seed(0 )
_lowerCAmelCase : str = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_lowerCAmelCase : Optional[Any] = UNetaDConditionModel(**a__ )
return model
@property
def __A ( self ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __A ( self ):
torch.manual_seed(0 )
_lowerCAmelCase : str = VQModel(**self.dummy_movq_kwargs )
return model
def __A ( self ):
_lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder
_lowerCAmelCase : List[Any] = self.dummy_tokenizer
_lowerCAmelCase : int = self.dummy_unet
_lowerCAmelCase : Dict = self.dummy_movq
_lowerCAmelCase : Tuple = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_0_0_8_5,
"""beta_end""": 0.0_1_2,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
_lowerCAmelCase : Optional[Any] = DDIMScheduler(**a__ )
_lowerCAmelCase : List[Any] = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def __A ( self , a__ , a__=0 ):
_lowerCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ )
_lowerCAmelCase : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ )
# create init_image
_lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : List[Any] = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((256, 256) )
if str(a__ ).startswith("""mps""" ):
_lowerCAmelCase : List[Any] = torch.manual_seed(a__ )
else:
_lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ )
_lowerCAmelCase : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def __A ( self ):
_lowerCAmelCase : Any = """cpu"""
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : int = self.pipeline_class(**a__ )
_lowerCAmelCase : Optional[int] = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
_lowerCAmelCase : Tuple = pipe(**self.get_dummy_inputs(a__ ) )
_lowerCAmelCase : List[Any] = output.images
_lowerCAmelCase : Tuple = pipe(
**self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0]
_lowerCAmelCase : Dict = image[0, -3:, -3:, -1]
_lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : str = np.array(
[0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def __A ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ):
_lowerCAmelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
_lowerCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
_lowerCAmelCase : Union[str, Any] = """A red cartoon frog, 4k"""
_lowerCAmelCase : int = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(a__ )
_lowerCAmelCase : Tuple = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
_lowerCAmelCase : Any = pipeline.to(a__ )
pipeline.set_progress_bar_config(disable=a__ )
_lowerCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
a__ , generator=a__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_lowerCAmelCase : Union[str, Any] = pipeline(
a__ , image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , )
_lowerCAmelCase : Dict = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
| 44 | 1 |
"""simple docstring"""
from itertools import permutations
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
_a : List[Any] = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(UpperCamelCase__ ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def lowerCAmelCase__ ( UpperCamelCase__ = 1_0 ):
'''simple docstring'''
return sum(
int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) )
for num in permutations(range(UpperCamelCase__ ) )
if is_substring_divisible(UpperCamelCase__ ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 324 |
"""simple docstring"""
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_snake_case = logging.getLogger(__name__)
_snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
UpperCamelCase : float = field(
default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
UpperCamelCase : float = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
UpperCamelCase : int = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
UpperCamelCase : int = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ):
'''simple docstring'''
def _dataset(UpperCamelCase__ , UpperCamelCase__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , )
return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def lowerCAmelCase__ ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_a , _a , _a : List[str] = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
_a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
_a : str = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
_a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
_a : Optional[Any] = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
else:
logger.info("""Training new model from scratch""" )
_a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
_a : int = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
_a : Optional[Any] = min(data_args.block_size , tokenizer.max_len )
# Get datasets
_a : Optional[Any] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
_a : Optional[int] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
_a : Any = DataCollatorForPermutationLanguageModeling(
tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
_a : Union[str, Any] = DataCollatorForWholeWordMask(
tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability )
else:
_a : str = DataCollatorForLanguageModeling(
tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_a : Union[str, Any] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , )
# Training
if training_args.do_train:
_a : Optional[Any] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=UpperCamelCase__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a : Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_a : int = trainer.evaluate()
_a : Dict = math.exp(eval_output["""eval_loss"""] )
_a : Union[str, Any] = {"""perplexity""": perplexity}
_a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" )
if trainer.is_world_master():
with open(UpperCamelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(UpperCamelCase__ )
return results
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 324 | 1 |
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : str=5 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : str=None , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_input_mask
__SCREAMING_SNAKE_CASE = use_token_type_ids
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = num_choices
__SCREAMING_SNAKE_CASE = scope
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = None
if self.use_input_mask:
__SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] )
__SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , *__SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
# create attention mask
__SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = self.seq_length // 2
__SCREAMING_SNAKE_CASE = 0
# first forward pass
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
__SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
__SCREAMING_SNAKE_CASE = ids_tensor((1,) , _UpperCAmelCase ).item() + 1
__SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = random_other_next_tokens
# append to next input_ids and attn_mask
__SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 )
__SCREAMING_SNAKE_CASE = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCAmelCase )] , dim=1 , )
# get two different outputs
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state']
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state']
# select random slice
__SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach()
__SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , *__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval()
__SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase )
# first forward pass
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size )
__SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
__SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 )
__SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state']
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[
'last_hidden_state'
]
# select random slice
__SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach()
__SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int=False ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptForCausalLM(_UpperCAmelCase )
model.to(_UpperCAmelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , *__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptModel(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , *__SCREAMING_SNAKE_CASE : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = BioGptForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
__SCREAMING_SNAKE_CASE
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( a__ , a__ , a__ , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase__ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
lowerCAmelCase__ = (BioGptForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ = False
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def UpperCAmelCase__ ( self : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__SCREAMING_SNAKE_CASE = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCAmelCase )
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCAmelCase , gradient_checkpointing=_UpperCAmelCase )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCAmelCase )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCAmelCase )
def UpperCAmelCase__ ( self : List[str] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
__SCREAMING_SNAKE_CASE = 'left'
# Define PAD Token = EOS Token = 50256
__SCREAMING_SNAKE_CASE = tokenizer.eos_token
__SCREAMING_SNAKE_CASE = model.config.eos_token_id
# use different length sentences to test batching
__SCREAMING_SNAKE_CASE = [
'Hello, my dog is a little',
'Today, I',
]
__SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors="""pt""" , padding=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = inputs['input_ids'].to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model.generate(
input_ids=_UpperCAmelCase , attention_mask=inputs["""attention_mask"""].to(_UpperCAmelCase ) , )
__SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item()
__SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings )
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [
'Hello, my dog is a little bit bigger than a little bit.',
'Today, I have a good idea of how to use the information',
]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = BioGptModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__ ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = 3
__SCREAMING_SNAKE_CASE = input_dict['input_ids']
__SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = 3
__SCREAMING_SNAKE_CASE = 'multi_label_classification'
__SCREAMING_SNAKE_CASE = input_dict['input_ids']
__SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
__SCREAMING_SNAKE_CASE = torch.tensor([[2, 4_805, 9, 656, 21]] )
__SCREAMING_SNAKE_CASE = model(_UpperCAmelCase )[0]
__SCREAMING_SNAKE_CASE = 42_384
__SCREAMING_SNAKE_CASE = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCAmelCase )
__SCREAMING_SNAKE_CASE = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
__SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(_UpperCAmelCase )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = model.generate(
**_UpperCAmelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=_UpperCAmelCase , )
__SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase )
__SCREAMING_SNAKE_CASE = (
'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'
' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'
' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'
' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'
' more than 800,000 deaths.'
)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 267 |
'''simple docstring'''
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : bool = False ) -> list[float]:
if radian_mode:
return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )]
return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )]
def _lowerCAmelCase ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ) -> bool:
__A : NDArray[floataa] = cross(__snake_case , __snake_case )
__A : float = sum(__snake_case )
return abs(__snake_case ) < eps
if __name__ == "__main__":
# Test to check if it works
lowercase__ : List[Any] = array(
[
polar_force(718.4, 1_80 - 30),
polar_force(879.54, 45),
polar_force(1_00, -90),
]
)
lowercase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
lowercase__ : Dict = array(
[
polar_force(30 * 9.81, 15),
polar_force(2_15, 1_80 - 45),
polar_force(2_64, 90 - 30),
]
)
lowercase__ : Any = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
lowercase__ : Optional[int] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]])
lowercase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod() | 190 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 352 |
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# Check if the input is valid
if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3:
raise ValueError('''Please enter a valid equation.''' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('''Both a & b of two equations can\'t be zero.''' )
# Extract the coefficients
A_ , A_ , A_ : Any = equationa
A_ , A_ , A_ : Union[str, Any] = equationa
# Calculate the determinants of the matrices
A_ : Optional[Any] = aa * ba - aa * ba
A_ : Optional[int] = ca * ba - ca * ba
A_ : List[Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('''Infinite solutions. (Consistent system)''' )
else:
raise ValueError('''No solution. (Inconsistent system)''' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
A_ : Optional[int] = determinant_x / determinant
A_ : List[Any] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 65 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__ = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 65 | import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
UpperCamelCase__ = logging.getLogger(__name__)
def lowerCAmelCase_ ( ) -> int:
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." )
parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." )
parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." )
UpperCAmelCase__ = parser.parse_args()
logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(f"""Loading text from {args.file_path}""" )
with open(args.file_path, "r", encoding="utf8" ) as fp:
UpperCAmelCase__ = fp.readlines()
logger.info("Start encoding" )
logger.info(f"""{len(__A )} examples to process.""" )
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 10_000
UpperCAmelCase__ = time.time()
for text in data:
UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}"""
UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A )
rslt.append(__A )
iter += 1
if iter % interval == 0:
UpperCAmelCase__ = time.time()
logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
UpperCAmelCase__ = time.time()
logger.info("Finished binarization" )
logger.info(f"""{len(__A )} examples processed.""" )
UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle"""
UpperCAmelCase__ = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt]
else:
UpperCAmelCase__ = [np.intaa(__A ) for d in rslt]
random.shuffle(rslt_ )
logger.info(f"""Dump to {dp_file}""" )
with open(__A, "wb" ) as handle:
pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 65 | 1 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
UpperCamelCase__ : List[str] = False
class lowerCamelCase_ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = '''A painting of a squirrel eating a burger '''
a = torch.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = generator.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = '''A painting of a squirrel eating a burger '''
a = torch.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images
a = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 352 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 | 0 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A : str = logging.getLogger()
def __lowerCamelCase ( ) -> Dict:
"""simple docstring"""
A__ = argparse.ArgumentParser()
parser.add_argument("""-f""" )
A__ = parser.parse_args()
return args.f
def __lowerCamelCase ( __a :Union[str, Any] , __a :str="eval" ) -> Any:
"""simple docstring"""
A__ = os.path.join(__a , F'{split}_results.json' )
if os.path.exists(__a ):
with open(__a , """r""" ) as f:
return json.load(__a )
raise ValueError(F'can\'t find {path}' )
A : Optional[int] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def a_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_flax_glue.main()
A__ = get_results(__lowerCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
@slow
def a_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_clm_flax.main()
A__ = get_results(__lowerCAmelCase )
self.assertLess(result["""eval_perplexity"""] , 1_00 )
@slow
def a_ ( self : Dict ) -> Dict:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_summarization_flax.main()
A__ = get_results(__lowerCAmelCase , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 10 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def a_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_mlm_flax.main()
A__ = get_results(__lowerCAmelCase )
self.assertLess(result["""eval_perplexity"""] , 42 )
@slow
def a_ ( self : Tuple ) -> Dict:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_ta_mlm_flax.main()
A__ = get_results(__lowerCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 )
@slow
def a_ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
A__ = 7 if get_gpu_count() > 1 else 2
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_flax_ner.main()
A__ = get_results(__lowerCAmelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def a_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
A__ = self.get_auto_remove_tmp_dir()
A__ = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split()
with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ):
run_qa.main()
A__ = get_results(__lowerCAmelCase )
self.assertGreaterEqual(result["""eval_f1"""] , 30 )
self.assertGreaterEqual(result["""eval_exact"""] , 30 )
| 274 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : int = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCamelCase : Any = '''xlm-roberta'''
def __init__( self : Optional[Any] , __lowerCAmelCase : List[Any]=3_05_22 , __lowerCAmelCase : int=7_68 , __lowerCAmelCase : Tuple=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Union[str, Any]=30_72 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-12 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Tuple="absolute" , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=None , **__lowerCAmelCase : str , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = classifier_dropout
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 274 | 1 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
lowercase_ = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = True , ):
__a = [file for file in os.listdir(_a ) if os.path.isfile(os.path.join(_a , _a ) )]
if identifier is not None:
__a = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_a , _a ):
for n_ in n_identifier:
__a = [file for file in files if n_ not in file]
else:
__a = [file for file in files if n_identifier not in file]
__a = ignore_files or []
ignore_files.append('''__init__.py''' )
__a = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , _a )
if only_modules:
__a = file.split('''.''' )[0]
try:
__a = getattr(_a , _a )
__a = doctest.DocTestSuite(_a )
__a = unittest.TextTestRunner().run(_a )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
__a = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def __UpperCAmelCase ( self ):
__a = Path('''src/transformers''' )
__a = """modeling"""
__a = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_a , identifier=_a , ignore_files=_a )
def __UpperCAmelCase ( self ):
__a = Path('''src/transformers''' )
__a = """tokenization"""
self.analyze_directory(_a , identifier=_a )
def __UpperCAmelCase ( self ):
__a = Path('''src/transformers''' )
__a = """configuration"""
self.analyze_directory(_a , identifier=_a )
def __UpperCAmelCase ( self ):
__a = Path('''src/transformers''' )
__a = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_a , n_identifier=_a )
def __UpperCAmelCase ( self ):
__a = Path('''docs/source''' )
__a = ["""favicon.ico"""]
self.analyze_directory(_a , ignore_files=_a , only_modules=_a )
| 355 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _a ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__a = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sgugger/tiny-distilbert-classification'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
# set architectures equal to `None`
__a = None
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tinier_bart'''
__a = AutoConfig.from_pretrained(_a )
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , )
__a = PyTorchBenchmark(_a , configs=[config] )
__a = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , )
__a = PyTorchBenchmark(_a )
benchmark.run()
self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() )
def __UpperCAmelCase ( self ):
__a = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_a , '''sequential''' ) )
self.assertTrue(hasattr(_a , '''cumulative''' ) )
self.assertTrue(hasattr(_a , '''current''' ) )
self.assertTrue(hasattr(_a , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__a = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , )
__a = PyTorchBenchmark(_a )
__a = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
| 11 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase_ : Optional[Any] = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 200 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : str = [10, 20, 30, 40, 50, 60]
_SCREAMING_SNAKE_CASE : List[str] = [2, 4, 6, 8, 10, 12]
_SCREAMING_SNAKE_CASE : str = 100
self.assertEqual(kp.calc_profit(__snake_case , __snake_case , __snake_case ) , 210 )
def UpperCAmelCase_ ( self ):
self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" )
def UpperCAmelCase_ ( self ):
self.assertRaisesRegex(__snake_case , """Weight can not be negative.""" )
def UpperCAmelCase_ ( self ):
self.assertRaisesRegex(__snake_case , """Profit can not be negative.""" )
def UpperCAmelCase_ ( self ):
self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" )
def UpperCAmelCase_ ( self ):
self.assertRaisesRegex(
__snake_case , """The length of profit and weight must be same.""" )
if __name__ == "__main__":
unittest.main()
| 200 | 1 |
"""simple docstring"""
def _A ( lowercase , lowercase ):
"""simple docstring"""
a =len(lowercase )
a =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
a =True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
a =False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
a =subset[i - 1][j]
if arr[i - 1] <= j:
a =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod() | 215 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _A ( lowercase ):
"""simple docstring"""
a ={}
a =tokenizer(example['''content'''] , truncation=lowercase )['''input_ids''']
a =len(example['''content'''] ) / len(output['''input_ids'''] )
return output
lowerCamelCase_ : Optional[int] = HfArgumentParser(PretokenizationArguments)
lowerCamelCase_ : Optional[Any] = parser.parse_args()
if args.num_workers is None:
lowerCamelCase_ : Tuple = multiprocessing.cpu_count()
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCamelCase_ : Any = time.time()
lowerCamelCase_ : int = load_dataset(args.dataset_name, split="""train""")
print(F'Dataset loaded in {time.time()-t_start:.2f}s')
lowerCamelCase_ : List[str] = time.time()
lowerCamelCase_ : str = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'Dataset tokenized in {time.time()-t_start:.2f}s')
lowerCamelCase_ : Union[str, Any] = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'Data pushed to the hub in {time.time()-t_start:.2f}s') | 215 | 1 |
from __future__ import annotations
import requests
lowercase_ = set(
"approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split()
)
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "new" , SCREAMING_SNAKE_CASE__ : list | None = None ) -> dict:
'''simple docstring'''
A__ = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(SCREAMING_SNAKE_CASE__ ) - valid_terms ) ):
A__ = f'Invalid search term: {invalid_search_terms}'
raise ValueError(SCREAMING_SNAKE_CASE__ )
A__ = requests.get(
f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={'User-agent': 'A random string'} , )
if response.status_code == 429:
raise requests.HTTPError
A__ = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(SCREAMING_SNAKE_CASE__ )}
A__ = {}
for id_ in range(SCREAMING_SNAKE_CASE__ ):
A__ = {
item: data['data']['children'][id_]['data'][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
| 7 |
'''simple docstring'''
import requests
__lowercase : Tuple = '' # <-- Put your OpenWeatherMap appid here!
__lowercase : Tuple = 'https://api.openweathermap.org/data/2.5/'
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Chicago" , _SCREAMING_SNAKE_CASE : str = APPID ):
return requests.get(URL_BASE + 'weather' , params=locals() ).json()
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Kolkata, India" , _SCREAMING_SNAKE_CASE : str = APPID ):
return requests.get(URL_BASE + 'forecast' , params=locals() ).json()
def lowerCamelCase (_SCREAMING_SNAKE_CASE : float = 5_5.6_8 , _SCREAMING_SNAKE_CASE : float = 1_2.5_7 , _SCREAMING_SNAKE_CASE : str = APPID ):
return requests.get(URL_BASE + 'onecall' , params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
__lowercase : Dict = input('Enter a location:').strip()
if location:
pprint(current_weather(location))
else:
break
| 27 | 0 |
"""simple docstring"""
from __future__ import annotations
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = get_failure_array(__a )
# 2) Step through text searching for pattern
SCREAMING_SNAKE_CASE_ : int = 0, 0 # index into text, pattern
while i < len(__a ):
if pattern[j] == text[i]:
if j == (len(__a ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = failure[j - 1]
continue
i += 1
return False
def _A (__a ) -> list[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = [0]
SCREAMING_SNAKE_CASE_ : Tuple = 0
SCREAMING_SNAKE_CASE_ : Dict = 1
while j < len(__a ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
SCREAMING_SNAKE_CASE_ : Tuple = failure[i - 1]
continue
j += 1
failure.append(__a )
return failure
if __name__ == "__main__":
# Test 1)
UpperCAmelCase_ : Any = """abc1abc12"""
UpperCAmelCase_ : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
UpperCAmelCase_ : Union[str, Any] = """alskfjaldsk23adsfabcabc"""
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCAmelCase_ : Optional[Any] = """ABABX"""
UpperCAmelCase_ : List[Any] = """ABABZABABYABABX"""
assert kmp(pattern, text)
# Test 3)
UpperCAmelCase_ : Tuple = """AAAB"""
UpperCAmelCase_ : Optional[Any] = """ABAAAAAB"""
assert kmp(pattern, text)
# Test 4)
UpperCAmelCase_ : Dict = """abcdabcy"""
UpperCAmelCase_ : Dict = """abcxabcdabxabcdabcdabcy"""
assert kmp(pattern, text)
# Test 5)
UpperCAmelCase_ : Any = """aabaabaaa"""
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 364 |
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318 | 0 |
'''simple docstring'''
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def a ( ) -> Any:
'''simple docstring'''
UpperCamelCase__ :List[str] = argparse.ArgumentParser()
parser.add_argument(
'''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , )
parser.add_argument(
'''-c''' , '''--caption''' , type=snake_case_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , )
parser.add_argument(
'''-n''' , '''--images_num''' , type=snake_case_ , default=4 , help='''How much images to generate.''' , )
parser.add_argument(
'''-s''' , '''--seed''' , type=snake_case_ , default=42 , help='''Seed for random process.''' , )
parser.add_argument(
'''-ci''' , '''--cuda_id''' , type=snake_case_ , default=0 , help='''cuda_id.''' , )
UpperCamelCase__ :int = parser.parse_args()
return args
def a ( __a , __a , __a ) -> str:
'''simple docstring'''
if not len(snake_case_ ) == rows * cols:
raise ValueError('''The specified number of rows and columns are not correct.''' )
UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = imgs[0].size
UpperCamelCase__ :Tuple = Image.new('''RGB''' , size=(cols * w, rows * h) )
UpperCamelCase__ , UpperCamelCase__ :str = grid.size
for i, img in enumerate(snake_case_ ):
grid.paste(snake_case_ , box=(i % cols * w, i // cols * h) )
return grid
def a ( __a , __a="robotic cat with wings" , __a=7.5 , __a=50 , __a=1 , __a=42 , ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = torch.Generator(pipeline.device ).manual_seed(snake_case_ )
UpperCamelCase__ :Optional[Any] = pipeline(
snake_case_ , guidance_scale=snake_case_ , num_inference_steps=snake_case_ , generator=snake_case_ , num_images_per_prompt=snake_case_ , ).images
UpperCamelCase__ :List[Any] = int(math.sqrt(snake_case_ ) )
UpperCamelCase__ :str = image_grid(snake_case_ , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__snake_case = parse_args()
# Load models and create wrapper for stable diffusion
__snake_case = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__snake_case = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__snake_case = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__snake_case = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__snake_case = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__snake_case = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__snake_case = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__snake_case = unet.to(torch.device('''cuda''', args.cuda_id))
__snake_case = pipeline.to(unet.device)
__snake_case = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__snake_case = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1))) | 97 | '''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class _lowercase ( UpperCAmelCase__ ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : jnp.ndarray
@flax_register_to_config
class _lowercase ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : int = 32
_SCREAMING_SNAKE_CASE : int = 4
_SCREAMING_SNAKE_CASE : int = 4
_SCREAMING_SNAKE_CASE : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False
_SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280)
_SCREAMING_SNAKE_CASE : int = 2
_SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8
_SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None
_SCREAMING_SNAKE_CASE : int = 1280
_SCREAMING_SNAKE_CASE : float = 0.0
_SCREAMING_SNAKE_CASE : bool = False
_SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
_SCREAMING_SNAKE_CASE : bool = True
_SCREAMING_SNAKE_CASE : int = 0
_SCREAMING_SNAKE_CASE : bool = False
def a ( self : Dict , SCREAMING_SNAKE_CASE__ : jax.random.KeyArray ) -> FrozenDict:
# init input tensors
__lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowerCAmelCase = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa )
__lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa )
__lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
__lowerCAmelCase , __lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )["params"]
def a ( self : int ) -> List[str]:
__lowerCAmelCase = self.block_out_channels
__lowerCAmelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowerCAmelCase = self.num_attention_heads or self.attention_head_dim
# input
__lowerCAmelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
__lowerCAmelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
__lowerCAmelCase = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE__ , dtype=self.dtype )
__lowerCAmelCase = self.only_cross_attention
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowerCAmelCase = []
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowerCAmelCase = FlaxCrossAttnDownBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
__lowerCAmelCase = FlaxDownBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = down_blocks
# mid
__lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
__lowerCAmelCase = []
__lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) )
__lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) )
__lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(SCREAMING_SNAKE_CASE__ ) - 1 )]
__lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
__lowerCAmelCase = FlaxCrossAttnUpBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
__lowerCAmelCase = FlaxUpBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = output_channel
__lowerCAmelCase = up_blocks
# out
__lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__lowerCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
# 1. time
if not isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ):
__lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowerCAmelCase = timesteps.astype(dtype=jnp.floataa )
__lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 )
__lowerCAmelCase = self.time_proj(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = self.time_embedding(SCREAMING_SNAKE_CASE__ )
# 2. pre-process
__lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) )
__lowerCAmelCase = self.conv_in(SCREAMING_SNAKE_CASE__ )
# 3. down
__lowerCAmelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train )
else:
__lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
__lowerCAmelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
__lowerCAmelCase = new_down_block_res_samples
# 4. mid
__lowerCAmelCase = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
__lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
__lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCAmelCase = up_block(
SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train , )
else:
__lowerCAmelCase = up_block(SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train )
# 6. post-process
__lowerCAmelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = nn.silu(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = self.conv_out(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=SCREAMING_SNAKE_CASE__ )
| 229 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__lowercase = logging.get_logger(__name__)
__lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
__lowercase = {
"""vocab_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-german-cased""": (
"""https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"""
),
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
},
}
__lowercase = {
"""distilbert-base-uncased""": 512,
"""distilbert-base-uncased-distilled-squad""": 512,
"""distilbert-base-cased""": 512,
"""distilbert-base-cased-distilled-squad""": 512,
"""distilbert-base-german-cased""": 512,
"""distilbert-base-multilingual-cased""": 512,
}
__lowercase = {
"""distilbert-base-uncased""": {"""do_lower_case""": True},
"""distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True},
"""distilbert-base-cased""": {"""do_lower_case""": False},
"""distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False},
"""distilbert-base-german-cased""": {"""do_lower_case""": False},
"""distilbert-base-multilingual-cased""": {"""do_lower_case""": False},
}
class _A ( _a ):
"""simple docstring"""
UpperCAmelCase : Dict = VOCAB_FILES_NAMES
UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : str = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""]
UpperCAmelCase : List[str] = DistilBertTokenizer
def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : List[Any]="[SEP]" , __UpperCAmelCase : int="[PAD]" , __UpperCAmelCase : int="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Any , ):
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , __UpperCAmelCase) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase) != tokenize_chinese_chars
):
a : List[str] = getattr(__UpperCAmelCase , normalizer_state.pop("type"))
a : Any = do_lower_case
a : List[str] = strip_accents
a : List[Any] = tokenize_chinese_chars
a : Optional[Any] = normalizer_class(**__UpperCAmelCase)
a : Optional[int] = do_lower_case
def __snake_case ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : str=None):
a : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None):
a : int = [self.sep_token_id]
a : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None):
a : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase)
return tuple(__UpperCAmelCase)
| 226 |
"""simple docstring"""
import sys
import turtle
def lowercase ( A_ , A_ )-> tuple[float, float]:
'''simple docstring'''
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase ( A_ , A_ , A_ , A_ , )-> None:
'''simple docstring'''
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 )
triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 )
triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"""Correct format for using this script: """
"""python fractals.py <int:depth_for_fractal>"""
)
__lowercase = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("""red""")
__lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 226 | 1 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Tuple:
'''simple docstring'''
try:
with open(snake_case__ , 'rb' ) as flax_state_f:
_UpperCAmelCase = from_bytes(snake_case__ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(snake_case__ ) as f:
if f.read().startswith('version' ):
raise OSError(
'You seem to have cloned a repository without having git-lfs installed. Please'
' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'
' folder you cloned.' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
_UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
_UpperCAmelCase = jax.tree_util.tree_map(
lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
_UpperCAmelCase = ''
_UpperCAmelCase = flatten_dict(snake_case__ , sep='.' )
_UpperCAmelCase = pt_model.state_dict()
# keep track of unexpected & missing keys
_UpperCAmelCase = []
_UpperCAmelCase = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_UpperCAmelCase = flax_key_tuple.split('.' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
_UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight']
_UpperCAmelCase = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
_UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight']
_UpperCAmelCase = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
_UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(snake_case__ ):
_UpperCAmelCase = (
flax_key_tuple_string.replace('_0' , '.0' )
.replace('_1' , '.1' )
.replace('_2' , '.2' )
.replace('_3' , '.3' )
.replace('_4' , '.4' )
.replace('_5' , '.5' )
.replace('_6' , '.6' )
.replace('_7' , '.7' )
.replace('_8' , '.8' )
.replace('_9' , '.9' )
)
_UpperCAmelCase = '.'.join(snake_case__ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
_UpperCAmelCase = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
_UpperCAmelCase = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
_UpperCAmelCase = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
if len(snake_case__ ) > 0:
logger.warning(
F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
' use it for predictions and inference.' )
return pt_model
| 339 |
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :]
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]:
lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] )
lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] )
lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] )
lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] )
lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]:
if split_mlp_wi:
lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :]
lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :]
lowerCamelCase = (wi_a, wi_a)
else:
lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :]
lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :]
return wi, wo
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple:
return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i]
def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict:
lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] )
lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , snake_case__ )
lowerCamelCase = collections.OrderedDict()
# Shared embeddings.
lowerCamelCase = old["""token_embedder/embedding"""]
# Encoder.
for i in range(snake_case__ ):
# Block i, layer 0 (Self Attention).
lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" )
lowerCamelCase = layer_norm
lowerCamelCase = k.T
lowerCamelCase = o.T
lowerCamelCase = q.T
lowerCamelCase = v.T
# Block i, layer 1 (MLP).
lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ )
lowerCamelCase = layer_norm
if split_mlp_wi:
lowerCamelCase = wi[0].T
lowerCamelCase = wi[1].T
else:
lowerCamelCase = wi.T
lowerCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowerCamelCase = tax_relpos_bias_lookup(
snake_case__ , snake_case__ , """encoder""" ).T
lowerCamelCase = old["""encoder/encoder_norm/scale"""]
if not scalable_attention:
lowerCamelCase = tax_relpos_bias_lookup(
snake_case__ , 0 , """encoder""" ).T
lowerCamelCase = tax_relpos_bias_lookup(
snake_case__ , 0 , """decoder""" ).T
if not is_encoder_only:
# Decoder.
for i in range(snake_case__ ):
# Block i, layer 0 (Self Attention).
lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" )
lowerCamelCase = layer_norm
lowerCamelCase = k.T
lowerCamelCase = o.T
lowerCamelCase = q.T
lowerCamelCase = v.T
# Block i, layer 1 (Cross Attention).
lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" )
lowerCamelCase = layer_norm
lowerCamelCase = k.T
lowerCamelCase = o.T
lowerCamelCase = q.T
lowerCamelCase = v.T
# Block i, layer 2 (MLP).
lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ )
lowerCamelCase = layer_norm
if split_mlp_wi:
lowerCamelCase = wi[0].T
lowerCamelCase = wi[1].T
else:
lowerCamelCase = wi.T
lowerCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T
lowerCamelCase = old["""decoder/decoder_norm/scale"""]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCamelCase = old["""decoder/logits_dense/kernel"""].T
return new
def a__ ( snake_case__ , snake_case__ ) -> Optional[int]:
lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCamelCase = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCamelCase = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCamelCase = state_dict["""shared.weight"""]
return state_dict
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ )
lowerCamelCase = convert_tax_to_pytorch(
snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ )
lowerCamelCase = make_state_dict(snake_case__ , snake_case__ )
model.load_state_dict(snake_case__ , strict=snake_case__ )
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str:
lowerCamelCase = MTaConfig.from_json_file(snake_case__ )
print(F'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCamelCase = UMTaEncoderModel(snake_case__ )
else:
lowerCamelCase = UMTaForConditionalGeneration(snake_case__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(snake_case__ )
# Verify that we can load the checkpoint.
model.from_pretrained(snake_case__ )
print("""Done""" )
if __name__ == "__main__":
lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
lowerCAmelCase : int = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 291 | 0 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = args.log_outputs
_UpperCamelCase = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
_UpperCamelCase = load_metric('''wer''' )
_UpperCamelCase = load_metric('''cer''' )
# compute metrics
_UpperCamelCase = wer.compute(references=result['''target'''], predictions=result['''prediction'''] )
_UpperCamelCase = cer.compute(references=result['''target'''], predictions=result['''prediction'''] )
# print & log results
_UpperCamelCase = F'''WER: {wer_result}\nCER: {cer_result}'''
print(__snake_case )
with open(F'''{dataset_id}_eval_results.txt''', '''w''' ) as f:
f.write(__snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
_UpperCamelCase = F'''log_{dataset_id}_predictions.txt'''
_UpperCamelCase = F'''log_{dataset_id}_targets.txt'''
with open(__snake_case, '''w''' ) as p, open(__snake_case, '''w''' ) as t:
# mapping function to write output
def write_to_file(__snake_case, __snake_case ):
p.write(F'''{i}''' + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F'''{i}''' + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(__snake_case, with_indices=__snake_case )
def lowerCamelCase__ ( __snake_case ) -> str:
"""simple docstring"""
_UpperCamelCase = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
_UpperCamelCase = re.sub(__snake_case, '''''', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
_UpperCamelCase = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
_UpperCamelCase = ''' '''.join(text.split(__snake_case ) )
return text
def lowerCamelCase__ ( __snake_case ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=__snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
_UpperCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id )
_UpperCamelCase = feature_extractor.sampling_rate
# resample audio
_UpperCamelCase = dataset.cast_column('''audio''', Audio(sampling_rate=__snake_case ) )
# load eval pipeline
if args.device is None:
_UpperCamelCase = 0 if torch.cuda.is_available() else -1
_UpperCamelCase = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(__snake_case ):
_UpperCamelCase = asr(
batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
_UpperCamelCase = prediction['''text''']
_UpperCamelCase = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
_UpperCamelCase = dataset.map(__snake_case, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(__snake_case, __snake_case )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_a = parser.parse_args()
main(args)
| 360 |
"""simple docstring"""
import numpy
class _UpperCAmelCase:
def __init__( self , __a , __a) -> None:
'''simple docstring'''
_UpperCamelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_UpperCamelCase = numpy.random.rand(
self.input_array.shape[1] , 4)
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_UpperCamelCase = numpy.random.rand(
4 , 3)
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_UpperCamelCase = numpy.random.rand(3 , 1)
# Real output values provided.
_UpperCamelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_UpperCamelCase = numpy.zeros(output_array.shape)
def UpperCAmelCase ( self) -> numpy.ndarray:
'''simple docstring'''
_UpperCamelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights))
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_UpperCamelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_UpperCamelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase ( self) -> None:
'''simple docstring'''
_UpperCamelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , )
_UpperCamelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , )
_UpperCamelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase ( self , __a , __a , __a) -> None:
'''simple docstring'''
for iteration in range(1 , iterations + 1):
_UpperCamelCase = self.feedforward()
self.back_propagation()
if give_loss:
_UpperCamelCase = numpy.mean(numpy.square(output - self.feedforward()))
print(F'''Iteration {iteration} Loss: {loss}''')
def UpperCAmelCase ( self , __a) -> int:
'''simple docstring'''
_UpperCamelCase = input_arr
_UpperCamelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights))
_UpperCamelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
_UpperCamelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return int(self.layer_between_second_hidden_layer_and_output > 0.6)
def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray:
"""simple docstring"""
return 1 / (1 + numpy.exp(-value ))
def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray:
"""simple docstring"""
return (value) * (1 - (value))
def lowerCamelCase__ ( ) -> int:
"""simple docstring"""
_UpperCamelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
), dtype=numpy.floataa, )
# True output values for the given input values.
_UpperCamelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.floataa )
# Calling neural network class.
_UpperCamelCase = TwoHiddenLayerNeuralNetwork(
input_array=__snake_case, output_array=__snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=__snake_case, iterations=10, give_loss=__snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 100 | 0 |
"""simple docstring"""
# Algorithm for the pigeonhole sorting
def lowercase ( _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
_UpperCAmelCase = min(__lowerCamelCase ) # min() finds the minimum value
_UpperCAmelCase = max(__lowerCamelCase ) # max() finds the maximum value
_UpperCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
_UpperCAmelCase = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(__lowerCamelCase , __lowerCamelCase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
_UpperCAmelCase = 0
for count in range(__lowerCamelCase ):
while holes[count] > 0:
holes[count] -= 1
_UpperCAmelCase = count + min_val
i += 1
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(__lowerCamelCase )
print('''Sorted order is:''' , ''' '''.join(__lowerCamelCase ) )
if __name__ == "__main__":
main()
| 260 |
from __future__ import annotations
def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]:
a = word_bank or []
# create a table
a = len(__lowerCamelCase ) + 1
a = []
for _ in range(__lowerCamelCase ):
table.append([] )
# seed value
a = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(__lowerCamelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(__lowerCamelCase )] == word:
a = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(__lowerCamelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(__lowerCamelCase )]:
combination.reverse()
return table[len(__lowerCamelCase )]
if __name__ == "__main__":
print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"]))
print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"]))
print(
all_construct(
"hexagonosaurus",
["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"],
)
)
| 228 | 0 |
'''simple docstring'''
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=1 ) -> int:
if n_shave_prefix_segments >= 0:
return ".".join(path.split('''.''' )[n_shave_prefix_segments:] )
else:
return ".".join(path.split('''.''' )[:n_shave_prefix_segments] )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0 ) -> int:
__lowerCamelCase = []
for old_item in old_list:
__lowerCamelCase = old_item.replace('''in_layers.0''' , '''norm1''' )
__lowerCamelCase = new_item.replace('''in_layers.2''' , '''conv1''' )
__lowerCamelCase = new_item.replace('''out_layers.0''' , '''norm2''' )
__lowerCamelCase = new_item.replace('''out_layers.3''' , '''conv2''' )
__lowerCamelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' )
__lowerCamelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' )
__lowerCamelCase = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0 ) -> str:
__lowerCamelCase = []
for old_item in old_list:
__lowerCamelCase = old_item
__lowerCamelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' )
__lowerCamelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' )
__lowerCamelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' )
__lowerCamelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' )
__lowerCamelCase = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Union[str, Any]:
assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
__lowerCamelCase = old_checkpoint[path]
__lowerCamelCase = old_tensor.shape[0] // 3
__lowerCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
__lowerCamelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3
__lowerCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = old_tensor.split(channels // num_heads , dim=1 )
__lowerCamelCase = query.reshape(UpperCamelCase__ )
__lowerCamelCase = key.reshape(UpperCamelCase__ )
__lowerCamelCase = value.reshape(UpperCamelCase__ )
for path in paths:
__lowerCamelCase = path['''new''']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
__lowerCamelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' )
__lowerCamelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' )
__lowerCamelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' )
if additional_replacements is not None:
for replacement in additional_replacements:
__lowerCamelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
__lowerCamelCase = old_checkpoint[path['''old''']][:, :, 0]
else:
__lowerCamelCase = old_checkpoint[path['''old''']]
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]:
__lowerCamelCase = {}
__lowerCamelCase = checkpoint['''time_embed.0.weight''']
__lowerCamelCase = checkpoint['''time_embed.0.bias''']
__lowerCamelCase = checkpoint['''time_embed.2.weight''']
__lowerCamelCase = checkpoint['''time_embed.2.bias''']
__lowerCamelCase = checkpoint['''input_blocks.0.0.weight''']
__lowerCamelCase = checkpoint['''input_blocks.0.0.bias''']
__lowerCamelCase = checkpoint['''out.0.weight''']
__lowerCamelCase = checkpoint['''out.0.bias''']
__lowerCamelCase = checkpoint['''out.2.weight''']
__lowerCamelCase = checkpoint['''out.2.bias''']
# Retrieves the keys for the input blocks only
__lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} )
__lowerCamelCase = {
layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key]
for layer_id in range(UpperCamelCase__ )
}
# Retrieves the keys for the middle blocks only
__lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} )
__lowerCamelCase = {
layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key]
for layer_id in range(UpperCamelCase__ )
}
# Retrieves the keys for the output blocks only
__lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} )
__lowerCamelCase = {
layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key]
for layer_id in range(UpperCamelCase__ )
}
for i in range(1 , UpperCamelCase__ ):
__lowerCamelCase = (i - 1) // (config['''num_res_blocks'''] + 1)
__lowerCamelCase = (i - 1) % (config['''num_res_blocks'''] + 1)
__lowerCamelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key]
__lowerCamelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key]
if f"""input_blocks.{i}.0.op.weight""" in checkpoint:
__lowerCamelCase = checkpoint[
f"""input_blocks.{i}.0.op.weight"""
]
__lowerCamelCase = checkpoint[
f"""input_blocks.{i}.0.op.bias"""
]
continue
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ )
__lowerCamelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""}
__lowerCamelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''}
assign_to_checkpoint(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase__ )
if len(UpperCamelCase__ ):
__lowerCamelCase = renew_attention_paths(UpperCamelCase__ )
__lowerCamelCase = {
'''old''': f"""input_blocks.{i}.1""",
'''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""",
}
__lowerCamelCase = {
f"""input_blocks.{i}.1.qkv.bias""": {
'''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""",
'''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""",
'''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""",
},
f"""input_blocks.{i}.1.qkv.weight""": {
'''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""",
'''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""",
'''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""",
},
}
assign_to_checkpoint(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ , )
__lowerCamelCase = middle_blocks[0]
__lowerCamelCase = middle_blocks[1]
__lowerCamelCase = middle_blocks[2]
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ )
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ )
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ )
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ )
__lowerCamelCase = renew_attention_paths(UpperCamelCase__ )
__lowerCamelCase = {
'''middle_block.1.qkv.bias''': {
'''key''': '''mid_block.attentions.0.key.bias''',
'''query''': '''mid_block.attentions.0.query.bias''',
'''value''': '''mid_block.attentions.0.value.bias''',
},
'''middle_block.1.qkv.weight''': {
'''key''': '''mid_block.attentions.0.key.weight''',
'''query''': '''mid_block.attentions.0.query.weight''',
'''value''': '''mid_block.attentions.0.value.weight''',
},
}
assign_to_checkpoint(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ )
for i in range(UpperCamelCase__ ):
__lowerCamelCase = i // (config['''num_res_blocks'''] + 1)
__lowerCamelCase = i % (config['''num_res_blocks'''] + 1)
__lowerCamelCase = [shave_segments(UpperCamelCase__ , 2 ) for name in output_blocks[i]]
__lowerCamelCase = {}
for layer in output_block_layers:
__lowerCamelCase , __lowerCamelCase = layer.split('''.''' )[0], shave_segments(UpperCamelCase__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(UpperCamelCase__ )
else:
__lowerCamelCase = [layer_name]
if len(UpperCamelCase__ ) > 1:
__lowerCamelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key]
__lowerCamelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key]
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ )
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ )
__lowerCamelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
__lowerCamelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] )
__lowerCamelCase = checkpoint[
f"""output_blocks.{i}.{index}.conv.weight"""
]
__lowerCamelCase = checkpoint[
f"""output_blocks.{i}.{index}.conv.bias"""
]
# Clear attentions as they have been attributed above.
if len(UpperCamelCase__ ) == 2:
__lowerCamelCase = []
if len(UpperCamelCase__ ):
__lowerCamelCase = renew_attention_paths(UpperCamelCase__ )
__lowerCamelCase = {
'''old''': f"""output_blocks.{i}.1""",
'''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""",
}
__lowerCamelCase = {
f"""output_blocks.{i}.1.qkv.bias""": {
'''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""",
'''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""",
'''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""",
},
f"""output_blocks.{i}.1.qkv.weight""": {
'''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""",
'''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""",
'''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""",
},
}
assign_to_checkpoint(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=UpperCamelCase__ , )
else:
__lowerCamelCase = renew_resnet_paths(UpperCamelCase__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
__lowerCamelCase = '''.'''.join(['''output_blocks''', str(UpperCamelCase__ ), path['''old''']] )
__lowerCamelCase = '''.'''.join(['''up_blocks''', str(UpperCamelCase__ ), '''resnets''', str(UpperCamelCase__ ), path['''new''']] )
__lowerCamelCase = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
__UpperCAmelCase =parser.parse_args()
__UpperCAmelCase =torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__UpperCAmelCase =json.loads(f.read())
__UpperCAmelCase =convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__UpperCAmelCase =UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__UpperCAmelCase =DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
__UpperCAmelCase =VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))
__UpperCAmelCase =LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 356 | '''simple docstring'''
__UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __lowerCAmelCase ( ) -> None:
__lowerCamelCase = input('''Enter message: ''' )
__lowerCamelCase = input('''Enter key [alphanumeric]: ''' )
__lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
__lowerCamelCase = '''encrypt'''
__lowerCamelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ )
elif mode.lower().startswith('''d''' ):
__lowerCamelCase = '''decrypt'''
__lowerCamelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ )
print(f"""\n{mode.title()}ed message:""" )
print(UpperCamelCase__ )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''encrypt''' )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''decrypt''' )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str:
__lowerCamelCase = []
__lowerCamelCase = 0
__lowerCamelCase = key.upper()
for symbol in message:
__lowerCamelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(UpperCamelCase__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(UpperCamelCase__ ):
__lowerCamelCase = 0
else:
translated.append(UpperCamelCase__ )
return "".join(UpperCamelCase__ )
if __name__ == "__main__":
main()
| 237 | 0 |
'''simple docstring'''
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class _a ( UpperCamelCase__ ):
def __get__( self : Optional[int] , lowercase : Tuple , lowercase : Tuple=None ):
'''simple docstring'''
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase = '''__cached_''' + self.fget.__name__
UpperCAmelCase = getattr(lowercase_ , lowercase_ , lowercase_ )
if cached is None:
UpperCAmelCase = self.fget(lowercase_ )
setattr(lowercase_ , lowercase_ , lowercase_ )
return cached
def snake_case_ (_a : Dict ):
UpperCAmelCase = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(F"invalid truth value {val!r}" )
def snake_case_ (_a : Any ):
if is_torch_fx_proxy(_lowerCamelCase ):
return True
if is_torch_available():
import torch
if isinstance(_lowerCamelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(_lowerCamelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(_lowerCamelCase , np.ndarray )
def snake_case_ (_a : str ):
return isinstance(_lowerCamelCase , np.ndarray )
def snake_case_ (_a : Union[str, Any] ):
return _is_numpy(_lowerCamelCase )
def snake_case_ (_a : Dict ):
import torch
return isinstance(_lowerCamelCase , torch.Tensor )
def snake_case_ (_a : Union[str, Any] ):
return False if not is_torch_available() else _is_torch(_lowerCamelCase )
def snake_case_ (_a : Any ):
import torch
return isinstance(_lowerCamelCase , torch.device )
def snake_case_ (_a : int ):
return False if not is_torch_available() else _is_torch_device(_lowerCamelCase )
def snake_case_ (_a : Optional[Any] ):
import torch
if isinstance(_lowerCamelCase , _lowerCamelCase ):
if hasattr(_lowerCamelCase , _lowerCamelCase ):
UpperCAmelCase = getattr(_lowerCamelCase , _lowerCamelCase )
else:
return False
return isinstance(_lowerCamelCase , torch.dtype )
def snake_case_ (_a : Any ):
return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase )
def snake_case_ (_a : List[Any] ):
import tensorflow as tf
return isinstance(_lowerCamelCase , tf.Tensor )
def snake_case_ (_a : List[str] ):
return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase )
def snake_case_ (_a : Union[str, Any] ):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(_lowerCamelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(_lowerCamelCase )
return type(_lowerCamelCase ) == tf.Tensor
def snake_case_ (_a : str ):
return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase )
def snake_case_ (_a : str ):
import jax.numpy as jnp # noqa: F811
return isinstance(_lowerCamelCase , jnp.ndarray )
def snake_case_ (_a : Tuple ):
return False if not is_flax_available() else _is_jax(_lowerCamelCase )
def snake_case_ (_a : Optional[int] ):
if isinstance(_lowerCamelCase , (dict, UserDict) ):
return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple) ):
return [to_py_obj(_lowerCamelCase ) for o in obj]
elif is_tf_tensor(_lowerCamelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(_lowerCamelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(_lowerCamelCase ):
return np.asarray(_lowerCamelCase ).tolist()
elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def snake_case_ (_a : int ):
if isinstance(_lowerCamelCase , (dict, UserDict) ):
return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple) ):
return np.array(_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
return obj.numpy()
elif is_torch_tensor(_lowerCamelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(_lowerCamelCase ):
return np.asarray(_lowerCamelCase )
else:
return obj
class _a ( UpperCamelCase__ ):
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = fields(self )
# Safety and consistency checks
if not len(lowercase_ ):
raise ValueError(f"{self.__class__.__name__} has no fields." )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field." )
UpperCAmelCase = getattr(self , class_fields[0].name )
UpperCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(lowercase_ ):
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase = first_field.items()
UpperCAmelCase = True
else:
try:
UpperCAmelCase = iter(lowercase_ )
UpperCAmelCase = True
except TypeError:
UpperCAmelCase = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(lowercase_ ):
if (
not isinstance(lowercase_ , (list, tuple) )
or not len(lowercase_ ) == 2
or not isinstance(element[0] , lowercase_ )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
UpperCAmelCase = element[1]
elif first_field is not None:
UpperCAmelCase = first_field
else:
for field in class_fields:
UpperCAmelCase = getattr(self , field.name )
if v is not None:
UpperCAmelCase = v
def __delitem__( self : List[Any] , *lowercase : List[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." )
def A ( self : Tuple , *lowercase : int , **lowercase : int ):
'''simple docstring'''
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." )
def A ( self : List[Any] , *lowercase : Optional[int] , **lowercase : Tuple ):
'''simple docstring'''
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." )
def A ( self : Dict , *lowercase : Optional[int] , **lowercase : Any ):
'''simple docstring'''
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." )
def __getitem__( self : Optional[Any] , lowercase : Optional[Any] ):
'''simple docstring'''
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ):
'''simple docstring'''
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(lowercase_ , lowercase_ )
super().__setattr__(lowercase_ , lowercase_ )
def __setitem__( self : Tuple , lowercase : Optional[int] , lowercase : Tuple ):
'''simple docstring'''
super().__setitem__(lowercase_ , lowercase_ )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(lowercase_ , lowercase_ )
def A ( self : List[Any] ):
'''simple docstring'''
return tuple(self[k] for k in self.keys() )
class _a ( UpperCamelCase__ , UpperCamelCase__ ):
@classmethod
def A ( cls : Any , lowercase : int ):
'''simple docstring'''
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" )
class _a ( UpperCamelCase__ ):
__a : Any = """longest"""
__a : Union[str, Any] = """max_length"""
__a : Union[str, Any] = """do_not_pad"""
class _a ( UpperCamelCase__ ):
__a : List[Any] = """pt"""
__a : int = """tf"""
__a : int = """np"""
__a : Any = """jax"""
class _a :
def __init__( self : List[str] , lowercase : List[ContextManager] ):
'''simple docstring'''
UpperCAmelCase = context_managers
UpperCAmelCase = ExitStack()
def __enter__( self : Dict ):
'''simple docstring'''
for context_manager in self.context_managers:
self.stack.enter_context(lowercase_ )
def __exit__( self : List[Any] , *lowercase : Optional[Any] , **lowercase : str ):
'''simple docstring'''
self.stack.__exit__(*lowercase_ , **lowercase_ )
def snake_case_ (_a : Dict ):
UpperCAmelCase = infer_framework(_lowerCamelCase )
if framework == "tf":
UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def snake_case_ (_a : List[str] ):
UpperCAmelCase = model_class.__name__
UpperCAmelCase = infer_framework(_lowerCamelCase )
if framework == "tf":
UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def snake_case_ (_a : MutableMapping , _a : str = "" , _a : str = "." ):
def _flatten_dict(_a : List[Any] , _a : int="" , _a : Any="." ):
for k, v in d.items():
UpperCAmelCase = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k
if v and isinstance(_lowerCamelCase , _lowerCamelCase ):
yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items()
else:
yield key, v
return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) )
@contextmanager
def snake_case_ (_a : Union[str, Any] , _a : bool = False ):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def snake_case_ (_a : int , _a : Optional[Any]=None ):
if is_numpy_array(_lowerCamelCase ):
return np.transpose(_lowerCamelCase , axes=_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.T if axes is None else array.permute(*_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." )
def snake_case_ (_a : Dict , _a : Any ):
if is_numpy_array(_lowerCamelCase ):
return np.reshape(_lowerCamelCase , _lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.reshape(*_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.reshape(_lowerCamelCase , _lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.reshape(_lowerCamelCase , _lowerCamelCase )
else:
raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." )
def snake_case_ (_a : List[str] , _a : Optional[Any]=None ):
if is_numpy_array(_lowerCamelCase ):
return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." )
def snake_case_ (_a : List[str] , _a : Dict ):
if is_numpy_array(_lowerCamelCase ):
return np.expand_dims(_lowerCamelCase , _lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.unsqueeze(dim=_lowerCamelCase )
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase )
else:
raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." )
def snake_case_ (_a : List[str] ):
if is_numpy_array(_lowerCamelCase ):
return np.size(_lowerCamelCase )
elif is_torch_tensor(_lowerCamelCase ):
return array.numel()
elif is_tf_tensor(_lowerCamelCase ):
import tensorflow as tf
return tf.size(_lowerCamelCase )
elif is_jax_tensor(_lowerCamelCase ):
return array.size
else:
raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." )
def snake_case_ (_a : List[str] , _a : Optional[Any] ):
for key, value in auto_map.items():
if isinstance(_lowerCamelCase , (tuple, list) ):
UpperCAmelCase = [F"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase = F"{repo_id}--{value}"
return auto_map
def snake_case_ (_a : Dict ):
for base_class in inspect.getmro(_lowerCamelCase ):
UpperCAmelCase = base_class.__module__
UpperCAmelCase = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(F"Could not infer framework from class {model_class}." )
| 34 |
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__lowerCAmelCase : Optional[int] =16
__lowerCAmelCase : Tuple =32
def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : DatasetDict , _lowerCamelCase : List[int] , _lowerCamelCase : List[int] , _lowerCamelCase : int = 16 ):
A__ = AutoTokenizer.from_pretrained("bert-base-cased" )
A__ = DatasetDict(
{
"train": dataset["train"].select(_lowerCamelCase ),
"validation": dataset["train"].select(_lowerCamelCase ),
"test": dataset["validation"],
} )
def tokenize_function(_lowerCamelCase : Dict ):
# max_length=None => use the model max length (it's actually the default)
A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
A__ = datasets.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(_lowerCamelCase : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
A__ = 16
elif accelerator.mixed_precision != "no":
A__ = 8
else:
A__ = None
return tokenizer.pad(
_lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , )
# Instantiate dataloaders.
A__ = DataLoader(
tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
A__ = DataLoader(
tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
A__ = DataLoader(
tokenized_datasets["test"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
return train_dataloader, eval_dataloader, test_dataloader
def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : str ):
# New Code #
A__ = []
# Download the dataset
A__ = load_dataset("glue" , "mrpc" )
# Create our splits
A__ = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A__ = config["lr"]
A__ = int(config["num_epochs"] )
A__ = int(config["seed"] )
A__ = int(config["batch_size"] )
A__ = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
A__ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
A__ = batch_size // MAX_GPU_BATCH_SIZE
A__ = MAX_GPU_BATCH_SIZE
set_seed(_lowerCamelCase )
# New Code #
# Create our folds:
A__ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] )
A__ = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(_lowerCamelCase ):
A__, A__, A__ = get_fold_dataloaders(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
A__ = model.to(accelerator.device )
# Instantiate optimizer
A__ = AdamW(params=model.parameters() , lr=_lowerCamelCase )
# Instantiate scheduler
A__ = get_linear_schedule_with_warmup(
optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A__, A__, A__, A__, A__ = accelerator.prepare(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Now we train the model
for epoch in range(_lowerCamelCase ):
model.train()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
A__ = model(**_lowerCamelCase )
A__ = outputs.loss
A__ = loss / gradient_accumulation_steps
accelerator.backward(_lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A__ = model(**_lowerCamelCase )
A__ = outputs.logits.argmax(dim=-1 )
A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=_lowerCamelCase , references=_lowerCamelCase , )
A__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , _lowerCamelCase )
# New Code #
# We also run predictions on the test set at the very end
A__ = []
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A__ = model(**_lowerCamelCase )
A__ = outputs.logits
A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(_lowerCamelCase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
A__ = torch.cat(_lowerCamelCase , dim=0 )
A__ = torch.stack(_lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
A__ = metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase )
accelerator.print("Average test metrics from all folds:" , _lowerCamelCase )
def UpperCamelCase ( ):
A__ = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
# New Code #
parser.add_argument("--num_folds" , type=_lowerCamelCase , default=3 , help="The number of splits to perform across the dataset" )
A__ = parser.parse_args()
A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
main()
| 237 | 0 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
lowerCamelCase_ = """\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
lowerCamelCase_ = """\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
lowerCamelCase_ = """
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
return float((preds == labels).mean() )
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="binary" ):
A : Optional[Any] = simple_accuracy(_lowerCamelCase , _lowerCamelCase )
A : Tuple = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average=_lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
A : Optional[int] = {}
for id_pred, label in zip(_lowerCamelCase , _lowerCamelCase ):
A : List[str] = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}"""
A : List[Any] = id_pred["prediction"]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
A : str = [(pred, label)]
A : Any = [], []
for question, preds_labels in question_map.items():
A : Tuple = zip(*_lowerCamelCase )
A : Optional[Any] = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average="macro" )
fas.append(_lowerCamelCase )
A : int = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCamelCase ) )
ems.append(_lowerCamelCase )
A : List[Any] = float(sum(_lowerCamelCase ) / len(_lowerCamelCase ) )
A : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase )
A : str = float(fa_score(y_true=_lowerCamelCase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"prediction_text": datasets.Value("string" ),
},
"references": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"answers": datasets.Sequence(datasets.Value("string" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("int64" ),
"paragraph": datasets.Value("int64" ),
"question": datasets.Value("int64" ),
},
"prediction": datasets.Value("int64" ),
},
"references": datasets.Value("int64" ),
}
else:
return {
"predictions": datasets.Value("int64" ),
"references": datasets.Value("int64" ),
}
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> Optional[Any]:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )}
elif self.config_name == "cb":
return acc_and_fa(__lowerCamelCase , __lowerCamelCase , fa_avg="macro" )
elif self.config_name == "record":
A : Union[str, Any] = [
{
"qas": [
{"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]}
for ref in references
]
}
]
A : Optional[int] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions}
return evaluate_record(__lowerCamelCase , __lowerCamelCase )[0]
elif self.config_name == "multirc":
return evaluate_multirc(__lowerCamelCase , __lowerCamelCase )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) | 362 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
A : Dict = np.argmax(_lowerCamelCase , axis=1 )
return np.sum(outputs == labels )
def UpperCAmelCase ( _lowerCamelCase ):
with open(_lowerCamelCase , encoding="utf_8" ) as f:
A : Dict = csv.reader(_lowerCamelCase )
A : Optional[int] = []
next(_lowerCamelCase ) # skip the first line
for line in tqdm(_lowerCamelCase ):
output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : str = []
for dataset in encoded_datasets:
A : List[str] = len(_lowerCamelCase )
A : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
A : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa )
A : Any = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
A : str = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_lowerCamelCase ):
A : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
A : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
A : str = with_conta
A : Any = with_conta
A : Union[str, Any] = len(_lowerCamelCase ) - 1
A : Dict = len(_lowerCamelCase ) - 1
A : int = with_conta
A : int = with_conta
A : int = mc_label
A : Optional[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_lowerCamelCase ) for t in all_inputs ) )
return tensor_datasets
def UpperCAmelCase ( ):
A : Any = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=_lowerCamelCase , default="openai-gpt" , help="pretrained model name" )
parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." )
parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." )
parser.add_argument(
"--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , )
parser.add_argument("--train_dataset" , type=_lowerCamelCase , default="" )
parser.add_argument("--eval_dataset" , type=_lowerCamelCase , default="" )
parser.add_argument("--seed" , type=_lowerCamelCase , default=42 )
parser.add_argument("--num_train_epochs" , type=_lowerCamelCase , default=3 )
parser.add_argument("--train_batch_size" , type=_lowerCamelCase , default=8 )
parser.add_argument("--eval_batch_size" , type=_lowerCamelCase , default=16 )
parser.add_argument("--adam_epsilon" , default=1e-8 , type=_lowerCamelCase , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , type=_lowerCamelCase , default=1 )
parser.add_argument(
"--max_steps" , default=-1 , type=_lowerCamelCase , help=(
"If > 0: set total number of training steps to perform. Override num_train_epochs."
) , )
parser.add_argument(
"--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , )
parser.add_argument("--learning_rate" , type=_lowerCamelCase , default=6.25e-5 )
parser.add_argument("--warmup_steps" , default=0 , type=_lowerCamelCase , help="Linear warmup over warmup_steps." )
parser.add_argument("--lr_schedule" , type=_lowerCamelCase , default="warmup_linear" )
parser.add_argument("--weight_decay" , type=_lowerCamelCase , default=0.01 )
parser.add_argument("--lm_coef" , type=_lowerCamelCase , default=0.9 )
parser.add_argument("--n_valid" , type=_lowerCamelCase , default=374 )
parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." )
parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." )
A : List[Any] = parser.parse_args()
print(_lowerCamelCase )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
A : Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
A : List[Any] = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(_lowerCamelCase , _lowerCamelCase ) )
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True." )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
A : List[Any] = ["_start_", "_delimiter_", "_classify_"]
A : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_lowerCamelCase )
A : str = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
A : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_lowerCamelCase ) )
model.to(_lowerCamelCase )
# Load and encode the datasets
def tokenize_and_encode(_lowerCamelCase ):
if isinstance(_lowerCamelCase , _lowerCamelCase ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowerCamelCase ) )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
return obj
return [tokenize_and_encode(_lowerCamelCase ) for o in obj]
logger.info("Encoding dataset..." )
A : List[str] = load_rocstories_dataset(args.train_dataset )
A : List[str] = load_rocstories_dataset(args.eval_dataset )
A : str = (train_dataset, eval_dataset)
A : Any = tokenize_and_encode(_lowerCamelCase )
# Compute the max input length for the Transformer
A : Any = model.config.n_positions // 2 - 2
A : List[str] = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
A : Dict = min(_lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
A : List[Any] = pre_process_datasets(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase )
A , A : Dict = tensor_datasets[0], tensor_datasets[1]
A : Union[str, Any] = TensorDataset(*_lowerCamelCase )
A : Dict = RandomSampler(_lowerCamelCase )
A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.train_batch_size )
A : int = TensorDataset(*_lowerCamelCase )
A : List[str] = SequentialSampler(_lowerCamelCase )
A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
A : Any = args.max_steps
A : str = args.max_steps // (len(_lowerCamelCase ) // args.gradient_accumulation_steps) + 1
else:
A : Optional[int] = len(_lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs
A : str = list(model.named_parameters() )
A : Tuple = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
A : List[Any] = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0},
]
A : Optional[Any] = AdamW(_lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon )
A : Any = get_linear_schedule_with_warmup(
_lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowerCamelCase )
if args.do_train:
A , A , A : Tuple = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ):
A : List[Any] = 0
A : Any = 0
A : Dict = tqdm(_lowerCamelCase , desc="Training" )
for step, batch in enumerate(_lowerCamelCase ):
A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch )
A , A , A , A : Any = batch
A : Any = model(_lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase )
A : Any = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
A : Dict = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
A : Optional[int] = "Training loss: {:.2e} lr: {:.2e}".format(_lowerCamelCase , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
A : Tuple = model.module if hasattr(_lowerCamelCase , "module" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
A : Dict = os.path.join(args.output_dir , _lowerCamelCase )
A : Any = os.path.join(args.output_dir , _lowerCamelCase )
torch.save(model_to_save.state_dict() , _lowerCamelCase )
model_to_save.config.to_json_file(_lowerCamelCase )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
A : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
A : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_lowerCamelCase )
if args.do_eval:
model.eval()
A , A : Union[str, Any] = 0, 0
A , A : List[Any] = 0, 0
for batch in tqdm(_lowerCamelCase , desc="Evaluating" ):
A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch )
A , A , A , A : Optional[int] = batch
with torch.no_grad():
A , A , A , A : Any = model(
_lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase )
A : Dict = mc_logits.detach().cpu().numpy()
A : Union[str, Any] = mc_labels.to("cpu" ).numpy()
A : Union[str, Any] = accuracy(_lowerCamelCase , _lowerCamelCase )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
A : Union[str, Any] = eval_loss / nb_eval_steps
A : Tuple = eval_accuracy / nb_eval_examples
A : Optional[int] = tr_loss / nb_tr_steps if args.do_train else None
A : Dict = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss}
A : Optional[Any] = os.path.join(args.output_dir , "eval_results.txt" )
with open(_lowerCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key in sorted(result.keys() ):
logger.info(" %s = %s" , _lowerCamelCase , str(result[key] ) )
writer.write("%s = %s\n" % (key, str(result[key] )) )
if __name__ == "__main__":
main() | 256 | 0 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class A__ :
"""simple docstring"""
def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=4 , __snake_case=4 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ):
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = rotary_dim
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = initializer_range
snake_case = None
snake_case = vocab_size - 1
snake_case = vocab_size - 1
snake_case = vocab_size - 1
def a_ ( self ):
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case = None
if self.use_input_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def a_ ( self ):
snake_case = self.prepare_config_and_inputs()
snake_case , snake_case , snake_case = config_and_inputs
snake_case = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ):
snake_case = 2_0
snake_case = model_class_name(__snake_case )
snake_case = model.init_cache(input_ids.shape[0] , __snake_case )
snake_case = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
snake_case = model(
input_ids[:, :-1] , attention_mask=__snake_case , past_key_values=__snake_case , position_ids=__snake_case , )
snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
snake_case = model(
input_ids[:, -1:] , attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , position_ids=__snake_case , )
snake_case = model(__snake_case )
snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ):
snake_case = 2_0
snake_case = model_class_name(__snake_case )
snake_case = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
snake_case = model.init_cache(input_ids.shape[0] , __snake_case )
snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
snake_case = model(
input_ids[:, :-1] , attention_mask=__snake_case , past_key_values=__snake_case , position_ids=__snake_case , )
snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
snake_case = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__snake_case , position_ids=__snake_case , )
snake_case = model(__snake_case , attention_mask=__snake_case )
snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
@require_flax
class A__ ( snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__magic_name__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def a_ ( self ):
snake_case = FlaxGPTJModelTester(self )
def a_ ( self ):
for model_class_name in self.all_model_classes:
snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case , __snake_case )
def a_ ( self ):
for model_class_name in self.all_model_classes:
snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__snake_case , __snake_case , __snake_case , __snake_case )
@tooslow
def a_ ( self ):
snake_case = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
snake_case = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=__snake_case , truncation=__snake_case )
snake_case = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
snake_case = False
snake_case = model.config.eos_token_id
snake_case = jax.jit(model.generate )
snake_case = jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case )
snake_case = [
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(__snake_case , __snake_case )
@is_pt_flax_cross_test
def a_ ( self ):
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
snake_case = self._prepare_for_class(__snake_case , __snake_case )
snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
snake_case = getattr(__snake_case , __snake_case )
snake_case , snake_case = pt_inputs['''input_ids'''].shape
snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__snake_case ):
snake_case = 0
snake_case = 1
snake_case = 0
snake_case = 1
snake_case = pt_model_class(__snake_case ).eval()
snake_case = model_class(__snake_case , dtype=jnp.floataa )
snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __snake_case )
snake_case = fx_state
with torch.no_grad():
snake_case = pt_model(**__snake_case ).to_tuple()
snake_case = fx_model(**__snake_case ).to_tuple()
self.assertEqual(len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(__snake_case , __snake_case ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__snake_case )
snake_case = model_class.from_pretrained(__snake_case , from_pt=__snake_case )
snake_case = fx_model_loaded(**__snake_case ).to_tuple()
self.assertEqual(
len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(__snake_case , __snake_case ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def a_ ( self ):
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
snake_case = self._prepare_for_class(__snake_case , __snake_case )
snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
snake_case = getattr(__snake_case , __snake_case )
snake_case = pt_model_class(__snake_case ).eval()
snake_case = model_class(__snake_case , dtype=jnp.floataa )
snake_case = load_flax_weights_in_pytorch_model(__snake_case , fx_model.params )
snake_case , snake_case = pt_inputs['''input_ids'''].shape
snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__snake_case ):
snake_case = 0
snake_case = 1
snake_case = 0
snake_case = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
snake_case = pt_model(**__snake_case ).to_tuple()
snake_case = fx_model(**__snake_case ).to_tuple()
self.assertEqual(len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(__snake_case , __snake_case ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__snake_case )
snake_case = pt_model_class.from_pretrained(__snake_case , from_flax=__snake_case )
with torch.no_grad():
snake_case = pt_model_loaded(**__snake_case ).to_tuple()
self.assertEqual(
len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(__snake_case , __snake_case ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def a_ ( self ):
for model_class_name in self.all_model_classes:
snake_case = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
snake_case = model(np.ones((1, 1) ) )
self.assertIsNotNone(__snake_case )
| 127 |
def UpperCAmelCase__ (UpperCamelCase_ = 4_00_00_00 ):
"""simple docstring"""
snake_case = [0, 1]
snake_case = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
snake_case = 0
for j in range(len(UpperCamelCase_ ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 127 | 1 |
from math import sqrt
def __a ( lowerCAmelCase_ : int ) -> bool:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
UpperCAmelCase_= True
# 0 and 1 are none primes.
if number <= 1:
UpperCAmelCase_= False
for divisor in range(2 ,int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
UpperCAmelCase_= False
break
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'status' must been from type bool"
return status
def __a ( lowerCAmelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
UpperCAmelCase_= list(range(2 ,n + 1 ) )
UpperCAmelCase_= [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCAmelCase_ ) ):
for j in range(i + 1 ,len(lowerCAmelCase_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
UpperCAmelCase_= 0
# filters actual prime numbers.
UpperCAmelCase_= [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list"
return ans
def __a ( lowerCAmelCase_ : Tuple ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2"
UpperCAmelCase_= []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 ,n + 1 ):
if is_prime(lowerCAmelCase_ ):
ans.append(lowerCAmelCase_ )
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list"
return ans
def __a ( lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0"
UpperCAmelCase_= [] # this list will be returns of the function.
# potential prime number factors.
UpperCAmelCase_= 2
UpperCAmelCase_= number
if number == 0 or number == 1:
ans.append(lowerCAmelCase_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCAmelCase_ ):
while quotient != 1:
if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0):
ans.append(lowerCAmelCase_ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCAmelCase_ )
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list"
return ans
def __a ( lowerCAmelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase_= 0
# prime factorization of 'number'
UpperCAmelCase_= prime_factorization(lowerCAmelCase_ )
UpperCAmelCase_= max(lowerCAmelCase_ )
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type int"
return ans
def __a ( lowerCAmelCase_ : Dict ) -> List[str]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase_= 0
# prime factorization of 'number'
UpperCAmelCase_= prime_factorization(lowerCAmelCase_ )
UpperCAmelCase_= min(lowerCAmelCase_ )
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type int"
return ans
def __a ( lowerCAmelCase_ : int ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 ,lowerCAmelCase_ ), "compare bust been from type bool"
return number % 2 == 0
def __a ( lowerCAmelCase_ : Optional[Any] ) -> str:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 ,lowerCAmelCase_ ), "compare bust been from type bool"
return number % 2 != 0
def __a ( lowerCAmelCase_ : List[str] ) -> str:
'''simple docstring'''
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ )
), "'number' must been an int, even and > 2"
UpperCAmelCase_= [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
UpperCAmelCase_= get_prime_numbers(lowerCAmelCase_ )
UpperCAmelCase_= len(lowerCAmelCase_ )
# run variable for while-loops.
UpperCAmelCase_= 0
UpperCAmelCase_= None
# exit variable. for break up the loops
UpperCAmelCase_= True
while i < len_pn and loop:
UpperCAmelCase_= i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
UpperCAmelCase_= False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (len(lowerCAmelCase_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase_= 0
while numbera != 0:
UpperCAmelCase_= numbera % numbera
UpperCAmelCase_= numbera
UpperCAmelCase_= rest
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[int] ) -> List[str]:
'''simple docstring'''
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase_= 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
UpperCAmelCase_= prime_factorization(lowerCAmelCase_ )
UpperCAmelCase_= prime_factorization(lowerCAmelCase_ )
elif numbera == 1 or numbera == 1:
UpperCAmelCase_= []
UpperCAmelCase_= []
UpperCAmelCase_= max(lowerCAmelCase_ ,lowerCAmelCase_ )
UpperCAmelCase_= 0
UpperCAmelCase_= 0
UpperCAmelCase_= [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ )
UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ )
for _ in range(max(lowerCAmelCase_ ,lowerCAmelCase_ ) ):
ans *= n
else:
UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ )
for _ in range(lowerCAmelCase_ ):
ans *= n
done.append(lowerCAmelCase_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ )
for _ in range(lowerCAmelCase_ ):
ans *= n
done.append(lowerCAmelCase_ )
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __a ( lowerCAmelCase_ : str ) -> Union[str, Any]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int"
UpperCAmelCase_= 0
UpperCAmelCase_= 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCAmelCase_ ):
ans += 1
# precondition
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and is_prime(
lowerCAmelCase_ ), "'ans' must been a prime number and from type int"
return ans
def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : List[Any] ) -> Any:
'''simple docstring'''
assert (
is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
UpperCAmelCase_= p_number_a + 1 # jump to the next number
UpperCAmelCase_= [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCAmelCase_ ):
number += 1
while number < p_number_a:
ans.append(lowerCAmelCase_ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCAmelCase_ ):
number += 1
# precondition
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and ans[0] != p_number_a
and ans[len(lowerCAmelCase_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __a ( lowerCAmelCase_ : Tuple ) -> Tuple:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1"
UpperCAmelCase_= [] # will be returned.
for divisor in range(1 ,n + 1 ):
if n % divisor == 0:
ans.append(lowerCAmelCase_ )
# precondition
assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __a ( lowerCAmelCase_ : Any ) -> Tuple:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (
number > 1
), "'number' must been an int and >= 1"
UpperCAmelCase_= get_divisors(lowerCAmelCase_ )
# precondition
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (divisors[0] == 1)
and (divisors[len(lowerCAmelCase_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
UpperCAmelCase_= gcd(abs(lowerCAmelCase_ ) ,abs(lowerCAmelCase_ ) )
# precondition
assert (
isinstance(lowerCAmelCase_ ,lowerCAmelCase_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __a ( lowerCAmelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0"
UpperCAmelCase_= 1 # this will be return.
for factor in range(1 ,n + 1 ):
ans *= factor
return ans
def __a ( lowerCAmelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0"
UpperCAmelCase_= 0
UpperCAmelCase_= 1
UpperCAmelCase_= 1 # this will be return
for _ in range(n - 1 ):
UpperCAmelCase_= ans
ans += fiba
UpperCAmelCase_= tmp
return ans
| 371 |
import warnings
from functools import wraps
from typing import Callable
def __a ( lowerCAmelCase_ : Callable ) -> Callable:
'''simple docstring'''
@wraps(lowerCAmelCase_ )
def _inner_fn(*lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : Tuple ):
warnings.warn(
(F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowerCAmelCase_ ,)
return fn(*lowerCAmelCase_ ,**lowerCAmelCase_ )
return _inner_fn
| 277 | 0 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
_UpperCAmelCase = []
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_init_end' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_train_begin' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_train_end' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_epoch_begin' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_epoch_end' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_step_begin' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_step_end' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_evaluate' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_predict' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_save' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_log' )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.events.append('on_prediction_step' )
@require_torch
class __lowerCamelCase ( unittest.TestCase):
"""simple docstring"""
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
def UpperCamelCase ( self ):
"""simple docstring"""
shutil.rmtree(self.output_dir )
def UpperCamelCase ( self , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=64 , UpperCAmelCase=64 , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = RegressionDataset(length=UpperCAmelCase )
_UpperCAmelCase = RegressionDataset(length=UpperCAmelCase )
_UpperCAmelCase = RegressionModelConfig(a=UpperCAmelCase , b=UpperCAmelCase )
_UpperCAmelCase = RegressionPreTrainedModel(UpperCAmelCase )
_UpperCAmelCase = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase , report_to=[] , **UpperCAmelCase )
return Trainer(
UpperCAmelCase , UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , callbacks=UpperCAmelCase , )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ):
"""simple docstring"""
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
# Order doesn't matter
_UpperCAmelCase = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ )
_UpperCAmelCase = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ )
for cba, cba in zip(UpperCAmelCase , UpperCAmelCase ):
if isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
elif isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(UpperCAmelCase , cba.__class__ )
elif not isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(cba.__class__ , UpperCAmelCase )
else:
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = ['on_init_end', 'on_train_begin']
_UpperCAmelCase = 0
_UpperCAmelCase = len(trainer.get_eval_dataloader() )
_UpperCAmelCase = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('on_epoch_begin' )
for _ in range(UpperCAmelCase ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('on_log' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('on_save' )
expected_events.append('on_epoch_end' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self.get_trainer()
_UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
# Callbacks passed at init are added to the default callbacks
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
_UpperCAmelCase = self.get_trainer(disable_tqdm=UpperCAmelCase )
_UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
_UpperCAmelCase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(UpperCAmelCase )
expected_callbacks.remove(UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
_UpperCAmelCase = self.get_trainer()
_UpperCAmelCase = trainer.pop_callback(UpperCAmelCase )
self.assertEqual(cb.__class__ , UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
trainer.add_callback(UpperCAmelCase )
expected_callbacks.insert(0 , UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
# We can also add, pop, or remove by instance
_UpperCAmelCase = self.get_trainer()
_UpperCAmelCase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(UpperCAmelCase )
expected_callbacks.remove(UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
_UpperCAmelCase = self.get_trainer()
_UpperCAmelCase = trainer.callback_handler.callbacks[0]
_UpperCAmelCase = trainer.pop_callback(UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
trainer.add_callback(UpperCAmelCase )
expected_callbacks.insert(0 , UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='ignore' , category=UpperCAmelCase )
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
# Independent log/save/eval
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
_UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
# A bit of everything
_UpperCAmelCase = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , )
trainer.train()
_UpperCAmelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) )
# warning should be emitted for duplicated callbacks
with patch('transformers.trainer_callback.logger.warning' ) as warn_mock:
_UpperCAmelCase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(UpperCAmelCase ) in warn_mock.call_args[0][0]
| 39 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
_a = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase )
_UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'}
_UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
_UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] )
with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f:
f.write(UpperCAmelCase )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ):
"""simple docstring"""
_UpperCAmelCase = self.get_auto_remove_tmp_dir()
_UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' )
_UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' )
self._create_dummy_data(data_dir=UpperCAmelCase )
_UpperCAmelCase = F"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(F"""--gpus={gpus}""" )
if is_apex_available():
testargs.append('--fp16' )
else:
testargs.append('--gpus=0' )
testargs.append('--distributed_backend=ddp_cpu' )
testargs.append('--num_processes=2' )
_UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(UpperCAmelCase , env=self.get_env() )
_UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' )
with open(UpperCAmelCase ) as f:
_UpperCAmelCase = json.load(UpperCAmelCase )
return result
@require_torch_gpu
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_gpu
@require_ray
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
@require_ray
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
| 39 | 1 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'files' ,[
['full:README.md', 'dataset_infos.json'],
['empty:README.md', 'dataset_infos.json'],
['dataset_infos.json'],
['full:README.md'],
] ,)
def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ):
'''simple docstring'''
A_ : Union[str, Any] = tmp_path_factory.mktemp('dset_infos_dir' )
if "full:README.md" in files:
with open(dataset_infos_dir / 'README.md' ,'w' ) as f:
f.write('---\ndataset_info:\n dataset_size: 42\n---' )
if "empty:README.md" in files:
with open(dataset_infos_dir / 'README.md' ,'w' ) as f:
f.write('' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f:
f.write('{"default": {"dataset_size": 42}}' )
A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'dataset_info' ,[
DatasetInfo(),
DatasetInfo(
description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,),
] ,)
def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : DatasetInfo ):
'''simple docstring'''
A_ : Union[str, Any] = str(__lowercase )
dataset_info.write_to_directory(__lowercase )
A_ : str = DatasetInfo.from_directory(__lowercase )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(__lowercase ,'dataset_info.json' ) )
def UpperCamelCase ( ):
'''simple docstring'''
A_ : Optional[Any] = DatasetInfo(
description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,)
A_ : Tuple = dataset_info._to_yaml_dict()
assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) )
A_ : Dict = yaml.safe_dump(__lowercase )
A_ : Tuple = yaml.safe_load(__lowercase )
assert dataset_info_yaml_dict == reloaded
def UpperCamelCase ( ):
'''simple docstring'''
A_ : Any = DatasetInfo()
A_ : Optional[Any] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'dataset_infos_dict' ,[
DatasetInfosDict(),
DatasetInfosDict({'default': DatasetInfo()} ),
DatasetInfosDict({'my_config_name': DatasetInfo()} ),
DatasetInfosDict(
{
'default': DatasetInfo(
description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,)
} ),
DatasetInfosDict(
{
'v1': DatasetInfo(dataset_size=42 ),
'v2': DatasetInfo(dataset_size=13_37 ),
} ),
] ,)
def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : DatasetInfosDict ):
'''simple docstring'''
A_ : Union[str, Any] = str(__lowercase )
dataset_infos_dict.write_to_directory(__lowercase )
A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
A_ : Any = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
A_ : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(__lowercase ,'README.md' ) )
| 367 | import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
A_ : int = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
A_ : Optional[Any] = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , )
return model
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
A_ : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowercase )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : Optional[int] = self.dummy_uncond_unet
A_ : List[Any] = DDIMScheduler()
A_ : Any = self.dummy_vq_model
A_ : int = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase )
ldm.to(lowercase )
ldm.set_progress_bar_config(disable=lowercase )
A_ : Any = torch.manual_seed(0 )
A_ : Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images
A_ : Any = torch.manual_seed(0 )
A_ : List[str] = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0]
A_ : Union[str, Any] = image[0, -3:, -3:, -1]
A_ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
A_ : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )
A_ : str = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : List[Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' )
ldm.to(lowercase )
ldm.set_progress_bar_config(disable=lowercase )
A_ : Any = torch.manual_seed(0 )
A_ : List[str] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images
A_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
A_ : Tuple = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] )
A_ : Dict = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 192 | 0 |
'''simple docstring'''
def _UpperCamelCase ( __A ) -> bool:
'''simple docstring'''
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
a__ : Optional[Any] = int(input('Enter number: ').strip())
print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
| 80 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
a_ : str = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
a_ : Tuple = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
a_ : Any = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
a_ : Union[str, Any] = sorted(arg_to_scheduler.keys())
a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class a ( pl.LightningModule ):
def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__magic_name__ )
_a = 0
_a = Path(self.hparams.output_dir )
_a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , )
else:
_a = config
_a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , __magic_name__ , __magic_name__ ):
assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute'
setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) )
if tokenizer is None:
_a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , )
else:
_a = tokenizer
_a = MODEL_MODES[mode]
if model is None:
_a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , )
else:
_a = model
def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]:
_a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ )
def __UpperCAmelCase ( self ) -> List[str]:
_a = arg_to_scheduler[self.hparams.lr_scheduler]
_a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __UpperCAmelCase ( self ) -> Any:
_a = self.model
_a = ['bias', 'LayerNorm.weight']
_a = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
_a = Adafactor(
__magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ )
else:
_a = AdamW(
__magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_a = optimizer
_a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]:
return self.validation_step(__magic_name__ , __magic_name__ )
def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]:
return self.validation_end(__magic_name__ )
def __UpperCAmelCase ( self ) -> int:
_a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]:
if stage == "test":
_a = len(self.test_dataloader().dataset )
else:
_a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ )
_a = len(self.train_dataloader().dataset )
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int:
raise NotImplementedError('You must implement this for your task' )
def __UpperCAmelCase ( self ) -> Tuple:
return self.train_loader
def __UpperCAmelCase ( self ) -> Dict:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def __UpperCAmelCase ( self ) -> Tuple:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
__magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __UpperCAmelCase ( self , __magic_name__ ) -> None:
_a = self.output_dir.joinpath('best_tfmr' )
_a = self.step_count
self.model.save_pretrained(__magic_name__ )
self.tokenizer.save_pretrained(__magic_name__ )
@staticmethod
def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]:
parser.add_argument(
'--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ )
parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ )
parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ )
parser.add_argument('--adafactor' , action='store_true' )
class a ( pl.Callback ):
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class a ( pl.Callback ):
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__magic_name__ )
class a ( pl.Callback ):
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]:
_a = trainer.lr_schedulers[0]['scheduler']
_a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__magic_name__ )
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int:
rank_zero_info('***** Validation results *****' )
_a = trainer.callback_metrics
# Log results
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) )
def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]:
rank_zero_info('***** Test results *****' )
_a = trainer.callback_metrics
# Log and save results to file
_a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(__magic_name__ , 'w' ) as writer:
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) )
def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None:
'''simple docstring'''
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str:
'''simple docstring'''
pl.seed_everything(args.seed )
# init model
_a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase__ )
# add custom checkpoints
if checkpoint_callback is None:
_a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase__ )
if logging_callback is None:
_a = LoggingCallback()
_a = {}
if args.fpaa:
_a = 16
if args.gpus > 1:
_a = 'auto'
_a = 'ddp'
_a = args.accumulate_grad_batches
_a = None
_a = 'auto'
_a = pl.Trainer.from_argparse_args(
lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , )
if args.do_train:
trainer.fit(lowerCAmelCase__ )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 168 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''Salesforce/blip-image-captioning-base'''
__SCREAMING_SNAKE_CASE = (
'''This is a tool that generates a description of an image. It takes an input named `image` which should be the '''
'''image to caption, and returns a text that contains the description in English.'''
)
__SCREAMING_SNAKE_CASE = '''image_captioner'''
__SCREAMING_SNAKE_CASE = AutoModelForVisionaSeq
__SCREAMING_SNAKE_CASE = ['''image''']
__SCREAMING_SNAKE_CASE = ['''text''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""vision"""] )
super().__init__(*lowercase , **lowercase )
def __lowerCamelCase ( self , lowercase ) -> Any:
return self.pre_processor(images=lowercase , return_tensors="""pt""" )
def __lowerCamelCase ( self , lowercase ) -> Optional[int]:
return self.model.generate(**lowercase )
def __lowerCamelCase ( self , lowercase ) -> List[str]:
return self.pre_processor.batch_decode(lowercase , skip_special_tokens=lowercase )[0].strip()
| 243 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
a__ : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase__ :
def __init__( self ) -> Union[str, Any]:
__UpperCamelCase = False
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
if not self.initialized:
__UpperCamelCase = RagRetriever(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = True
def __lowerCamelCase ( self ) -> List[Any]:
self.retriever.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]:
__UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]:
if index is not None and index.is_initialized() and len(lowercase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase )
for worker in self.retrieval_workers
] )
def __lowerCamelCase ( self ) -> Optional[int]:
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) )
else:
__UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple:
return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict:
__UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase )
__UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
__UpperCamelCase = rag_tokenizer.question_encoder
__UpperCamelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCamelCase = """custom"""
__UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase )
else:
__UpperCamelCase = cls._build_index(lowercase )
return cls(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
| 243 | 1 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( A__ ):
snake_case_ : int = ["image_processor", "tokenizer"]
snake_case_ : List[Any] = "FlavaImageProcessor"
snake_case_ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Optional[Any] , snake_case__ : Tuple=None , snake_case__ : Optional[Any]=None , **snake_case__ : List[str] ):
"""simple docstring"""
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _a , )
_UpperCAmelCase = kwargs.pop("feature_extractor" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_a , _a )
_UpperCAmelCase = self.image_processor
def __call__( self : List[str] , snake_case__ : Optional[ImageInput] = None , snake_case__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , snake_case__ : bool = True , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Union[bool, str, TruncationStrategy] = False , snake_case__ : Optional[int] = None , snake_case__ : int = 0 , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : str , ):
"""simple docstring"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
_UpperCAmelCase = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
if images is not None:
_UpperCAmelCase = self.image_processor(
_a , return_image_mask=_a , return_codebook_pixels=_a , return_tensors=_a , **_a , )
if text is not None and images is not None:
encoding.update(_a )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_a ) , tensor_type=_a )
def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_a , **_a )
def UpperCamelCase ( self : List[str] , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ):
"""simple docstring"""
return self.tokenizer.decode(*_a , **_a )
@property
def UpperCamelCase ( self : Any ):
"""simple docstring"""
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , )
return self.image_processor_class
@property
def UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , )
return self.image_processor
| 133 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class A__ ( A__ , A__ ):
@register_to_config
def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) )
_SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) )
def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) )
_SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) )
return self
def A ( self : Tuple , _a : str ) -> str:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std
return embeds
def A ( self : List[str] , _a : Optional[Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean
return embeds
| 47 | 0 |
'''simple docstring'''
def _A ( _lowerCAmelCase ):
"""simple docstring"""
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError('Input value must be a \'int\' type' )
return bin(_lowerCAmelCase ).count('1' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""b0""": efficientnet.EfficientNetBa,
"""b1""": efficientnet.EfficientNetBa,
"""b2""": efficientnet.EfficientNetBa,
"""b3""": efficientnet.EfficientNetBa,
"""b4""": efficientnet.EfficientNetBa,
"""b5""": efficientnet.EfficientNetBa,
"""b6""": efficientnet.EfficientNetBa,
"""b7""": efficientnet.EfficientNetBa,
}
lowerCamelCase = {
"""b0""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.0,
"""image_size""": 224,
"""dropout_rate""": 0.2,
"""dw_padding""": [],
},
"""b1""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.1,
"""image_size""": 240,
"""dropout_rate""": 0.2,
"""dw_padding""": [16],
},
"""b2""": {
"""hidden_dim""": 1408,
"""width_coef""": 1.1,
"""depth_coef""": 1.2,
"""image_size""": 260,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 8, 16],
},
"""b3""": {
"""hidden_dim""": 1536,
"""width_coef""": 1.2,
"""depth_coef""": 1.4,
"""image_size""": 300,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 18],
},
"""b4""": {
"""hidden_dim""": 1792,
"""width_coef""": 1.4,
"""depth_coef""": 1.8,
"""image_size""": 380,
"""dropout_rate""": 0.4,
"""dw_padding""": [6],
},
"""b5""": {
"""hidden_dim""": 2048,
"""width_coef""": 1.6,
"""depth_coef""": 2.2,
"""image_size""": 456,
"""dropout_rate""": 0.4,
"""dw_padding""": [13, 27],
},
"""b6""": {
"""hidden_dim""": 2304,
"""width_coef""": 1.8,
"""depth_coef""": 2.6,
"""image_size""": 528,
"""dropout_rate""": 0.5,
"""dw_padding""": [31],
},
"""b7""": {
"""hidden_dim""": 2560,
"""width_coef""": 2.0,
"""depth_coef""": 3.1,
"""image_size""": 600,
"""dropout_rate""": 0.5,
"""dw_padding""": [18],
},
}
def _A ( _lowerCAmelCase ):
"""simple docstring"""
__lowercase =EfficientNetConfig()
__lowercase =CONFIG_MAP[model_name]['hidden_dim']
__lowercase =CONFIG_MAP[model_name]['width_coef']
__lowercase =CONFIG_MAP[model_name]['depth_coef']
__lowercase =CONFIG_MAP[model_name]['image_size']
__lowercase =CONFIG_MAP[model_name]['dropout_rate']
__lowercase =CONFIG_MAP[model_name]['dw_padding']
__lowercase ='huggingface/label-files'
__lowercase ='imagenet-1k-id2label.json'
__lowercase =1_000
__lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) )
__lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()}
__lowercase =idalabel
__lowercase ={v: k for k, v in idalabel.items()}
return config
def _A ( ):
"""simple docstring"""
__lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
def _A ( _lowerCAmelCase ):
"""simple docstring"""
__lowercase =CONFIG_MAP[model_name]['image_size']
__lowercase =EfficientNetImageProcessor(
size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_lowerCAmelCase , )
return preprocessor
def _A ( _lowerCAmelCase ):
"""simple docstring"""
__lowercase =[v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )]
__lowercase =sorted(set(_lowerCAmelCase ) )
__lowercase =len(_lowerCAmelCase )
__lowercase ={b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )}
__lowercase =[]
rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') )
rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') )
rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') )
rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') )
rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') )
for b in block_names:
__lowercase =block_name_mapping[b]
rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') )
rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') )
rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') )
rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') )
rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') )
__lowercase ={}
for item in rename_keys:
if item[0] in original_param_names:
__lowercase ='efficientnet.' + item[1]
__lowercase ='classifier.weight'
__lowercase ='classifier.bias'
return key_mapping
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
for key, value in tf_params.items():
if "normalization" in key:
continue
__lowercase =key_mapping[key]
if "_conv" in key and "kernel" in key:
__lowercase =torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
__lowercase =torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
__lowercase =torch.from_numpy(np.transpose(_lowerCAmelCase ) )
else:
__lowercase =torch.from_numpy(_lowerCAmelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_lowerCAmelCase )
@torch.no_grad()
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
__lowercase =model_classes[model_name](
include_top=_lowerCAmelCase , weights='imagenet' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1_000 , classifier_activation='softmax' , )
__lowercase =original_model.trainable_variables
__lowercase =original_model.non_trainable_variables
__lowercase ={param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
__lowercase =param.numpy()
__lowercase =list(tf_params.keys() )
# Load HuggingFace model
__lowercase =get_efficientnet_config(_lowerCAmelCase )
__lowercase =EfficientNetForImageClassification(_lowerCAmelCase ).eval()
__lowercase =hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('Converting parameters...' )
__lowercase =rename_keys(_lowerCAmelCase )
replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Initialize preprocessor and preprocess input image
__lowercase =convert_image_processor(_lowerCAmelCase )
__lowercase =preprocessor(images=prepare_img() , return_tensors='pt' )
# HF model inference
hf_model.eval()
with torch.no_grad():
__lowercase =hf_model(**_lowerCAmelCase )
__lowercase =outputs.logits.detach().numpy()
# Original model inference
__lowercase =False
__lowercase =CONFIG_MAP[model_name]['image_size']
__lowercase =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
__lowercase =image.img_to_array(_lowerCAmelCase )
__lowercase =np.expand_dims(_lowerCAmelCase , axis=0 )
__lowercase =original_model.predict(_lowerCAmelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same."
print('Model outputs match!' )
if save_model:
# Create folder to save model
if not os.path.isdir(_lowerCAmelCase ):
os.mkdir(_lowerCAmelCase )
# Save converted model and image processor
hf_model.save_pretrained(_lowerCAmelCase )
preprocessor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
# Push model and image processor to hub
print(f"""Pushing converted {model_name} to the hub...""" )
__lowercase =f"""efficientnet-{model_name}"""
preprocessor.push_to_hub(_lowerCAmelCase )
hf_model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""b0""",
type=str,
help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""hf_model""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""")
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
lowerCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 48 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : Tuple = {
"""facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""",
}
class _lowerCAmelCase ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = '''data2vec-text'''
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) -> Any:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
A_ : List[Any] = vocab_size
A_ : str = hidden_size
A_ : List[Any] = num_hidden_layers
A_ : Any = num_attention_heads
A_ : int = hidden_act
A_ : str = intermediate_size
A_ : Any = hidden_dropout_prob
A_ : str = attention_probs_dropout_prob
A_ : Optional[Any] = max_position_embeddings
A_ : Union[str, Any] = type_vocab_size
A_ : Any = initializer_range
A_ : List[Any] = layer_norm_eps
A_ : Any = position_embedding_type
A_ : Tuple = use_cache
A_ : Any = classifier_dropout
class _lowerCAmelCase ( _UpperCAmelCase ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A_ : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 344 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a : str = logging.get_logger(__name__)
__a : int = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _UpperCamelCase ( _UpperCAmelCase ):
"""simple docstring"""
__a : Any = '''wavlm'''
def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ )
__lowercase = hidden_size
__lowercase = feat_extract_norm
__lowercase = feat_extract_activation
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = conv_bias
__lowercase = num_buckets
__lowercase = max_bucket_distance
__lowercase = num_conv_pos_embeddings
__lowercase = num_conv_pos_embedding_groups
__lowercase = len(self.conv_dim )
__lowercase = num_hidden_layers
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = num_attention_heads
__lowercase = hidden_dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = feat_proj_dropout
__lowercase = final_dropout
__lowercase = layerdrop
__lowercase = layer_norm_eps
__lowercase = initializer_range
__lowercase = num_ctc_classes
__lowercase = vocab_size
__lowercase = do_stable_layer_norm
__lowercase = use_weighted_layer_sum
__lowercase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowercase = apply_spec_augment
__lowercase = mask_time_prob
__lowercase = mask_time_length
__lowercase = mask_time_min_masks
__lowercase = mask_feature_prob
__lowercase = mask_feature_length
# parameters for pretraining with codevector quantized representations
__lowercase = num_codevectors_per_group
__lowercase = num_codevector_groups
__lowercase = contrastive_logits_temperature
__lowercase = num_negatives
__lowercase = codevector_dim
__lowercase = proj_codevector_dim
__lowercase = diversity_loss_weight
# ctc loss
__lowercase = ctc_loss_reduction
__lowercase = ctc_zero_infinity
# adapter
__lowercase = add_adapter
__lowercase = adapter_kernel_size
__lowercase = adapter_stride
__lowercase = num_adapter_layers
__lowercase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowercase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = xvector_output_dim
@property
def _SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 210 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__A =''''''
__A =''''''
__A =''''''
__A =1 # (0 is vertical, 1 is horizontal)
def lowerCamelCase_ ( ):
lowerCamelCase_ , lowerCamelCase_ = get_dataset(lowerCamelCase__ , lowerCamelCase__ )
print("Processing..." )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = update_image_and_anno(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
for index, image in enumerate(lowerCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowerCamelCase_ = random_chars(3_2 )
lowerCamelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
lowerCamelCase_ = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'
cva.imwrite(F'/{file_root}.jpg' , lowerCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(F'Success {index+1}/{len(lowerCamelCase__ )} with {file_name}' )
lowerCamelCase_ = []
for anno in new_annos[index]:
lowerCamelCase_ = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'
annos_list.append(lowerCamelCase__ )
with open(F'/{file_root}.txt' , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
lowerCamelCase_ = []
lowerCamelCase_ = []
for label_file in glob.glob(os.path.join(lowerCamelCase__ , "*.txt" ) ):
lowerCamelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(lowerCamelCase__ ) as in_file:
lowerCamelCase_ = in_file.readlines()
lowerCamelCase_ = os.path.join(lowerCamelCase__ , F'{label_name}.jpg' )
lowerCamelCase_ = []
for obj_list in obj_lists:
lowerCamelCase_ = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(lowerCamelCase__ )
labels.append(lowerCamelCase__ )
return img_paths, labels
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 ):
lowerCamelCase_ = []
lowerCamelCase_ = []
lowerCamelCase_ = []
for idx in range(len(lowerCamelCase__ ) ):
lowerCamelCase_ = []
lowerCamelCase_ = img_list[idx]
path_list.append(lowerCamelCase__ )
lowerCamelCase_ = anno_list[idx]
lowerCamelCase_ = cva.imread(lowerCamelCase__ )
if flip_type == 1:
lowerCamelCase_ = cva.flip(lowerCamelCase__ , lowerCamelCase__ )
for bbox in img_annos:
lowerCamelCase_ = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
lowerCamelCase_ = cva.flip(lowerCamelCase__ , lowerCamelCase__ )
for bbox in img_annos:
lowerCamelCase_ = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(lowerCamelCase__ )
new_imgs_list.append(lowerCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCamelCase_ ( lowerCamelCase__ = 3_2 ):
assert number_char > 1, "The number of character should greater than 1"
lowerCamelCase_ = ascii_lowercase + digits
return "".join(random.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 47 |
import copy
import re
class _SCREAMING_SNAKE_CASE :
lowerCAmelCase__ = 'hp'
lowerCAmelCase__ = {}
lowerCAmelCase__ = None
@classmethod
def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase ) -> Tuple:
lowerCamelCase_ = prefix
lowerCamelCase_ = defaults
cls.build_naming_info()
@staticmethod
def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]:
if len(lowercase ) == 0:
return ""
lowerCamelCase_ = None
if any(char.isdigit() for char in word ):
raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(lowercase ) + 1 ):
lowerCamelCase_ = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(lowercase ):
lowerCamelCase_ = ""
while integer != 0:
lowerCamelCase_ = chr(ord("A" ) + integer % 10 ) + s
integer //= 10
return s
lowerCamelCase_ = 0
while True:
lowerCamelCase_ = word + "#" + int_to_alphabetic(lowercase )
if sword in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ = sword
break
lowerCamelCase_ = short_word
lowerCamelCase_ = word
return short_word
@staticmethod
def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> int:
lowerCamelCase_ = param_name.split("_" )
lowerCamelCase_ = [TrialShortNamer.shortname_for_word(lowercase , lowercase ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowerCamelCase_ = ["", "_"]
for separator in separators:
lowerCamelCase_ = separator.join(lowercase )
if shortname not in info["reverse_short_param"]:
lowerCamelCase_ = shortname
lowerCamelCase_ = param_name
return shortname
return param_name
@staticmethod
def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]:
lowerCamelCase_ = TrialShortNamer.shortname_for_key(lowercase , lowercase )
lowerCamelCase_ = short_name
lowerCamelCase_ = param_name
@classmethod
def SCREAMING_SNAKE_CASE_( cls ) -> Dict:
if cls.NAMING_INFO is not None:
return
lowerCamelCase_ = {
"short_word": {},
"reverse_short_word": {},
"short_param": {},
"reverse_short_param": {},
}
lowerCamelCase_ = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(lowercase , lowercase )
lowerCamelCase_ = info
@classmethod
def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> Optional[int]:
cls.build_naming_info()
assert cls.PREFIX is not None
lowerCamelCase_ = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'You should provide a default value for the param name {k} with value {v}' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowerCamelCase_ = cls.NAMING_INFO["short_param"][k]
if isinstance(lowercase , lowercase ):
lowerCamelCase_ = 1 if v else 0
lowerCamelCase_ = "" if isinstance(lowercase , (int, float) ) else "-"
lowerCamelCase_ = f'{key}{sep}{v}'
name.append(lowercase )
return "_".join(lowercase )
@classmethod
def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> List[Any]:
lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowerCamelCase_ = []
else:
lowerCamelCase_ = repr.split("_" )
lowerCamelCase_ = {}
for value in values:
if "-" in value:
lowerCamelCase_ , lowerCamelCase_ = value.split("-" )
else:
lowerCamelCase_ = re.sub("[0-9.]" , "" , lowercase )
lowerCamelCase_ = float(re.sub("[^0-9.]" , "" , lowercase ) )
lowerCamelCase_ = cls.NAMING_INFO["reverse_short_param"][p_k]
lowerCamelCase_ = p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowerCamelCase_ = cls.DEFAULTS[k]
return parameters
| 47 | 1 |
'''simple docstring'''
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def lowercase__ ( __lowercase : int , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[int]=1024 ) -> Dict:
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase = [], []
__UpperCamelCase = list(zip(__lowercase , __lowercase ) )
__UpperCamelCase , __UpperCamelCase = sorted_examples[0]
def is_too_big(__lowercase : Optional[Any] ):
return tok(__lowercase , return_tensors='pt' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
__UpperCamelCase = new_src + ' ' + src
__UpperCamelCase = new_tgt + ' ' + tgt
if is_too_big(__lowercase ) or is_too_big(__lowercase ): # cant fit, finalize example
finished_src.append(__lowercase )
finished_tgt.append(__lowercase )
__UpperCamelCase , __UpperCamelCase = src, tgt
else: # can fit, keep adding
__UpperCamelCase , __UpperCamelCase = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(__lowercase )
finished_tgt.append(__lowercase )
return finished_src, finished_tgt
def lowercase__ ( __lowercase : List[str] , __lowercase : Path , __lowercase : Dict , __lowercase : Dict ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = Path(__lowercase )
save_path.mkdir(exist_ok=__lowercase )
for split in ["train"]:
__UpperCamelCase , __UpperCamelCase = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
__UpperCamelCase = [x.rstrip() for x in Path(__lowercase ).open().readlines()]
__UpperCamelCase = [x.rstrip() for x in Path(__lowercase ).open().readlines()]
__UpperCamelCase , __UpperCamelCase = pack_examples(__lowercase , __lowercase , __lowercase , __lowercase )
print(F'''packed {split} split from {len(__lowercase )} examples -> {len(__lowercase )}.''' )
Path(save_path / F'''{split}.source''' ).open('w' ).write('\n'.join(__lowercase ) )
Path(save_path / F'''{split}.target''' ).open('w' ).write('\n'.join(__lowercase ) )
for split in ["val", "test"]:
__UpperCamelCase , __UpperCamelCase = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
shutil.copyfile(__lowercase , save_path / F'''{split}.source''' )
shutil.copyfile(__lowercase , save_path / F'''{split}.target''' )
def lowercase__ ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('--tok_name' , type=__lowercase , help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('--max_seq_len' , type=__lowercase , default=128 )
parser.add_argument('--data_dir' , type=__lowercase )
parser.add_argument('--save_path' , type=__lowercase )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(__lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 53 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
a__ : Tuple ='''3'''
print('''Python version:''', sys.version)
print('''OS platform:''', platform.platform())
print('''OS architecture:''', platform.machine())
try:
import torch
print('''Torch version:''', torch.__version__)
print('''Cuda available:''', torch.cuda.is_available())
print('''Cuda version:''', torch.version.cuda)
print('''CuDNN version:''', torch.backends.cudnn.version())
print('''Number of GPUs available:''', torch.cuda.device_count())
except ImportError:
print('''Torch version:''', None)
try:
import transformers
print('''transformers version:''', transformers.__version__)
except ImportError:
print('''transformers version:''', None)
| 53 | 1 |
"""simple docstring"""
import os
from math import logaa
def __lowercase ( snake_case_ : str = "base_exp.txt" ) ->int:
'''simple docstring'''
__A : float = 0
__A : Tuple = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(_snake_case ) ,_snake_case ) ) ):
__A : List[str] = list(map(_snake_case ,line.split(''',''' ) ) )
if x * logaa(_snake_case ) > largest:
__A : str = x * logaa(_snake_case )
__A : int = i + 1
return result
if __name__ == "__main__":
print(solution())
| 369 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
a_ = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 291 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( _a ):
snake_case__ : Tuple = (DDIMParallelScheduler,)
snake_case__ : Dict = (("""eta""", 0.0), ("""num_inference_steps""", 5_0))
def _A ( self : Optional[Any] , **__lowerCamelCase : Any ):
UpperCamelCase :Any = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**__lowerCamelCase )
return config
def _A ( self : Optional[Any] , **__lowerCamelCase : List[Any] ):
UpperCamelCase :Dict = self.scheduler_classes[0]
UpperCamelCase :List[str] = self.get_scheduler_config(**__lowerCamelCase )
UpperCamelCase :List[str] = scheduler_class(**__lowerCamelCase )
UpperCamelCase , UpperCamelCase :int = 10, 0.0
UpperCamelCase :Any = self.dummy_model()
UpperCamelCase :int = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCamelCase )
for t in scheduler.timesteps:
UpperCamelCase :Tuple = model(__lowerCamelCase , __lowerCamelCase )
UpperCamelCase :Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
return sample
def _A ( self : Optional[int] ):
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _A ( self : Any ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCamelCase )
UpperCamelCase :int = self.scheduler_classes[0]
UpperCamelCase :List[str] = self.get_scheduler_config(steps_offset=1 )
UpperCamelCase :List[str] = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def _A ( self : List[str] ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase )
def _A ( self : Tuple ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCamelCase )
def _A ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _A ( self : List[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCamelCase )
def _A ( self : List[str] ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__lowerCamelCase )
def _A ( self : Optional[Any] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase )
def _A ( self : str ):
self.check_over_configs(thresholding=__lowerCamelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , )
def _A ( self : Tuple ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=__lowerCamelCase )
def _A ( self : List[str] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase )
def _A ( self : Dict ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase )
def _A ( self : Optional[Any] ):
UpperCamelCase :str = self.scheduler_classes[0]
UpperCamelCase :Tuple = self.get_scheduler_config()
UpperCamelCase :int = scheduler_class(**__lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def _A ( self : Dict ):
UpperCamelCase :List[Any] = self.scheduler_classes[0]
UpperCamelCase :Optional[Any] = self.get_scheduler_config()
UpperCamelCase :List[Any] = scheduler_class(**__lowerCamelCase )
UpperCamelCase , UpperCamelCase :Optional[Any] = 10, 0.0
scheduler.set_timesteps(__lowerCamelCase )
UpperCamelCase :Any = self.dummy_model()
UpperCamelCase :Union[str, Any] = self.dummy_sample_deter
UpperCamelCase :Optional[Any] = self.dummy_sample_deter + 0.1
UpperCamelCase :List[str] = self.dummy_sample_deter - 0.1
UpperCamelCase :List[Any] = samplea.shape[0]
UpperCamelCase :Dict = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCamelCase :List[Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase )
UpperCamelCase :str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCamelCase :str = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase )
UpperCamelCase :Any = torch.sum(torch.abs(__lowerCamelCase ) )
UpperCamelCase :Tuple = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1E-2
assert abs(result_mean.item() - 0.4982 ) < 1E-3
def _A ( self : List[str] ):
UpperCamelCase :Tuple = self.full_loop()
UpperCamelCase :Any = torch.sum(torch.abs(__lowerCamelCase ) )
UpperCamelCase :Tuple = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 172.0067 ) < 1E-2
assert abs(result_mean.item() - 0.223967 ) < 1E-3
def _A ( self : Optional[Any] ):
UpperCamelCase :Optional[int] = self.full_loop(prediction_type="""v_prediction""" )
UpperCamelCase :List[Any] = torch.sum(torch.abs(__lowerCamelCase ) )
UpperCamelCase :Optional[int] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 52.5302 ) < 1E-2
assert abs(result_mean.item() - 0.0684 ) < 1E-3
def _A ( self : List[str] ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase :int = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 )
UpperCamelCase :Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) )
UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 149.8295 ) < 1E-2
assert abs(result_mean.item() - 0.1951 ) < 1E-3
def _A ( self : List[Any] ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase :Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 )
UpperCamelCase :Tuple = torch.sum(torch.abs(__lowerCamelCase ) )
UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 149.0784 ) < 1E-2
assert abs(result_mean.item() - 0.1941 ) < 1E-3
| 38 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
UpperCAmelCase_ : int = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
UpperCAmelCase_ : Optional[Any] = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
UpperCAmelCase_ : int = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return float((preds == labels).mean() )
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any="binary" ) -> Dict:
"""simple docstring"""
UpperCamelCase :List[str] = simple_accuracy(__magic_name__ , __magic_name__ )
UpperCamelCase :Dict = float(fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average=__magic_name__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase :Optional[Any] = {}
for id_pred, label in zip(__magic_name__ , __magic_name__ ):
UpperCamelCase :str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
UpperCamelCase :Union[str, Any] = id_pred["""prediction"""]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
UpperCamelCase :Dict = [(pred, label)]
UpperCamelCase , UpperCamelCase :Optional[int] = [], []
for question, preds_labels in question_map.items():
UpperCamelCase , UpperCamelCase :Optional[Any] = zip(*__magic_name__ )
UpperCamelCase :Optional[int] = fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average="""macro""" )
fas.append(__magic_name__ )
UpperCamelCase :int = int(sum(pred == label for pred, label in preds_labels ) == len(__magic_name__ ) )
ems.append(__magic_name__ )
UpperCamelCase :Optional[int] = float(sum(__magic_name__ ) / len(__magic_name__ ) )
UpperCamelCase :str = sum(__magic_name__ ) / len(__magic_name__ )
UpperCamelCase :Tuple = float(fa_score(y_true=__magic_name__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _A ( self : str ):
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , )
def _A ( self : Optional[Any] ):
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"prediction_text": datasets.Value("""string""" ),
},
"references": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"answers": datasets.Sequence(datasets.Value("""string""" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("""int64""" ),
"paragraph": datasets.Value("""int64""" ),
"question": datasets.Value("""int64""" ),
},
"prediction": datasets.Value("""int64""" ),
},
"references": datasets.Value("""int64""" ),
}
else:
return {
"predictions": datasets.Value("""int64""" ),
"references": datasets.Value("""int64""" ),
}
def _A ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : str ):
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )}
elif self.config_name == "cb":
return acc_and_fa(__lowerCamelCase , __lowerCamelCase , fa_avg="""macro""" )
elif self.config_name == "record":
UpperCamelCase :Optional[Any] = [
{
"""qas""": [
{"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]}
for ref in references
]
}
]
UpperCamelCase :Tuple = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions}
return evaluate_record(__lowerCamelCase , __lowerCamelCase )[0]
elif self.config_name == "multirc":
return evaluate_multirc(__lowerCamelCase , __lowerCamelCase )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
| 38 | 1 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCAmelCase ( a_: str = "." ):
for dir_path, dir_names, filenames in os.walk(_a ):
_UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_a )[1] in (".py", ".ipynb"):
yield os.path.join(_a, _a ).lstrip("./" )
def __UpperCAmelCase ( a_: Dict ):
return f"""{i * ' '}*""" if i else "\n##"
def __UpperCAmelCase ( a_: str, a_: str ):
_UpperCAmelCase : str = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_a ) or old_parts[i] != new_part) and new_part:
print(f"""{md_prefix(_a )} {new_part.replace('_', ' ' ).title()}""" )
return new_path
def __UpperCAmelCase ( a_: str = "." ):
_UpperCAmelCase : List[str] = ""
for filepath in sorted(good_file_paths(_a ) ):
_UpperCAmelCase , _UpperCAmelCase : Dict = os.path.split(_a )
if filepath != old_path:
_UpperCAmelCase : List[Any] = print_path(_a, _a )
_UpperCAmelCase : int = (filepath.count(os.sep ) + 1) if filepath else 0
_UpperCAmelCase : Optional[int] = f"""{filepath}/{filename}""".replace(" ", "%20" )
_UpperCAmelCase : Optional[Any] = os.path.splitext(filename.replace("_", " " ).title() )[0]
print(f"""{md_prefix(_a )} [{filename}]({url})""" )
if __name__ == "__main__":
print_directory_md('.') | 360 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Optional[int] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = ['''MBartTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = ['''MBartTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :int = [
'''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MBartForCausalLM''',
'''MBartForConditionalGeneration''',
'''MBartForQuestionAnswering''',
'''MBartForSequenceClassification''',
'''MBartModel''',
'''MBartPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = [
'''TFMBartForConditionalGeneration''',
'''TFMBartModel''',
'''TFMBartPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'''FlaxMBartForConditionalGeneration''',
'''FlaxMBartForQuestionAnswering''',
'''FlaxMBartForSequenceClassification''',
'''FlaxMBartModel''',
'''FlaxMBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 159 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] )->int:
'''simple docstring'''
print("Loading config file..." )
def flatten_yaml_as_dict(lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Optional[int]="" , lowerCAmelCase_ :int="." ):
snake_case_ = []
for k, v in d.items():
snake_case_ = parent_key + sep + k if parent_key else k
if isinstance(lowerCAmelCase_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_ , sep=lowerCAmelCase_ ).items() )
else:
items.append((new_key, v) )
return dict(lowerCAmelCase_ )
snake_case_ = argparse.Namespace()
with open(lowerCAmelCase_ , "r" ) as yaml_file:
try:
snake_case_ = yaml.load(lowerCAmelCase_ , Loader=yaml.FullLoader )
snake_case_ = flatten_yaml_as_dict(lowerCAmelCase_ )
for k, v in flat_cfg.items():
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
except yaml.YAMLError as exc:
logger.error("Error while loading config file: {}. Error message: {}".format(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) )
return config
def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Tuple )->Union[str, Any]:
'''simple docstring'''
snake_case_ = MobileViTVaConfig()
snake_case_ = False
# dataset
if task_name.startswith("imagenet1k_" ):
snake_case_ = 1_000
if int(task_name.strip().split("_" )[-1] ) == 384:
snake_case_ = 384
else:
snake_case_ = 256
snake_case_ = "imagenet-1k-id2label.json"
elif task_name.startswith("imagenet21k_to_1k_" ):
snake_case_ = 21_000
if int(task_name.strip().split("_" )[-1] ) == 384:
snake_case_ = 384
else:
snake_case_ = 256
snake_case_ = "imagenet-22k-id2label.json"
elif task_name.startswith("ade20k_" ):
snake_case_ = 151
snake_case_ = 512
snake_case_ = "ade20k-id2label.json"
snake_case_ = True
elif task_name.startswith("voc_" ):
snake_case_ = 21
snake_case_ = 512
snake_case_ = "pascal-voc-id2label.json"
snake_case_ = True
# orig_config
snake_case_ = load_orig_config_file(lowerCAmelCase_ )
assert getattr(lowerCAmelCase_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model"
snake_case_ = getattr(lowerCAmelCase_ , "model.classification.mitv2.width_multiplier" , 1.0 )
assert (
getattr(lowerCAmelCase_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
snake_case_ = getattr(lowerCAmelCase_ , "model.classification.activation.name" , "swish" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.output_stride" , 16 )
if "_deeplabv3" in task_name:
snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] )
snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 )
snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 )
# id2label
snake_case_ = "huggingface/label-files"
snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) )
snake_case_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( lowerCAmelCase_ :Any , lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :Optional[Any] )->Optional[Any]:
'''simple docstring'''
snake_case_ = dct.pop(lowerCAmelCase_ )
snake_case_ = val
def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :int=False )->Dict:
'''simple docstring'''
if base_model:
snake_case_ = ""
else:
snake_case_ = "mobilevitv2."
snake_case_ = []
for k in state_dict.keys():
if k[:8] == "encoder.":
snake_case_ = k[8:]
else:
snake_case_ = k
if ".block." in k:
snake_case_ = k_new.replace(".block." , "." )
if ".conv." in k:
snake_case_ = k_new.replace(".conv." , ".convolution." )
if ".norm." in k:
snake_case_ = k_new.replace(".norm." , ".normalization." )
if "conv_1." in k:
snake_case_ = k_new.replace("conv_1." , F'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if F'''layer_{i}.''' in k:
snake_case_ = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
snake_case_ = k_new.replace(".exp_1x1." , ".expand_1x1." )
if ".red_1x1." in k:
snake_case_ = k_new.replace(".red_1x1." , ".reduce_1x1." )
for i in [3, 4, 5]:
if F'''layer_{i}.0.''' in k:
snake_case_ = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if F'''layer_{i}.1.local_rep.0.''' in k:
snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if F'''layer_{i}.1.local_rep.1.''' in k:
snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
snake_case_ = [0, 1]
elif i == 4:
snake_case_ = [0, 1, 2, 3]
elif i == 5:
snake_case_ = [0, 1, 2]
for j in j_in:
if F'''layer_{i}.1.global_rep.{j}.''' in k:
snake_case_ = k_new.replace(
F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if F'''layer_{i}.1.global_rep.{j+1}.''' in k:
snake_case_ = k_new.replace(
F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if F'''layer_{i}.1.conv_proj.''' in k:
snake_case_ = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
snake_case_ = k_new.replace("pre_norm_attn.0." , "layernorm_before." )
if "pre_norm_attn.1." in k:
snake_case_ = k_new.replace("pre_norm_attn.1." , "attention." )
if "pre_norm_ffn.0." in k:
snake_case_ = k_new.replace("pre_norm_ffn.0." , "layernorm_after." )
if "pre_norm_ffn.1." in k:
snake_case_ = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." )
if "pre_norm_ffn.3." in k:
snake_case_ = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." )
if "classifier.1." in k:
snake_case_ = k_new.replace("classifier.1." , "classifier." )
if "seg_head." in k:
snake_case_ = k_new.replace("seg_head." , "segmentation_head." )
if ".aspp_layer." in k:
snake_case_ = k_new.replace(".aspp_layer." , "." )
if ".aspp_pool." in k:
snake_case_ = k_new.replace(".aspp_pool." , "." )
rename_keys.append((k, k_new) )
return rename_keys
def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Optional[int]:
'''simple docstring'''
snake_case_ = []
for k in state_dict.keys():
if k.startswith("seg_head.aux_head." ):
keys_to_ignore.append(lowerCAmelCase_ )
for k in keys_to_ignore:
state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ )
def _lowerCAmelCase ( )->List[Any]:
'''simple docstring'''
snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
snake_case_ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict )->Dict:
'''simple docstring'''
snake_case_ = get_mobilevitva_config(lowerCAmelCase_ , lowerCAmelCase_ )
# load original state_dict
snake_case_ = torch.load(lowerCAmelCase_ , map_location="cpu" )
# load huggingface model
if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ):
snake_case_ = MobileViTVaForSemanticSegmentation(lowerCAmelCase_ ).eval()
snake_case_ = False
else:
snake_case_ = MobileViTVaForImageClassification(lowerCAmelCase_ ).eval()
snake_case_ = False
# remove and rename some keys of load the original model
snake_case_ = checkpoint
remove_unused_keys(lowerCAmelCase_ )
snake_case_ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# load modified state_dict
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
snake_case_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
snake_case_ = image_processor(images=prepare_img() , return_tensors="pt" )
snake_case_ = model(**lowerCAmelCase_ )
# verify classification model
if task_name.startswith("imagenet" ):
snake_case_ = outputs.logits
snake_case_ = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
snake_case_ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCAmelCase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 159 | 1 |
"""simple docstring"""
from random import shuffle
import tensorflow as tf
from numpy import array
def snake_case( __magic_name__ , __magic_name__ ) -> Any:
'''simple docstring'''
lowercase : Optional[int] = int(UpperCAmelCase__ )
assert noofclusters < len(UpperCAmelCase__ )
# Find out the dimensionality
lowercase : Optional[Any] = len(vectors[0] )
# Will help select random centroids from among the available vectors
lowercase : str = list(range(len(UpperCAmelCase__ ) ) )
shuffle(UpperCAmelCase__ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
lowercase : int = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
lowercase : Tuple = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
lowercase : Union[str, Any] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase__ )
]
##These nodes will assign the centroid Variables the appropriate
##values
lowercase : List[Any] = tf.placeholder('''float64''' , [dim] )
lowercase : Dict = []
for centroid in centroids:
cent_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
lowercase : Dict = [tf.Variable(0 ) for i in range(len(UpperCAmelCase__ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
lowercase : str = tf.placeholder('''int32''' )
lowercase : int = []
for assignment in assignments:
cluster_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
lowercase : Dict = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
lowercase : Union[str, Any] = tf.reduce_mean(UpperCAmelCase__ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
lowercase : Optional[Any] = tf.placeholder('''float''' , [dim] )
lowercase : int = tf.placeholder('''float''' , [dim] )
lowercase : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase__ , UpperCAmelCase__ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
lowercase : Tuple = tf.placeholder('''float''' , [noofclusters] )
lowercase : Union[str, Any] = tf.argmin(UpperCAmelCase__ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
lowercase : Tuple = tf.initialize_all_variables()
# Initialize all variables
sess.run(UpperCAmelCase__ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
lowercase : Dict = 1_00
for _ in range(UpperCAmelCase__ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(UpperCAmelCase__ ) ):
lowercase : int = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
lowercase : Any = [
sess.run(UpperCAmelCase__ , feed_dict={va: vect, va: sess.run(UpperCAmelCase__ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
lowercase : Optional[int] = sess.run(
UpperCAmelCase__ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(UpperCAmelCase__ ):
# Collect all the vectors assigned to this cluster
lowercase : Dict = [
vectors[i]
for i in range(len(UpperCAmelCase__ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
lowercase : Optional[Any] = sess.run(
UpperCAmelCase__ , feed_dict={mean_input: array(UpperCAmelCase__ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
lowercase : Dict = sess.run(UpperCAmelCase__ )
lowercase : List[Any] = sess.run(UpperCAmelCase__ )
return centroids, assignments | 363 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class _A ( _lowerCamelCase ):
_UpperCamelCase : Tuple = (PNDMScheduler,)
_UpperCamelCase : Optional[int] = (('''num_inference_steps''', 5_0),)
def __a ( self : Union[str, Any] , **_A : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase : List[str] = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**_A )
return config
def __a ( self : Optional[Any] , _A : Any=0 , **_A : int ) -> Dict:
"""simple docstring"""
lowercase : List[Any] = dict(self.forward_default_kwargs )
lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A )
lowercase : Optional[Any] = self.dummy_sample
lowercase : str = 0.1 * sample
lowercase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase : Dict = self.get_scheduler_config(**_A )
lowercase : int = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals
lowercase : List[str] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
lowercase : Union[str, Any] = scheduler_class.from_pretrained(_A )
new_scheduler.set_timesteps(_A )
# copy over dummy past residuals
lowercase : int = dummy_past_residuals[:]
lowercase : List[str] = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample
lowercase : List[Any] = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase : Dict = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample
lowercase : List[Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __a ( self : int ) -> List[str]:
"""simple docstring"""
pass
def __a ( self : Optional[Any] , _A : Optional[int]=0 , **_A : str ) -> Optional[Any]:
"""simple docstring"""
lowercase : Optional[int] = dict(self.forward_default_kwargs )
lowercase : Optional[int] = kwargs.pop('''num_inference_steps''' , _A )
lowercase : Union[str, Any] = self.dummy_sample
lowercase : Any = 0.1 * sample
lowercase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase : List[str] = self.get_scheduler_config()
lowercase : List[str] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals (must be after setting timesteps)
lowercase : Union[str, Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
lowercase : int = scheduler_class.from_pretrained(_A )
# copy over dummy past residuals
new_scheduler.set_timesteps(_A )
# copy over dummy past residual (must be after setting timesteps)
lowercase : Optional[Any] = dummy_past_residuals[:]
lowercase : int = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample
lowercase : Tuple = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase : Any = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample
lowercase : Union[str, Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __a ( self : Union[str, Any] , **_A : Optional[int] ) -> Any:
"""simple docstring"""
lowercase : str = self.scheduler_classes[0]
lowercase : Optional[int] = self.get_scheduler_config(**_A )
lowercase : int = scheduler_class(**_A )
lowercase : Any = 10
lowercase : Optional[int] = self.dummy_model()
lowercase : Tuple = self.dummy_sample_deter
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.prk_timesteps ):
lowercase : List[str] = model(_A , _A )
lowercase : Any = scheduler.step_prk(_A , _A , _A ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
lowercase : Dict = model(_A , _A )
lowercase : List[Any] = scheduler.step_plms(_A , _A , _A ).prev_sample
return sample
def __a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase : int = dict(self.forward_default_kwargs )
lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A )
for scheduler_class in self.scheduler_classes:
lowercase : Optional[Any] = self.get_scheduler_config()
lowercase : List[Any] = scheduler_class(**_A )
lowercase : Dict = self.dummy_sample
lowercase : str = 0.1 * sample
if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ):
scheduler.set_timesteps(_A )
elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ):
lowercase : List[str] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase : Optional[Any] = dummy_past_residuals[:]
lowercase : Optional[int] = scheduler.step_prk(_A , 0 , _A , **_A ).prev_sample
lowercase : str = scheduler.step_prk(_A , 1 , _A , **_A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
lowercase : Dict = scheduler.step_plms(_A , 0 , _A , **_A ).prev_sample
lowercase : Tuple = scheduler.step_plms(_A , 1 , _A , **_A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=_A )
def __a ( self : Tuple ) -> Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_A )
lowercase : str = self.scheduler_classes[0]
lowercase : int = self.get_scheduler_config(steps_offset=1 )
lowercase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def __a ( self : int ) -> Optional[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __a ( self : List[str] ) -> Tuple:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __a ( self : Tuple ) -> str:
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_A )
def __a ( self : List[Any] ) -> str:
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_A )
def __a ( self : str ) -> List[Any]:
"""simple docstring"""
lowercase : str = 27
for scheduler_class in self.scheduler_classes:
lowercase : List[str] = self.dummy_sample
lowercase : Union[str, Any] = 0.1 * sample
lowercase : int = self.get_scheduler_config()
lowercase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
lowercase : Union[str, Any] = scheduler.step_prk(_A , _A , _A ).prev_sample
def __a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
with self.assertRaises(_A ):
lowercase : Dict = self.scheduler_classes[0]
lowercase : Union[str, Any] = self.get_scheduler_config()
lowercase : Optional[int] = scheduler_class(**_A )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def __a ( self : str ) -> Dict:
"""simple docstring"""
lowercase : List[str] = self.full_loop()
lowercase : List[Any] = torch.sum(torch.abs(_A ) )
lowercase : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 198.1_318 ) < 1E-2
assert abs(result_mean.item() - 0.2_580 ) < 1E-3
def __a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
lowercase : List[str] = self.full_loop(prediction_type='''v_prediction''' )
lowercase : Optional[int] = torch.sum(torch.abs(_A ) )
lowercase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 67.3_986 ) < 1E-2
assert abs(result_mean.item() - 0.0_878 ) < 1E-3
def __a ( self : str ) -> Optional[Any]:
"""simple docstring"""
lowercase : Any = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 )
lowercase : List[str] = torch.sum(torch.abs(_A ) )
lowercase : Optional[int] = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 230.0_399 ) < 1E-2
assert abs(result_mean.item() - 0.2_995 ) < 1E-3
def __a ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Union[str, Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 )
lowercase : int = torch.sum(torch.abs(_A ) )
lowercase : int = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 186.9_482 ) < 1E-2
assert abs(result_mean.item() - 0.2_434 ) < 1E-3 | 116 | 0 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A_ : Tuple = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
A_ : Optional[int] = AlbertForPreTraining(SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 186 |
def A ( lowercase ) -> list:
'''simple docstring'''
UpperCamelCase = len(lowercase )
for i in range(1 , lowercase ):
UpperCamelCase = collection[i]
UpperCamelCase = 0
UpperCamelCase = i - 1
while low <= high:
UpperCamelCase = (low + high) // 2
if val < collection[mid]:
UpperCamelCase = mid - 1
else:
UpperCamelCase = mid + 1
for j in range(lowercase , lowercase , -1 ):
UpperCamelCase = collection[j - 1]
UpperCamelCase = val
return collection
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = input("Enter numbers separated by a comma:\n").strip()
_UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 222 | 0 |
import random
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool:
"""simple docstring"""
A__ = num - 1
A__ = 0
while s % 2 == 0:
A__ = s // 2
t += 1
for _ in range(5 ):
A__ = random.randrange(2 , num - 1 )
A__ = pow(lowercase_ , lowercase_ , lowercase_ )
if v != 1:
A__ = 0
while v != (num - 1):
if i == t - 1:
return False
else:
A__ = i + 1
A__ = (v**2) % num
return True
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool:
"""simple docstring"""
if num < 2:
return False
A__ = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ = 1_024 ) -> int:
"""simple docstring"""
while True:
A__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(lowercase_ ):
return num
if __name__ == "__main__":
_lowerCamelCase : List[Any] = generate_large_prime()
print(("""Prime number:""", num))
print(("""is_prime_low_num:""", is_prime_low_num(num)))
| 368 |
from __future__ import annotations
from typing import Any
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
create_state_space_tree(lowercase_ , [] , 0 )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
if index == len(lowercase_ ):
print(lowercase_ )
return
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
_lowerCamelCase : list[Any] = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(["""A""", """B""", """C"""])
generate_all_subsequences(seq)
| 231 | 0 |
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _A ( unittest.TestCase ):
def __init__( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=100 , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , ):
'''simple docstring'''
__a = parent
__a = vocab_size
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = is_training
__a = use_labels
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = type_sequence_label_size
__a = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__a = (image_size // patch_size) ** 2
__a = num_patches + 1
def _lowerCamelCase ( self : Any):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__a = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]):
'''simple docstring'''
__a = FlaxBeitModel(config=__SCREAMING_SNAKE_CASE)
__a = model(__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple):
'''simple docstring'''
__a = FlaxBeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE)
__a = model(__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size))
def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]):
'''simple docstring'''
__a = self.type_sequence_label_size
__a = FlaxBeitForImageClassification(config=__SCREAMING_SNAKE_CASE)
__a = model(__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
__a = 1
__a = FlaxBeitForImageClassification(__SCREAMING_SNAKE_CASE)
__a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
__a = model(__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) ,
) = config_and_inputs
__a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class _A ( __UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ : Dict = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = FlaxBeitModelTester(self)
__a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37)
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__SCREAMING_SNAKE_CASE)
__a = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : str):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
__a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = model_class(__SCREAMING_SNAKE_CASE)
@jax.jit
def model_jitted(__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[int]):
return model(pixel_values=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
with self.subTest('''JIT Enabled'''):
__a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
__a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE))
for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
self.assertEqual(jitted_output.shape , output.shape)
def _lowerCamelCase ( self : str):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE)
@slow
def _lowerCamelCase ( self : Any):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__a = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''')
__a = model(np.ones((1, 3, 224, 224)))
self.assertIsNotNone(__SCREAMING_SNAKE_CASE)
def __snake_case ( ):
__a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@require_flax
class _A ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''') if is_vision_available() else None
@slow
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''')
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''').pixel_values
# prepare bool_masked_pos
__a = np.ones((1, 196) , dtype=__SCREAMING_SNAKE_CASE)
# forward pass
__a = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE)
__a = outputs.logits
# verify the logits
__a = (1, 196, 8_192)
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE)
__a = np.array(
[[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]])
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-2))
@slow
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''')
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''')
# forward pass
__a = model(**__SCREAMING_SNAKE_CASE)
__a = outputs.logits
# verify the logits
__a = (1, 1_000)
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE)
__a = np.array([-1.23_85, -1.09_87, -1.01_08])
self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
__a = 281
self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE)
@slow
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''')
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''')
# forward pass
__a = model(**__SCREAMING_SNAKE_CASE)
__a = outputs.logits
# verify the logits
__a = (1, 21_841)
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE)
__a = np.array([1.68_81, -0.27_87, 0.59_01])
self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
__a = 2_396
self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE)
| 49 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class _A ( unittest.TestCase ):
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
# Removed: 'text_encoder/model.safetensors',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
__a = '''fp16'''
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : List[str]):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : List[str]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
# 'text_encoder/model.fp16.safetensors',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
| 49 | 1 |
import os
def __UpperCamelCase ( lowerCAmelCase__ : int ):
__a : Optional[int] = len(grid[0] )
__a : Optional[int] = len(lowerCAmelCase__ )
__a : Tuple = 0
__a : int = 0
__a : int = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(lowerCAmelCase__ ):
for j in range(n_rows - 3 ):
__a : int = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
__a : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
__a : Any = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
__a : Optional[Any] = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
__a : Union[str, Any] = max(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if max_product > largest:
__a : List[str] = max_product
return largest
def __UpperCamelCase ( ):
__a : Tuple = []
with open(os.path.dirname(lowerCAmelCase__ ) + '''/grid.txt''' ) as file:
for line in file:
grid.append(line.strip('''\n''' ).split(''' ''' ) )
__a : Union[str, Any] = [[int(lowerCAmelCase__ ) for i in grid[j]] for j in range(len(lowerCAmelCase__ ) )]
return largest_product(lowerCAmelCase__ )
if __name__ == "__main__":
print(solution())
| 90 |
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class UpperCamelCase__ ( __lowercase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer
pass
| 90 | 1 |
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
A__ = "mock-s3-bucket"
A__ = f"""s3://{mock_bucket}"""
A__ = extract_path_from_uri(lowercase_ )
assert dataset_path.startswith("s3://" ) is False
A__ = "./local/path"
A__ = extract_path_from_uri(lowercase_ )
assert dataset_path == new_dataset_path
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]:
A__ = is_remote_filesystem(lowercase_ )
assert is_remote is True
A__ = fsspec.filesystem("file" )
A__ = is_remote_filesystem(lowercase_ )
assert is_remote is False
@pytest.mark.parametrize("compression_fs_class" , lowercase_ )
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file}
A__ = input_paths[compression_fs_class.protocol]
if input_path is None:
A__ = f"""for '{compression_fs_class.protocol}' compression protocol, """
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(lowercase_ )
A__ = fsspec.filesystem(compression_fs_class.protocol , fo=lowercase_ )
assert isinstance(lowercase_ , lowercase_ )
A__ = os.path.basename(lowercase_ )
A__ = expected_filename[: expected_filename.rindex("." )]
assert fs.glob("*" ) == [expected_filename]
with fs.open(lowercase_ , "r" , encoding="utf-8" ) as f, open(lowercase_ , encoding="utf-8" ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize("protocol" , ["zip", "gzip"] )
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
A__ = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path}
A__ = compressed_file_paths[protocol]
A__ = "dataset.jsonl"
A__ = f"""{protocol}://{member_file_path}::{compressed_file_path}"""
A__, *A__ = fsspec.get_fs_token_paths(lowercase_ )
assert fs.isfile(lowercase_ )
assert not fs.isfile("non_existing_" + member_file_path )
@pytest.mark.integration
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
A__ = hf_api.dataset_info(lowercase_ , token=lowercase_ )
A__ = HfFileSystem(repo_info=lowercase_ , token=lowercase_ )
assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"]
assert hffs.isdir("data" )
assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" )
with open(lowercase_ ) as f:
assert hffs.open("data/text_data.txt" , "r" ).read() == f.read()
def _SCREAMING_SNAKE_CASE ( ) -> List[Any]:
A__ = "bz2"
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(lowercase_ , lowercase_ , clobber=lowercase_ )
with pytest.warns(lowercase_ ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(lowercase_ ) == 1
assert (
str(warning_info[0].message )
== f"""A filesystem protocol was already set for {protocol} and will be overwritten."""
)
| 247 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class UpperCAmelCase_ ( A_ ):
lowercase__ = '''openai/whisper-base'''
lowercase__ = (
'''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the '''
'''transcribed text.'''
)
lowercase__ = '''transcriber'''
lowercase__ = WhisperProcessor
lowercase__ = WhisperForConditionalGeneration
lowercase__ = ['''audio''']
lowercase__ = ['''text''']
def __magic_name__ ( self : Optional[int] , snake_case_ : Dict ) -> int:
'''simple docstring'''
return self.pre_processor(snake_case_ , return_tensors="pt" ).input_features
def __magic_name__ ( self : int , snake_case_ : int ) -> str:
'''simple docstring'''
return self.model.generate(inputs=snake_case_ )
def __magic_name__ ( self : Tuple , snake_case_ : Optional[Any] ) -> Any:
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case_ , skip_special_tokens=snake_case_ )[0]
| 247 | 1 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = ["""image_processor""", """tokenizer"""]
lowerCAmelCase_ = """AutoImageProcessor"""
lowerCAmelCase_ = """AutoTokenizer"""
def __init__( self , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , A_ , )
UpperCamelCase = kwargs.pop('feature_extractor' )
UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_ , A_ )
UpperCamelCase = self.image_processor
UpperCamelCase = False
def __call__( self , *A_ , **A_ )-> Dict:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*A_ , **A_ )
UpperCamelCase = kwargs.pop('images' , A_ )
UpperCamelCase = kwargs.pop('text' , A_ )
if len(A_ ) > 0:
UpperCamelCase = args[0]
UpperCamelCase = args[1:]
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
UpperCamelCase = self.image_processor(A_ , *A_ , **A_ )
if text is not None:
UpperCamelCase = self.tokenizer(A_ , **A_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
UpperCamelCase = encodings['input_ids']
return inputs
def UpperCAmelCase_ ( self , *A_ , **A_ )-> List[str]:
'''simple docstring'''
return self.tokenizer.batch_decode(*A_ , **A_ )
def UpperCAmelCase_ ( self , *A_ , **A_ )-> str:
'''simple docstring'''
return self.tokenizer.decode(*A_ , **A_ )
@contextmanager
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your images inputs, or in a separate call.' )
UpperCamelCase = True
UpperCamelCase = self.tokenizer
yield
UpperCamelCase = self.image_processor
UpperCamelCase = False
def UpperCAmelCase_ ( self , A_ , A_=False , A_=None )-> Optional[Any]:
'''simple docstring'''
if added_vocab is None:
UpperCamelCase = self.tokenizer.get_added_vocab()
UpperCamelCase = {}
while tokens:
UpperCamelCase = re.search(R'<s_(.*?)>' , A_ , re.IGNORECASE )
if start_token is None:
break
UpperCamelCase = start_token.group(1 )
UpperCamelCase = re.search(RF'''</s_{key}>''' , A_ , re.IGNORECASE )
UpperCamelCase = start_token.group()
if end_token is None:
UpperCamelCase = tokens.replace(A_ , '' )
else:
UpperCamelCase = end_token.group()
UpperCamelCase = re.escape(A_ )
UpperCamelCase = re.escape(A_ )
UpperCamelCase = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , A_ , re.IGNORECASE )
if content is not None:
UpperCamelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
UpperCamelCase = self.tokenajson(A_ , is_inner_value=A_ , added_vocab=A_ )
if value:
if len(A_ ) == 1:
UpperCamelCase = value[0]
UpperCamelCase = value
else: # leaf nodes
UpperCamelCase = []
for leaf in content.split(R'<sep/>' ):
UpperCamelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
UpperCamelCase = leaf[1:-2] # for categorical special tokens
output[key].append(A_ )
if len(output[key] ) == 1:
UpperCamelCase = output[key][0]
UpperCamelCase = tokens[tokens.find(A_ ) + len(A_ ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=A_ , added_vocab=A_ )
if len(A_ ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , )
return self.image_processor_class
@property
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , )
return self.image_processor
| 251 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """deberta-v2"""
def __init__( self , A_=128100 , A_=1536 , A_=24 , A_=24 , A_=6144 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0 , A_=0.02 , A_=1e-7 , A_=False , A_=-1 , A_=0 , A_=True , A_=None , A_=0 , A_="gelu" , **A_ , )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = relative_attention
UpperCamelCase = max_relative_positions
UpperCamelCase = pad_token_id
UpperCamelCase = position_biased_input
# Backwards compatibility
if type(A_ ) == str:
UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('|' )]
UpperCamelCase = pos_att_type
UpperCamelCase = vocab_size
UpperCamelCase = layer_norm_eps
UpperCamelCase = kwargs.get('pooler_hidden_size' , A_ )
UpperCamelCase = pooler_dropout
UpperCamelCase = pooler_hidden_act
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
return 12
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , A_ = None , )-> Mapping[str, Any]:
'''simple docstring'''
UpperCamelCase = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 251 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.