code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
# using dfs for finding eulerian path traversal def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=None ) -> Optional[Any]: __UpperCAmelCase : str = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = True, True __UpperCAmelCase : Optional[Any] = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) return path def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Dict = -1 for i in range(__lowerCAmelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCAmelCase : Dict = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: __UpperCAmelCase : int = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCAmelCase , __UpperCAmelCase : Any = check_circuit_or_path(__lowerCAmelCase, __lowerCAmelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return __UpperCAmelCase : Optional[Any] = 1 if check == 2: __UpperCAmelCase : str = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) __UpperCAmelCase : Dict = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) print(__lowerCAmelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : str = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCAmelCase : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCAmelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCAmelCase : int = { 1: [], 2: [] # all degree is zero } __UpperCAmelCase : Dict = 10 check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) if __name__ == "__main__": main()
157
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase : int = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowercase__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def lowercase__ ( ) -> List[Any]: '''simple docstring''' lowercase : int = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' lowercase : Dict = 'imagenet-1k-id2label.json' lowercase : int = 10_00 lowercase : int = 'huggingface/label-files' lowercase : Optional[int] = num_labels lowercase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowercase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowercase : Union[str, Any] = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase : Tuple = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase : str = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase : List[str] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : str = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : List[Any] = [1_92, 7_68, 10_24] lowercase : Union[str, Any] = CvtForImageClassification(_UpperCAmelCase ) lowercase : Any = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase : int = image_size lowercase : Optional[Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowercase : List[str] = OrderedDict() lowercase : Dict = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Tuple = list_of_state_dict + cls_token(_UpperCAmelCase ) lowercase : Union[str, Any] = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowercase : int = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowercase : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase: int = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase: Optional[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
53
"""simple docstring""" _UpperCamelCase: Dict = 2_5_6 # Modulus to hash a string _UpperCamelCase: Union[str, Any] = 1_0_0_0_0_0_3 def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Dict = len(_UpperCAmelCase ) lowercase : Union[str, Any] = len(_UpperCAmelCase ) if p_len > t_len: return False lowercase : Union[str, Any] = 0 lowercase : Dict = 0 lowercase : Any = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCAmelCase ): lowercase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase : str = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> None: '''simple docstring''' lowercase : Any = 'abc1abc12' lowercase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase : Optional[int] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 2) lowercase : str = 'ABABX' lowercase : Tuple = 'ABABZABABYABABX' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 3) lowercase : int = 'AAAB' lowercase : Union[str, Any] = 'ABAAAAAB' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 4) lowercase : Union[str, Any] = 'abcdabcy' lowercase : List[str] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 5) lowercase : Dict = 'Lü' lowercase : Dict = 'Lüsai' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[Any] = 'Lue' assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = emb.weight.shape SCREAMING_SNAKE_CASE_: Dict = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = emb.weight.data return lin_layer def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Union[str, Any] = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE_: Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE_: List[Any] = key.replace("moe_layer.experts.0" , f"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE_: Dict = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE_: Optional[Any] = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE_: List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE_: List[Any] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE_: Optional[int] = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE_: Optional[int] = state_dict[old_key] return new_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE_: Tuple = [] SCREAMING_SNAKE_CASE_: Any = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) for expert in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = switch_checkpoint_path + f"-rank-{expert}.pt" if os.path.isfile(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase )["model"] remove_ignore_keys_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join( _UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_UpperCAmelCase )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE_: Tuple = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_UpperCAmelCase , _UpperCAmelCase ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE_: Tuple = {} for idx, shard in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = weights_name.replace(".bin" , f"-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin" ) SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) for key in shard: SCREAMING_SNAKE_CASE_: List[str] = shard_file # Add the metadata SCREAMING_SNAKE_CASE_: List[Any] = {"total_size": total_size} SCREAMING_SNAKE_CASE_: Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_: Union[str, Any] = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + "\n" f.write(_UpperCAmelCase ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase , lowerCAmelCase : Dict = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase : Union[str, Any] = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] lowercase__ : Optional[int] = [] def generate(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : str = [0] * n res.append(tuple(lowerCamelCase__ ) ) lowercase__ : Optional[int] = 0 while i < n: if c[i] < i: if i % 2 == 0: lowercase__ , lowercase__ : str = arr[i], arr[0] else: lowercase__ , lowercase__ : Optional[int] = arr[i], arr[c[i]] res.append(tuple(lowerCamelCase__ ) ) c[i] += 1 lowercase__ : List[Any] = 0 else: lowercase__ : str = 0 i += 1 generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _lowerCamelCase ( a_ ): _lowerCamelCase :Tuple = "mgp-str" def __init__( self : Dict , UpperCamelCase : int=[32, 1_28] , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : str=3 , UpperCamelCase : Tuple=27 , UpperCamelCase : List[Any]=38 , UpperCamelCase : Union[str, Any]=5_02_57 , UpperCamelCase : Optional[Any]=3_05_22 , UpperCamelCase : Optional[Any]=7_68 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Any=4.0 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Dict=1E-5 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : str=False , UpperCamelCase : Any=0.02 , **UpperCamelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : Any = patch_size lowerCAmelCase__ : List[Any] = num_channels lowerCAmelCase__ : Optional[int] = max_token_length lowerCAmelCase__ : List[Any] = num_character_labels lowerCAmelCase__ : str = num_bpe_labels lowerCAmelCase__ : Tuple = num_wordpiece_labels lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Optional[int] = mlp_ratio lowerCAmelCase__ : List[str] = distilled lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = drop_rate lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : Optional[Any] = attn_drop_rate lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : List[str] = output_aa_attentions lowerCAmelCase__ : List[str] = initializer_range
242
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCamelCase ( unittest.TestCase ): def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : str=7 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=99 , UpperCamelCase : List[str]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Any=37 , UpperCamelCase : str="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : Optional[Any]=16 , UpperCamelCase : Dict=2 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : Dict=4 , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : Tuple = use_attention_mask lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : Optional[Any] = type_sequence_label_size lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : List[Any] = num_choices def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : List[str] = None if self.use_attention_mask: lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :List[Any] = True _lowerCamelCase :Tuple = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase ) lowerCAmelCase__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase ) @require_flax class _lowerCamelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase ) lowerCAmelCase__ : Dict = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowerCAmelCase__ : Optional[int] = model(UpperCamelCase )[0] lowerCAmelCase__ : Tuple = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , UpperCamelCase ) # compare the actual values for a slice. lowerCAmelCase__ : Any = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCamelCase ) lowerCAmelCase__ : Any = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowerCAmelCase__ : List[Any] = model(UpperCamelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ : str = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) )
242
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __a: Optional[int] = TypeVar("""T""") class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> str: lowercase__ : str = data lowercase__ : Union[str, Any] = None def __str__( self ) -> str: return F"""{self.data}""" class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self ) -> None: lowercase__ : Any = None def __iter__( self ) -> Iterator[T]: lowercase__ : Optional[int] = self.top while node: yield node.data lowercase__ : Dict = node.next def __str__( self ) -> str: return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self ) -> int: return len(tuple(iter(self ) ) ) def _lowerCAmelCase( self ) -> bool: return self.top is None def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: lowercase__ : List[Any] = Node(__lowerCAmelCase ) if not self.is_empty(): lowercase__ : Dict = self.top lowercase__ : List[Any] = node def _lowerCAmelCase( self ) -> T: if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowerCAmelCase ) lowercase__ : List[str] = self.top lowercase__ : str = self.top.next return pop_node.data def _lowerCAmelCase( self ) -> T: if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def _lowerCAmelCase( self ) -> None: lowercase__ : List[str] = None if __name__ == "__main__": from doctest import testmod testmod()
353
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCAmelCase ) lowercase__ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ : str = dataset_size < in_memory_max_size else: lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = is_small_dataset(UpperCAmelCase ) assert result == expected
214
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Optional[Any] =original_name.split('''.''' )[0] UpperCAmelCase : int =key.split('''.''' ) UpperCAmelCase : List[str] =int(key_list[key_list.index(_UpperCamelCase ) - 2] ) UpperCAmelCase : Tuple =int(key_list[key_list.index(_UpperCamelCase ) - 1] ) UpperCAmelCase : Optional[Any] =orig_block_num - offset UpperCAmelCase : List[str] =key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Dict =OrderedDict() UpperCAmelCase : Dict =0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): UpperCAmelCase : Tuple =key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCAmelCase : List[Any] =key[: key.find('''proj''' )] UpperCAmelCase : int =key.replace(_UpperCamelCase , f'''patch_embeddings.{total_embed_found}.''' ) UpperCAmelCase : str =key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: UpperCAmelCase : List[Any] ='''poolformer.encoder.''' + key if "mlp.fc1" in key: UpperCAmelCase : str =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: UpperCAmelCase : Optional[Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: UpperCAmelCase : Dict =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: UpperCAmelCase : Union[str, Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: UpperCAmelCase : Dict =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: UpperCAmelCase : List[Any] =replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: UpperCAmelCase : Optional[Any] =key.replace('''head''' , '''classifier''' ) UpperCAmelCase : List[str] =value return new_state_dict def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : List[Any] =Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : int =PoolFormerConfig() # set attributes based on model_name UpperCAmelCase : Union[str, Any] ='''huggingface/label-files''' UpperCAmelCase : Any =model_name[-3:] UpperCAmelCase : Any =10_00 UpperCAmelCase : Optional[Any] ='''imagenet-1k-id2label.json''' UpperCAmelCase : Union[str, Any] =(1, 10_00) # set config attributes UpperCAmelCase : Optional[Any] =json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any ={int(_UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int =idalabel UpperCAmelCase : Optional[int] ={v: k for k, v in idalabel.items()} if size == "s12": UpperCAmelCase : Optional[Any] =[2, 2, 6, 2] UpperCAmelCase : Optional[int] =[64, 1_28, 3_20, 5_12] UpperCAmelCase : Optional[int] =4.0 UpperCAmelCase : Any =0.9 elif size == "s24": UpperCAmelCase : List[Any] =[4, 4, 12, 4] UpperCAmelCase : str =[64, 1_28, 3_20, 5_12] UpperCAmelCase : Union[str, Any] =4.0 UpperCAmelCase : Optional[Any] =0.9 elif size == "s36": UpperCAmelCase : Optional[int] =[6, 6, 18, 6] UpperCAmelCase : List[str] =[64, 1_28, 3_20, 5_12] UpperCAmelCase : Dict =4.0 UpperCAmelCase : Union[str, Any] =1e-6 UpperCAmelCase : Union[str, Any] =0.9 elif size == "m36": UpperCAmelCase : str =[6, 6, 18, 6] UpperCAmelCase : Dict =[96, 1_92, 3_84, 7_68] UpperCAmelCase : List[Any] =4.0 UpperCAmelCase : List[Any] =1e-6 UpperCAmelCase : str =0.95 elif size == "m48": UpperCAmelCase : List[Any] =[8, 8, 24, 8] UpperCAmelCase : Union[str, Any] =[96, 1_92, 3_84, 7_68] UpperCAmelCase : Optional[int] =4.0 UpperCAmelCase : Dict =1e-6 UpperCAmelCase : Any =0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor UpperCAmelCase : Optional[Any] =PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image UpperCAmelCase : Tuple =prepare_img() UpperCAmelCase : str =image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict UpperCAmelCase : List[Any] =torch.load(_UpperCamelCase , map_location=torch.device('''cpu''' ) ) # rename keys UpperCAmelCase : Optional[int] =rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict UpperCAmelCase : str =PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor UpperCAmelCase : str =PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) UpperCAmelCase : Any =image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass UpperCAmelCase : List[Any] =model(_UpperCamelCase ) UpperCAmelCase : Union[str, Any] =outputs.logits # define expected logit slices for different models if size == "s12": UpperCAmelCase : List[str] =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": UpperCAmelCase : Optional[int] =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": UpperCAmelCase : Dict =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": UpperCAmelCase : Dict =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": UpperCAmelCase : Dict =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __snake_case = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
348
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''megatron-bert''' def __init__(self , __magic_name__=2_9056 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : int = initializer_range snake_case_ : int = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : Dict = use_cache
279
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase__ = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion') # remove text_unet pipe.remove_unused_weights() pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: List[str] = 'A painting of a squirrel eating a burger ' a__: int = torch.manual_seed(0) a__: int = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase) a__: str = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase) pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Union[str, Any] = generator.manual_seed(0) a__: List[Any] = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[Any] = 'A painting of a squirrel eating a burger ' a__: Union[str, Any] = torch.manual_seed(0) a__: int = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy').images a__: Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a__: List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
365
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: Any = limit + 1 a__: List[str] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
203
0
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = 2 while i * i <= n: _UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCAmelCase__ ( ) -> str: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(a__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
329
from __future__ import annotations def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored lowerCAmelCase__ :Tuple = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
329
1
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING a : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) self.check_model_type(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Tuple: a, a : List[str] = {}, {} if padding is not None: a : Union[str, Any] = padding if truncation is not None: a : Optional[int] = truncation if top_k is not None: a : int = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Union[str, Any]: if isinstance(lowerCAmelCase__ , (Image.Image, str) ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[int] = {"image": image, "question": question} else: a : int = image a : List[Any] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) return results def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Tuple: a : str = load_image(inputs["image"] ) a : List[str] = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) a : Any = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase__ ) return model_inputs def __a ( self , lowerCAmelCase__ ) -> Any: a : int = self.model(**lowerCAmelCase__ ) return model_outputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=5 ) -> str: if top_k > self.model.config.num_labels: a : List[Any] = self.model.config.num_labels if self.framework == "pt": a : List[Any] = model_outputs.logits.sigmoid()[0] a, a : int = probs.topk(lowerCAmelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) a : Union[str, Any] = scores.tolist() a : Any = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
79
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[list[int]] ) ->int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
79
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class a : _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : bool = field(default=lowerCAmelCase_ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) _snake_case : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) _UpperCAmelCase = import_module("""tasks""" ) try: _UpperCAmelCase = getattr(lowercase ,model_args.task_type ) _UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) _UpperCAmelCase = dict(enumerate(lowercase ) ) _UpperCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowercase ,idalabel=lowercase ,labelaid={label: i for i, label in enumerate(lowercase )} ,cache_dir=model_args.cache_dir ,) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast ,) _UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=lowercase ,cache_dir=model_args.cache_dir ,) # Get datasets _UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def align_predictions(lowercase ,lowercase ) -> Tuple[List[int], List[int]]: _UpperCAmelCase = np.argmax(lowercase ,axis=2 ) _UpperCAmelCase , _UpperCAmelCase = preds.shape _UpperCAmelCase = [[] for _ in range(lowercase )] _UpperCAmelCase = [[] for _ in range(lowercase )] for i in range(lowercase ): for j in range(lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = align_predictions(p.predictions ,p.label_ids ) return { "accuracy_score": accuracy_score(lowercase ,lowercase ), "precision": precision_score(lowercase ,lowercase ), "recall": recall_score(lowercase ,lowercase ), "f1": fa_score(lowercase ,lowercase ), } # Data collator _UpperCAmelCase = DataCollatorWithPadding(lowercase ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase = Trainer( model=lowercase ,args=lowercase ,train_dataset=lowercase ,eval_dataset=lowercase ,compute_metrics=lowercase ,data_collator=lowercase ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = os.path.join(training_args.output_dir ,"""eval_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" ,lowercase ,lowercase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowercase ) # Predict if training_args.do_predict: _UpperCAmelCase = TokenClassificationDataset( token_classification_task=lowercase ,data_dir=data_args.data_dir ,tokenizer=lowercase ,labels=lowercase ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.test ,) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = trainer.predict(lowercase ) _UpperCAmelCase , _UpperCAmelCase = align_predictions(lowercase ,lowercase ) _UpperCAmelCase = os.path.join(training_args.output_dir ,"""test_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase ,"""w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" ,lowercase ,lowercase ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions _UpperCAmelCase = os.path.join(training_args.output_dir ,"""test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(lowercase ,"""w""" ) as writer: with open(os.path.join(data_args.data_dir ,"""test.txt""" ) ,"""r""" ) as f: token_classification_task.write_predictions_to_file(lowercase ,lowercase ,lowercase ) return results def __UpperCAmelCase ( lowercase ): """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase( snake_case_ ): lowercase__ = 42 class _UpperCAmelCase( nn.Module ): def __init__( self , __a=3 , __a=3 , __a=("DownEncoderBlock2D",) , __a=(64,) , __a=2 , __a=32 , __a="silu" , __a=True , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([]) # down _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(__a): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(__a) - 1 _UpperCamelCase = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a) # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6) _UpperCamelCase = nn.SiLU() _UpperCamelCase = 2 * out_channels if double_z else out_channels _UpperCamelCase = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1) _UpperCamelCase = False def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = x _UpperCamelCase = self.conv_in(__a) if self.training and self.gradient_checkpointing: def create_custom_forward(__a): def custom_forward(*__a): return module(*__a) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0'''): for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__a) , __a , use_reentrant=__a) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , __a , use_reentrant=__a) else: for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__a) , __a) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , __a) else: # down for down_block in self.down_blocks: _UpperCamelCase = down_block(__a) # middle _UpperCamelCase = self.mid_block(__a) # post-process _UpperCamelCase = self.conv_norm_out(__a) _UpperCamelCase = self.conv_act(__a) _UpperCamelCase = self.conv_out(__a) return sample class _UpperCAmelCase( nn.Module ): def __init__( self , __a=3 , __a=3 , __a=("UpDecoderBlock2D",) , __a=(64,) , __a=2 , __a=32 , __a="silu" , __a="group" , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([]) _UpperCamelCase = in_channels if norm_type == 'spatial' else None # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase = list(reversed(__a)) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = i == len(__a) - 1 _UpperCamelCase = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a) _UpperCamelCase = output_channel # out if norm_type == "spatial": _UpperCamelCase = SpatialNorm(block_out_channels[0] , __a) else: _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6) _UpperCamelCase = nn.SiLU() _UpperCamelCase = nn.Convad(block_out_channels[0] , __a , 3 , padding=1) _UpperCamelCase = False def UpperCAmelCase ( self , __a , __a=None) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = z _UpperCamelCase = self.conv_in(__a) _UpperCamelCase = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a): def custom_forward(*__a): return module(*__a) return custom_forward if is_torch_version('''>=''' , '''1.11.0'''): # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , __a , __a , use_reentrant=__a) _UpperCamelCase = sample.to(__a) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__a) , __a , __a , use_reentrant=__a) else: # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , __a , __a) _UpperCamelCase = sample.to(__a) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__a) , __a , __a) else: # middle _UpperCamelCase = self.mid_block(__a , __a) _UpperCamelCase = sample.to(__a) # up for up_block in self.up_blocks: _UpperCamelCase = up_block(__a , __a) # post-process if latent_embeds is None: _UpperCamelCase = self.conv_norm_out(__a) else: _UpperCamelCase = self.conv_norm_out(__a , __a) _UpperCamelCase = self.conv_act(__a) _UpperCamelCase = self.conv_out(__a) return sample class _UpperCAmelCase( nn.Module ): def __init__( self , __a , __a , __a , __a=None , __a="random" , __a=False , __a=True) -> Dict: '''simple docstring''' super().__init__() _UpperCamelCase = n_e _UpperCamelCase = vq_embed_dim _UpperCamelCase = beta _UpperCamelCase = legacy _UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) _UpperCamelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap))) _UpperCamelCase = self.used.shape[0] _UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase = self.re_embed _UpperCamelCase = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''') else: _UpperCamelCase = n_e _UpperCamelCase = sane_index_shape def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = inds.shape assert len(__a) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1) _UpperCamelCase = self.used.to(__a) _UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase = match.argmax(-1) _UpperCamelCase = match.sum(2) < 1 if self.unknown_index == "random": _UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: _UpperCamelCase = self.unknown_index return new.reshape(__a) def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = inds.shape assert len(__a) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1) _UpperCamelCase = self.used.to(__a) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase = 0 # simply set to zero _UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a) return back.reshape(__a) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = z.permute(0 , 2 , 3 , 1).contiguous() _UpperCamelCase = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase = torch.argmin(torch.cdist(__a , self.embedding.weight) , dim=1) _UpperCamelCase = self.embedding(__a).view(z.shape) _UpperCamelCase = None _UpperCamelCase = None # compute loss for embedding if not self.legacy: _UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: _UpperCamelCase = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients _UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: _UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis _UpperCamelCase = self.remap_to_used(__a) _UpperCamelCase = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: _UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' if self.remap is not None: _UpperCamelCase = indices.reshape(shape[0] , -1) # add batch axis _UpperCamelCase = self.unmap_to_all(__a) _UpperCamelCase = indices.reshape(-1) # flatten again # get quantized latent vectors _UpperCamelCase = self.embedding(__a) if shape is not None: _UpperCamelCase = z_q.view(__a) # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class _UpperCAmelCase( snake_case_ ): def __init__( self , __a , __a=False) -> List[str]: '''simple docstring''' _UpperCamelCase = parameters _UpperCamelCase = torch.chunk(__a , 2 , dim=1) _UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0) _UpperCamelCase = deterministic _UpperCamelCase = torch.exp(0.5 * self.logvar) _UpperCamelCase = torch.exp(self.logvar) if self.deterministic: _UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def UpperCAmelCase ( self , __a = None) -> torch.FloatTensor: '''simple docstring''' _UpperCamelCase = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype) _UpperCamelCase = self.mean + self.std * sample return x def UpperCAmelCase ( self , __a=None) -> List[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase ( self , __a , __a=[1, 2, 3]) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0]) _UpperCamelCase = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return self.mean
356
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowercase__ = 'CIDAS/clipseg-rd64-refined' lowercase__ = 'image_segmenter' lowercase__ = CLIPSegForImageSegmentation lowercase__ = ['image', 'text'] lowercase__ = ['image'] def __init__( self , *__a , **__a) -> Any: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): _UpperCamelCase = self.model(**__a).logits return logits def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = outputs.cpu().detach().numpy() _UpperCamelCase = 0 _UpperCamelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta))
100
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a__ : def __init__( self : Tuple , a : Optional[int] , a : Optional[Any]=13 , a : List[Any]=64 , a : str=2 , a : int=3 , a : Union[str, Any]=True , a : List[str]=True , a : str=32 , a : List[Any]=5 , a : int=4 , a : Optional[int]=37 , a : Any="gelu" , a : List[Any]=0.1 , a : Tuple=0.1 , a : int=10 , a : Optional[int]=0.02 , a : int=[1, 16, 4, 4] , a : Dict=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCamelCase = (self.image_size // 32) ** 2 __lowerCamelCase = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=a , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Any , a : Optional[int] , a : Tuple ): """simple docstring""" __lowerCamelCase = ViTHybridModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Dict , a : Dict , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = ViTHybridForImageClassification(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =(ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowerCamelCase : Tuple =( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) lowerCamelCase : List[Any] =False lowerCamelCase : Tuple =False lowerCamelCase : List[str] =False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ViTHybridModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(a ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(a ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=a ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCamelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = ViTHybridModel.from_pretrained(a ) self.assertIsNotNone(a ) def __lowerCAmelCase ( ) -> Optional[int]: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=a , return_tensors='''pt''' ).to(a ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**a ) # verify the logits __lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) __lowerCamelCase = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __lowerCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=a , return_tensors='''pt''' ) __lowerCamelCase = model(**a ) __lowerCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCamelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A : int = logging.get_logger(__name__) __A : Optional[int] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "instructblip_vision_model" def __init__(self : int , __SCREAMING_SNAKE_CASE : str=1_4_0_8 , __SCREAMING_SNAKE_CASE : Optional[int]=6_1_4_4 , __SCREAMING_SNAKE_CASE : Optional[Any]=3_9 , __SCREAMING_SNAKE_CASE : Dict=1_6 , __SCREAMING_SNAKE_CASE : Tuple=2_2_4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_4 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=1E-6 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : List[str]=1E-10 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , **__SCREAMING_SNAKE_CASE : Optional[int] , ): super().__init__(**__SCREAMING_SNAKE_CASE) A = hidden_size A = intermediate_size A = num_hidden_layers A = num_attention_heads A = patch_size A = image_size A = initializer_range A = attention_dropout A = layer_norm_eps A = hidden_act A = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : Tuple): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE) A , A = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": A = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "instructblip_qformer" def __init__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=3_0_5_2_2 , __SCREAMING_SNAKE_CASE : str=7_6_8 , __SCREAMING_SNAKE_CASE : Dict=1_2 , __SCREAMING_SNAKE_CASE : int=1_2 , __SCREAMING_SNAKE_CASE : Tuple=3_0_7_2 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 , __SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , __SCREAMING_SNAKE_CASE : str=1E-12 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : str=1_4_0_8 , **__SCREAMING_SNAKE_CASE : Tuple , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = initializer_range A = layer_norm_eps A = position_embedding_type A = cross_attention_frequency A = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ (cls : Any , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : Any): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE) A , A = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": A = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "instructblip" SCREAMING_SNAKE_CASE = True def __init__(self : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=3_2 , **__SCREAMING_SNAKE_CASE : List[str]): super().__init__(**__SCREAMING_SNAKE_CASE) if vision_config is None: A = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: A = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: A = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") A = InstructBlipVisionConfig(**__SCREAMING_SNAKE_CASE) A = InstructBlipQFormerConfig(**__SCREAMING_SNAKE_CASE) A = text_config["model_type"] if "model_type" in text_config else "opt" A = CONFIG_MAPPING[text_model_type](**__SCREAMING_SNAKE_CASE) A = self.text_config.tie_word_embeddings A = self.text_config.is_encoder_decoder A = num_query_tokens A = self.vision_config.hidden_size A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A = 1.0 A = 0.0_2 @classmethod def SCREAMING_SNAKE_CASE__ (cls : List[Any] , __SCREAMING_SNAKE_CASE : InstructBlipVisionConfig , __SCREAMING_SNAKE_CASE : InstructBlipQFormerConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = copy.deepcopy(self.__dict__) A = self.vision_config.to_dict() A = self.qformer_config.to_dict() A = self.text_config.to_dict() A = self.__class__.model_type return output
57
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "speech_to_text_2" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__(self : Any , __SCREAMING_SNAKE_CASE : List[str]=1_0_0_0_0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Dict=2_0_4_8 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : int=1_0_2_4 , **__SCREAMING_SNAKE_CASE : str , ): A = vocab_size A = d_model A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = decoder_layerdrop A = use_cache A = decoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
57
1
'''simple docstring''' def snake_case__ ( _A: int = 1000 ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = 2**power lowerCAmelCase = str(__lowerCAmelCase ) lowerCAmelCase = list(__lowerCAmelCase ) lowerCAmelCase = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": __lowercase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) __lowercase = solution(power) print('''Sum of the digits is: ''', result)
272
from pathlib import Path import fire def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = Path(__lowerCAmelCase ) lowerCAmelCase_ = Path(__lowerCAmelCase ) dest_dir.mkdir(exist_ok=__lowerCAmelCase ) for path in src_dir.iterdir(): lowerCAmelCase_ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase_ = dest_dir.joinpath(path.name ) print(__lowerCAmelCase ) dest_path.open("w" ).write("\n".join(__lowerCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
231
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class UpperCAmelCase_ ( A_ ): lowercase__ = '''audio-spectrogram-transformer''' def __init__( self : Tuple , snake_case_ : Tuple=768 , snake_case_ : Tuple=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Optional[int]=3_072 , snake_case_ : int="gelu" , snake_case_ : Optional[Any]=0.0 , snake_case_ : List[str]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : int=16 , snake_case_ : Any=True , snake_case_ : Dict=10 , snake_case_ : List[Any]=10 , snake_case_ : str=1_024 , snake_case_ : Optional[int]=128 , **snake_case_ : Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**snake_case_ ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = patch_size A__ = qkv_bias A__ = frequency_stride A__ = time_stride A__ = max_length A__ = num_mel_bins
230
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase_ ( A_ ): lowercase__ = '''dpt''' def __init__( self : List[Any] , snake_case_ : Union[str, Any]=768 , snake_case_ : Tuple=12 , snake_case_ : Tuple=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Dict="gelu" , snake_case_ : Tuple=0.0 , snake_case_ : int=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : Tuple=384 , snake_case_ : Tuple=16 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=False , snake_case_ : Any=True , snake_case_ : Any=[2, 5, 8, 11] , snake_case_ : Union[str, Any]="project" , snake_case_ : Union[str, Any]=[4, 2, 1, 0.5] , snake_case_ : List[str]=[96, 192, 384, 768] , snake_case_ : int=256 , snake_case_ : Tuple=-1 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : List[Any]=0.4 , snake_case_ : Optional[Any]=255 , snake_case_ : List[str]=0.1 , snake_case_ : List[str]=[1, 1_024, 24, 24] , snake_case_ : Union[str, Any]=[0, 1] , snake_case_ : Any=None , **snake_case_ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case_ ) A__ = hidden_size A__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) A__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } A__ = BitConfig(**snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): logger.info("Initializing the config with a `BiT` backbone." ) A__ = BitConfig(**snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): A__ = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) A__ = backbone_featmap_shape A__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: A__ = None A__ = None A__ = [] A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) A__ = readout_type A__ = reassemble_factors A__ = neck_hidden_sizes A__ = fusion_hidden_size A__ = head_in_index A__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = semantic_loss_ignore_index A__ = semantic_classifier_dropout def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
230
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Union[str, Any] = prime_factors(_A ) if is_square_free(_A ): return -1 if len(_A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
def UpperCamelCase_( snake_case__: int = 2_00 ) -> int: UpperCAmelCase__ = [1, 2, 5, 10, 20, 50, 1_00, 2_00] UpperCAmelCase__ = [0] * (pence + 1) UpperCAmelCase__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : int = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=8 ) -> Union[str, Any]: '''simple docstring''' lowercase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=5_12 , __lowerCAmelCase=5_12 ) -> Any: '''simple docstring''' lowercase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ = np.array(pil_image.convert("""RGB""" ) ) lowercase_ = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ = np.transpose(__lowerCAmelCase , [2, 0, 1] ) lowercase_ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) lowercase_ = 2 ** (len(self.movq.config.block_out_channels) - 1) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = min(int(num_inference_steps * strength) , lowerCAmelCase_) lowercase_ = max(num_inference_steps - init_timestep , 0) lowercase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=None): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_)}''') lowercase_ = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_) lowercase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(lowerCAmelCase_) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase_)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCAmelCase_) ] lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) else: lowercase_ = self.movq.encode(lowerCAmelCase_).latent_dist.sample(lowerCAmelCase_) lowercase_ = self.movq.config.scaling_factor * init_latents lowercase_ = torch.cat([init_latents] , dim=0) lowercase_ = init_latents.shape lowercase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_) # get latents lowercase_ = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = init_latents return latents def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') lowercase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any]=0): """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase_) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_) # We'll offload the last model manually. lowercase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_) def __call__( self : int , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = self._execution_device lowercase_ = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) lowercase_ = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) if do_classifier_free_guidance: lowercase_ = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase_) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( F'''Input is in incorrect format: {[type(lowerCAmelCase_) for i in image]}. Currently, we only support PIL image and pytorch tensor''') lowercase_ = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) for i in image] , dim=0) lowercase_ = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_) lowercase_ = self.movq.encode(lowerCAmelCase_)["""latents"""] lowercase_ = latents.repeat_interleave(lowerCAmelCase_ , dim=0) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ , lowercase_ = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt) lowercase_ , lowercase_ = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor) lowercase_ = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_) for i, t in enumerate(self.progress_bar(lowerCAmelCase_)): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase_ = {"""image_embeds""": image_embeds} lowercase_ = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) lowercase_ , lowercase_ = noise_pred.chunk(2) lowercase_ , lowercase_ = variance_pred.chunk(2) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing lowercase_ = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: lowercase_ = image * 0.5 + 0.5 lowercase_ = image.clamp(0 , 1) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowerCAmelCase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_)
313
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=768 ) -> int: super().__init__(lowercase ) lowerCAmelCase = proj_size lowerCAmelCase = CLIPVisionModel(lowercase ) lowerCAmelCase = PaintByExampleMapper(lowercase ) lowerCAmelCase = nn.LayerNorm(config.hidden_size ) lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _snake_case ( self , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = self.model(pixel_values=lowercase ) lowerCAmelCase = clip_output.pooler_output lowerCAmelCase = self.mapper(latent_states[:, None] ) lowerCAmelCase = self.final_layer_norm(lowercase ) lowerCAmelCase = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase ( nn.Module ): def __init__( self , lowercase ) -> str: super().__init__() lowerCAmelCase = (config.num_hidden_layers + 1) // 5 lowerCAmelCase = config.hidden_size lowerCAmelCase = 1 lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn="""gelu""" , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def _snake_case ( self , lowercase ) -> Optional[int]: for block in self.blocks: lowerCAmelCase = block(lowercase ) return hidden_states
46
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> int: return int(input_a == input_a == 0 ) def UpperCamelCase ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
119
0
"""simple docstring""" from math import factorial SCREAMING_SNAKE_CASE__:List[str] = {str(digit): factorial(digit) for digit in range(10)} def _lowerCamelCase( a ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) ) def _lowerCamelCase( a = 6_0 , a = 1_0_0_0_0_0_0 ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length __a = 0 # the cached sizes of the previous chains __a = {} for start_chain_element in range(1 , _lowerCAmelCase ): # The temporary set will contain the elements of the chain __a = set() __a = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __a = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCAmelCase ) chain_set_length += 1 __a = digit_factorial_sum(_lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __a = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
371
"""simple docstring""" import os def _lowerCamelCase( ): with open(os.path.dirname(a ) + "/grid.txt" ) as f: __a = [] # noqa: E741 for _ in range(2_0 ): l.append([int(a ) for x in f.readline().split()] ) __a = 0 # right for i in range(2_0 ): for j in range(1_7 ): __a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a = temp # down for i in range(1_7 ): for j in range(2_0 ): __a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): __a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): __a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a = temp return maximum if __name__ == "__main__": print(solution())
268
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Tuple: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' UpperCAmelCase : Any = nn.Parameter(_lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' UpperCAmelCase : Dict = nn.Parameter(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: # set torch weights for 1-to-1 comparison UpperCAmelCase : int = np.asarray(weights[0] ) UpperCAmelCase : Dict = np.asarray(weights[1] ) UpperCAmelCase : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: # set torch weights for 1-to-1 comparison UpperCAmelCase : int = np.asarray(weights[0] ) UpperCAmelCase : List[str] = np.asarray(weights[1] ) UpperCAmelCase : Any = np.asarray(weights[2] ) UpperCAmelCase : Any = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: # layernorm 1 UpperCAmelCase : int = weights[0][0][0] UpperCAmelCase : str = np.asarray(layer_norm_a[0] ) UpperCAmelCase : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # lsh weights + output UpperCAmelCase : Any = weights[0][1] if len(_lowercase ) < 4: set_layer_weights_in_torch_lsh(_lowercase , torch_block.attention , _lowercase ) else: set_layer_weights_in_torch_local(_lowercase , torch_block.attention , _lowercase ) # intermediate weighs UpperCAmelCase : Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(_lowercase ) == 4: UpperCAmelCase : Optional[Any] = intermediate_weights[2] # layernorm 2 UpperCAmelCase : Dict = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # intermediate dense UpperCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase : Optional[int] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) # intermediate out UpperCAmelCase : Dict = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase : Any = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: # reformer model UpperCAmelCase : List[Any] = torch_model.reformer # word embeds UpperCAmelCase : int = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowercase ) , ) if isinstance(weights[3] , _lowercase ): UpperCAmelCase : List[str] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase : Optional[int] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' UpperCAmelCase : Optional[int] = nn.Parameter(torch.tensor(_lowercase ) ) UpperCAmelCase : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowercase , _lowercase , _lowercase ) # output layer norm UpperCAmelCase : List[str] = np.asarray(weights[7][0] ) UpperCAmelCase : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # output embeddings UpperCAmelCase : int = np.asarray(weights[9][0] ) UpperCAmelCase : List[str] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: # Initialise PyTorch model UpperCAmelCase : Dict = ReformerConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : str = ReformerModelWithLMHead(_lowercase ) with open(_lowercase , """rb""" ) as f: UpperCAmelCase : Optional[int] = pickle.load(_lowercase )["""weights"""] set_model_weights_in_torch(_lowercase , _lowercase , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
265
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) UpperCAmelCase : List[Any] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_zero=A , ) torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : int = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Optional[Any]: UpperCAmelCase : Any = floats_tensor((1, 16, 16) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : List[Any] = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : int = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> Optional[int]: UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Any = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> str: UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[Any]: if not hasattr(self.pipeline_class , """_optional_components""" ): return UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A , A , A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase : Any = self.get_dummy_inputs(A ) UpperCAmelCase : Optional[Any] = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) UpperCAmelCase : Dict = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A , A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A ) UpperCAmelCase : Tuple = pipe_loaded(**A )[0] UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(A , 1e-4 ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = self.get_dummy_mask_inputs(A ) UpperCAmelCase : List[Any] = pipe.generate_mask(**A ) UpperCAmelCase : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase : Optional[int] = np.array([0] * 9 ) UpperCAmelCase : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = """cpu""" UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[int] = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : List[str] = pipe.invert(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Dict = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) def _lowercase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = """cpu""" UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} UpperCAmelCase : int = DPMSolverMultistepScheduler(**A ) UpperCAmelCase : int = DPMSolverMultistepInverseScheduler(**A ) UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : Any = pipe.invert(**A ).images UpperCAmelCase : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) UpperCAmelCase : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) ) UpperCAmelCase : List[str] = raw_image def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : int = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """a bowl of fruit""" UpperCAmelCase : List[Any] = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Tuple = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A ).latents UpperCAmelCase : Any = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] UpperCAmelCase : List[str] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """a bowl of fruit""" UpperCAmelCase : int = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Any = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A , num_inference_steps=25 , ).latents UpperCAmelCase : str = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] UpperCAmelCase : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
265
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ : Tuple = None snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} snake_case__ : Dict = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } snake_case__ : Optional[int] = { "google/fnet-base": 512, "google/fnet-large": 512, } snake_case__ : Optional[Any] = "▁" class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''token_type_ids'''] __UpperCamelCase = FNetTokenizer def __init__( self : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : Dict="[SEP]" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Dict="[CLS]" , UpperCamelCase_ : Union[str, Any]="[MASK]" , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : List[str] = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase : str = do_lower_case lowerCAmelCase : Union[str, Any] = remove_space lowerCAmelCase : List[str] = keep_accents lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Dict = False if not self.vocab_file else True def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int = None ): lowerCAmelCase : Union[str, Any] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
import numpy # List of input, output pairs lowerCamelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCamelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCamelCase__ = [2, 4, 1, 5] lowerCamelCase__ = len(train_data) lowerCamelCase__ = 0.009 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]="train" ): """simple docstring""" return calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - output( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __a = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=m ): """simple docstring""" __a = 0 for i in range(_SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(_SCREAMING_SNAKE_CASE ) else: summation_value += _error(_SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __a = summation_of_cost_derivative(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def lowerCAmelCase__ ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output __a = 0.00_0002 __a = 0 __a = 0 while True: j += 1 __a = [0, 0, 0, 0] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) ): __a = get_cost_derivative(i - 1 ) __a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE , rtol=_SCREAMING_SNAKE_CASE , ): break __a = temp_parameter_vector print(("""Number of iterations:""", j) ) def lowerCAmelCase__ ( ): """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): print(("""Actual output value:""", output(_SCREAMING_SNAKE_CASE , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
302
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Tuple = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: A__ = model_type_to_module_name(lowercase_ ) A__ = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(lowercase_ , lowercase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowercase_ , '''__name__''' , lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A__ = importlib.import_module('''transformers''' ) if hasattr(lowercase_ , lowercase_ ): return getattr(lowercase_ , lowercase_ ) return None def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , **lowercase_ , ) -> str: """simple docstring""" A__ = get_file_from_repo( lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase_ , encoding='''utf-8''' ) as reader: return json.load(lowercase_ ) class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any]) ->List[str]: '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( cls : str , UpperCAmelCase__ : int , **UpperCAmelCase__ : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = kwargs.pop('''config''' , UpperCAmelCase__) A__ = kwargs.pop('''trust_remote_code''' , UpperCAmelCase__) A__ = True A__ , A__ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase__ , **UpperCAmelCase__) A__ = config_dict.get('''feature_extractor_type''' , UpperCAmelCase__) A__ = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): A__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = AutoConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) # It could be in `config.feature_extractor_type`` A__ = getattr(UpperCAmelCase__ , '''feature_extractor_type''' , UpperCAmelCase__) if hasattr(UpperCAmelCase__ , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: A__ = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: A__ = feature_extractor_class_from_name(UpperCAmelCase__) A__ = feature_extractor_auto_map is not None A__ = feature_extractor_class is not None or type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING A__ = resolve_trust_remote_code( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) if has_remote_code and trust_remote_code: A__ = get_class_from_dynamic_module( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__) A__ = kwargs.pop('''code_revision''' , UpperCAmelCase__) if os.path.isdir(UpperCAmelCase__): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING: A__ = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase__)] return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}""") @staticmethod def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any) ->List[str]: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase__ , UpperCAmelCase__)
231
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" create_state_space_tree(lowercase_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: """simple docstring""" if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
231
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = PriorTransformer _a = """hidden_states""" @property def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =4 _lowercase =8 _lowercase =7 _lowercase =floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def A__ ( self , lowerCAmelCase=0 ) -> List[Any]: '''simple docstring''' torch.manual_seed(lowerCAmelCase ) _lowercase =4 _lowercase =8 _lowercase =7 _lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def A__ ( self ) -> Dict: '''simple docstring''' return (4, 8) @property def A__ ( self ) -> int: '''simple docstring''' return (4, 8) def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase ={ 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } _lowercase =self.dummy_input return init_dict, inputs_dict def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase , _lowercase =PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) _lowercase =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase , _lowercase =self.prepare_init_args_and_inputs_for_common() _lowercase =self.model_class(**lowerCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) _lowercase =model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() _lowercase =self.get_dummy_seed_input() with torch.no_grad(): _lowercase =model(**lowerCAmelCase )[0] _lowercase =output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _lowercase =torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1e-2 ) ) @slow class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self , lowerCAmelCase=1 , lowerCAmelCase=768 , lowerCAmelCase=77 , lowerCAmelCase=0 ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(lowerCAmelCase ) _lowercase =batch_size _lowercase =embedding_dim _lowercase =num_embeddings _lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) _lowercase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def A__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) _lowercase =self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): _lowercase =model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 768] _lowercase =sample[0, :8].flatten().cpu() print(lowerCAmelCase ) _lowercase =torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-3 )
205
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
1
def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE_ : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
367
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
0
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class snake_case : """simple docstring""" def __init__( self : List[Any] ): UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def __lowerCAmelCase ( self : Tuple ): return self.head == self.tail def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Any ): self.data.append(lowerCamelCase__ ) UpperCAmelCase__ = self.tail + 1 def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.data[self.head] UpperCAmelCase__ = self.head + 1 return ret def __lowerCAmelCase ( self : List[str] ): return self.tail - self.head def __lowerCAmelCase ( self : int ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class snake_case : """simple docstring""" def __init__( self : int ,lowerCamelCase__ : Any ): UpperCAmelCase__ = data UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = 1 def __lowerCAmelCase ( self : str ): return self.data def __lowerCAmelCase ( self : Tuple ): return self.left def __lowerCAmelCase ( self : Any ): return self.right def __lowerCAmelCase ( self : Union[str, Any] ): return self.height def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Any ): UpperCAmelCase__ = data def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : MyNode | None ): UpperCAmelCase__ = node def __lowerCAmelCase ( self : str ,lowerCamelCase__ : MyNode | None ): UpperCAmelCase__ = node def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : int ): UpperCAmelCase__ = height def a_ ( lowerCamelCase ): if node is None: return 0 return node.get_height() def a_ ( lowerCamelCase , lowerCamelCase ): if a > b: return a return b def a_ ( lowerCamelCase ): print('left rotation node:' , node.get_data() ) UpperCAmelCase__ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def a_ ( lowerCamelCase ): print('right rotation node:' , node.get_data() ) UpperCAmelCase__ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def a_ ( lowerCamelCase ): UpperCAmelCase__ = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCamelCase ) ) return right_rotation(lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCamelCase ) ) return left_rotation(lowerCamelCase ) def a_ ( lowerCamelCase , lowerCamelCase ): if node is None: return MyNode(lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase__ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase__ = right_rotation(lowerCamelCase ) else: UpperCAmelCase__ = lr_rotation(lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase__ = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase__ = rl_rotation(lowerCamelCase ) else: UpperCAmelCase__ = left_rotation(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) return node def a_ ( lowerCamelCase ): while True: UpperCAmelCase__ = root.get_right() if right_child is None: break UpperCAmelCase__ = right_child return root.get_data() def a_ ( lowerCamelCase ): while True: UpperCAmelCase__ = root.get_left() if left_child is None: break UpperCAmelCase__ = left_child return root.get_data() def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = root.get_left() UpperCAmelCase__ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase__ = get_left_most(lowerCamelCase ) root.set_data(lowerCamelCase ) root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) elif left_child is not None: UpperCAmelCase__ = left_child elif right_child is not None: UpperCAmelCase__ = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(lowerCamelCase , lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) if get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase__ = left_rotation(lowerCamelCase ) else: UpperCAmelCase__ = rl_rotation(lowerCamelCase ) elif get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase__ = right_rotation(lowerCamelCase ) else: UpperCAmelCase__ = lr_rotation(lowerCamelCase ) UpperCAmelCase__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCamelCase ) return root class snake_case : """simple docstring""" def __init__( self : Optional[Any] ): UpperCAmelCase__ = None def __lowerCAmelCase ( self : Any ): return get_height(self.root ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Any ): print('insert:' + str(lowerCamelCase__ ) ) UpperCAmelCase__ = insert_node(self.root ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Any ): print('delete:' + str(lowerCamelCase__ ) ) if self.root is None: print('Tree is empty!' ) return UpperCAmelCase__ = del_node(self.root ,lowerCamelCase__ ) def __str__( self : str ,): # a level traversale, gives a more intuitive look on the tree UpperCAmelCase__ = '' UpperCAmelCase__ = MyQueue() q.push(self.root ) UpperCAmelCase__ = self.get_height() if layer == 0: return output UpperCAmelCase__ = 0 while not q.is_empty(): UpperCAmelCase__ = q.pop() UpperCAmelCase__ = ' ' * int(math.pow(2 ,layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCamelCase__ ) q.push(lowerCamelCase__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase__ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 ,lowerCamelCase__ ) - 1: UpperCAmelCase__ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a_ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCAmelCase__ : List[Any] = AVLtree() lowerCAmelCase__ : List[Any] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
98
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 3_2 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_5_5 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , snake_case__ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , snake_case__ : bool = True , snake_case__ : Tuple=7 , snake_case__ : List[str]=3_0 , snake_case__ : Optional[int]=4_0_0 , snake_case__ : Optional[Any]=3 , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_8_8} UpperCAmelCase__ : Tuple = size_divisor UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : Optional[int] = do_center_crop UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Optional[Any] = do_pad UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Optional[int] = min_resolution UpperCAmelCase__ : List[str] = max_resolution def __a ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Tuple = self.size["shortest_edge"] UpperCAmelCase__ : List[str] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ : Dict = image.size else: UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] UpperCAmelCase__ : Optional[Any] = size / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ : Union[str, Any] = size, scale * w else: UpperCAmelCase__ : Optional[int] = scale * h, size UpperCAmelCase__ : Optional[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(snake_case__ , snake_case__ ) > max_size: UpperCAmelCase__ : int = max_size / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = newh * scale UpperCAmelCase__ : Union[str, Any] = neww * scale UpperCAmelCase__ : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase__ : List[str] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase__ : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BridgeTowerImageProcessingTester(self ) @property def __a ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "size_divisor" ) ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Any = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case , _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = "maskformer-swin" UpperCAmelCase_ : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , lowercase_ : List[str]=224 , lowercase_ : List[str]=4 , lowercase_ : List[str]=3 , lowercase_ : Tuple=96 , lowercase_ : Optional[Any]=[2, 2, 6, 2] , lowercase_ : Optional[int]=[3, 6, 12, 24] , lowercase_ : Union[str, Any]=7 , lowercase_ : str=4.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Any=0.1 , lowercase_ : int="gelu" , lowercase_ : Union[str, Any]=False , lowercase_ : str=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , **lowercase_ : Union[str, Any] , ) -> int: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : Optional[int] = embed_dim UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Optional[Any] = len(lowercase_ ) UpperCAmelCase : Tuple = num_heads UpperCAmelCase : Tuple = window_size UpperCAmelCase : List[str] = mlp_ratio UpperCAmelCase : Dict = qkv_bias UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = drop_path_rate UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = use_absolute_embeddings UpperCAmelCase : Tuple = layer_norm_eps UpperCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) UpperCAmelCase : List[str] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
151
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *lowercase : Optional[int] , **lowercase : Any ): '''simple docstring''' warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
282
0
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def __UpperCamelCase ( lowercase__ : Matrix , lowercase__ : Matrix ) -> Matrix: '''simple docstring''' lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase__ )] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float for row in range(lowercase__ ): for col in range(lowercase__ ): lowerCAmelCase_ : Tuple = matrix[row][col] lowerCAmelCase_ : Union[str, Any] = vector[row][0] lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : str = 0 while row < size and col < size: # pivoting lowerCAmelCase_ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase__ , lowercase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase__ ): lowerCAmelCase_ : str = augmented[rowa][col] / augmented[row][col] lowerCAmelCase_ : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase__ ): for row in range(lowercase__ ): lowerCAmelCase_ : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(lowercase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase__ ) ] def __UpperCamelCase ( lowercase__ : list[int] ) -> Callable[[int], int]: '''simple docstring''' lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )] lowerCAmelCase_ : Matrix = [[0] for _ in range(lowercase__ )] lowerCAmelCase_ : Matrix lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int for x_val, y_val in enumerate(lowercase__ ): for col in range(lowercase__ ): lowerCAmelCase_ : Tuple = (x_val + 1) ** (size - col - 1) lowerCAmelCase_ : Any = y_val lowerCAmelCase_ : Optional[Any] = solve(lowercase__ , lowercase__ ) def interpolated_func(lowercase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase__ ) ) return interpolated_func def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __UpperCamelCase ( lowercase__ : Callable[[int], int] = question_function , lowercase__ : int = 10 ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [func(lowercase__ ) for x_val in range(1 , order + 1 )] lowerCAmelCase_ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Callable[[int], int] lowerCAmelCase_ : int for poly in polynomials: lowerCAmelCase_ : int = 1 while func(lowercase__ ) == poly(lowercase__ ): x_val += 1 ret += poly(lowercase__ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
28
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ (__a ,__a ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionSAGPipeline SCREAMING_SNAKE_CASE__ : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Any = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_UpperCamelCase ) UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): UpperCAmelCase_ : Any = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ : List[Any] = sag_pipe.to(_UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Tuple = "." UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Any = sag_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : str = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ : Any = sag_pipe.to(_UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = "." UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = sag_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : List[Any] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ : List[Any] = sag_pipe.to(_UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Dict = "." UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) UpperCAmelCase_ : Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
231
0
import re from filelock import FileLock try: import nltk UpperCAmelCase_ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' re.sub("""<n>""" , """""" , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
359
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->list[list]: """simple docstring""" a_ = current_set.copy() for row_index, row in enumerate(UpperCAmelCase ): a_ = row[0] for column_index, column in enumerate(UpperCAmelCase ): if magnitude == 0: a_ = column continue a_ = column / magnitude # Subtract to cancel term a_ = current_set[0] a_ = [first_row] a_ = current_set[1::] for row in current_set: a_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCAmelCase ) continue for column_index in range(len(UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: a_ = final_set[0] a_ = [] a_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) a_ = simplify(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCAmelCase ) a_ = resultant return final_set def UpperCamelCase ( UpperCAmelCase ) ->list: """simple docstring""" if len(UpperCAmelCase ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) a_ = len(UpperCAmelCase ) + 1 if any(len(UpperCAmelCase ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(UpperCAmelCase , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] a_ = equations.copy() if any(0 in row for row in data_set ): a_ = data_set.copy() a_ = [] for row_index, row in enumerate(UpperCAmelCase ): if 0 not in row: a_ = data_set.pop(UpperCAmelCase ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , UpperCAmelCase ) a_ = data_set.copy() a_ = simplify(UpperCAmelCase ) a_ = simplified[::-1] a_ = [] for row in simplified: a_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue a_ = row.copy()[: len(UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCAmelCase ) == 0: solutions.append(0 ) continue a_ = temp_row[1::] a_ = temp_row[::-1] for column_index, column in enumerate(UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(UpperCAmelCase ) a_ = [] for item in solutions: final.append(float(round(UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
243
"""simple docstring""" import baseaa def UpperCamelCase ( UpperCAmelCase ) ->bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return baseaa.baadecode(UpperCAmelCase ).decode("utf-8" ) if __name__ == "__main__": UpperCamelCase_ = 'Hello World!' UpperCamelCase_ = baseaa_encode(test) print(encoded) UpperCamelCase_ = baseaa_decode(encoded) print(decoded)
243
1
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __A : Tuple = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowercase ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[int]=None ): # Initialise PyTorch model lowercase_ : List[Any] = XLNetConfig.from_json_file(__snake_case ) lowercase_ : List[str] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) lowercase_ : Any = finetuning_task lowercase_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Tuple = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: lowercase_ : Union[str, Any] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(__snake_case ) else: lowercase_ : Optional[Any] = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model lowercase_ : Tuple = os.path.join(__snake_case , __snake_case ) lowercase_ : Dict = os.path.join(__snake_case , __snake_case ) print(F'''Save PyTorch model to {os.path.abspath(__snake_case )}''' ) torch.save(model.state_dict() , __snake_case ) print(F'''Save configuration file to {os.path.abspath(__snake_case )}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) __A : List[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
33
"""simple docstring""" def lowercase ( __snake_case : Optional[int] ): lowercase_ : int = 0 lowercase_ : Optional[Any] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase ( __snake_case : str ): if len(__snake_case ) <= 1: return arr, 0 lowercase_ : Optional[Any] = len(__snake_case ) // 2 lowercase_ : List[Any] = arr[0:mid] lowercase_ : Union[str, Any] = arr[mid:] lowercase_ , lowercase_ : Tuple = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = _count_cross_inversions(__snake_case , __snake_case ) lowercase_ : List[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase ( __snake_case : str , __snake_case : Optional[int] ): lowercase_ : Optional[Any] = [] lowercase_ : Any = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase ( ): lowercase_ : Union[str, Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase_ : int = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase_ : Dict = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) # an empty list should also have zero inversions lowercase_ : List[Any] = [] lowercase_ : Any = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : List[str] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) if __name__ == "__main__": main()
33
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase = False @property def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' return 3_2 @property def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' return 3_2 @property def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' return 1_0_0 @property def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' torch.manual_seed(0 ) A__ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A__ = UNetaDConditionModel(**lowercase_ ) return model @property def snake_case__ ( self : str )-> List[Any]: '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case__ ( self : str )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' A__ = self.dummy_unet A__ = self.dummy_movq A__ = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } A__ = DDIMScheduler(**lowercase_ ) A__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case__ ( self : int,lowercase_ : List[Any],lowercase_ : Dict=0 )-> Any: '''simple docstring''' A__ = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( lowercase_ ) # create init_image A__ = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = image.cpu().permute(0,2,3,1 )[0] A__ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint A__ = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) A__ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = pipe(**self.get_dummy_inputs(lowercase_ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowercase_ ),return_dict=lowercase_,)[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A__ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> Optional[int]: '''simple docstring''' A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A__ = init_image.resize((5_1_2, 5_1_2) ) A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) A__ = torch.from_numpy(np.array(lowercase_ ) ).float() / 255.0 A__ = hint.permute(2,0,1 ).unsqueeze(0 ) A__ = 'A robot, 4k photo' A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior',torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth',torch_dtype=torch.floataa ) A__ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ , A__ = pipe_prior( lowercase_,image=lowercase_,strength=0.85,generator=lowercase_,negative_prompt='',).to_tuple() A__ = pipeline( image=lowercase_,image_embeds=lowercase_,negative_image_embeds=lowercase_,hint=lowercase_,generator=lowercase_,num_inference_steps=1_0_0,height=5_1_2,width=5_1_2,strength=0.5,output_type='np',) A__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase_,lowercase_ )
282
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class A : """simple docstring""" def __init__( self : List[str],lowercase_ : Iterable[int] )-> None: '''simple docstring''' A__ = None for i in sorted(lowercase_,reverse=lowercase_ ): A__ = Node(lowercase_,self.head ) def __iter__( self : List[str] )-> Iterator[int]: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next_node def __len__( self : str )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Optional[int] )-> str: '''simple docstring''' return " -> ".join([str(lowercase_ ) for node in self] ) def _snake_case( SCREAMING_SNAKE_CASE__ : SortedLinkedList , SCREAMING_SNAKE_CASE__ : SortedLinkedList ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
282
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType a__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "vision-encoder-decoder" snake_case__ : str = True def __init__( self : Any , **UpperCAmelCase__ : Dict ) -> Optional[Any]: super().__init__(**__a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) __SCREAMING_SNAKE_CASE = kwargs.pop("encoder" ) __SCREAMING_SNAKE_CASE = encoder_config.pop("model_type" ) __SCREAMING_SNAKE_CASE = kwargs.pop("decoder" ) __SCREAMING_SNAKE_CASE = decoder_config.pop("model_type" ) __SCREAMING_SNAKE_CASE = AutoConfig.for_model(__a , **__a ) __SCREAMING_SNAKE_CASE = AutoConfig.for_model(__a , **__a ) __SCREAMING_SNAKE_CASE = True @classmethod def UpperCAmelCase_ ( cls : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , **UpperCAmelCase__ : Tuple ) -> List[str]: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a ) def UpperCAmelCase_ ( self : List[str] ) -> Any: __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.encoder.to_dict() __SCREAMING_SNAKE_CASE = self.decoder.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = version.parse("1.11") @property def UpperCAmelCase_ ( self : int ) -> str: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> Any: return 1E-4 @property def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : int ) -> str: __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"} __SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"} __SCREAMING_SNAKE_CASE = {0: "batch", 1: "encoder_sequence"} return common_inputs def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict = -1 , UpperCAmelCase__ : Any = -1 , UpperCAmelCase__ : Optional[int] = False , UpperCAmelCase__ : List[Any] = None , ) -> Tuple: import torch __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) __SCREAMING_SNAKE_CASE = dummy_input["input_ids"].shape __SCREAMING_SNAKE_CASE = (batch, encoder_sequence, self._config.encoder_hidden_size) __SCREAMING_SNAKE_CASE = dummy_input.pop("input_ids" ) __SCREAMING_SNAKE_CASE = dummy_input.pop("attention_mask" ) __SCREAMING_SNAKE_CASE = torch.zeros(__a ) return common_inputs class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : Dict ) -> List[Any]: pass def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple ) -> str: return VisionEncoderDecoderEncoderOnnxConfig(__a ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] = "default" ) -> int: __SCREAMING_SNAKE_CASE = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__a , __a )
54
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCAmelCase_ ( a): def __init__( self, __a = 101): '''simple docstring''' _lowerCAmelCase : str = length def __len__( self): '''simple docstring''' return self.length def __getitem__( self, __a): '''simple docstring''' return i class UpperCAmelCase_ : def __call__( self, __a): '''simple docstring''' return {"input_ids": torch.tensor(__a), "labels": torch.tensor(__a)} class UpperCAmelCase_ ( nn.Module): def __init__( self): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCAmelCase : str = nn.Linear(120, 80) def snake_case__ ( self, __a, __a=None): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCAmelCase_ ( a): @require_torch_neuroncore def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCAmelCase_ ( a): @require_torch_multi_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : Any = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case = HfArgumentParser((TrainingArguments,)) _snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case = DummyDataset(dataset_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = list(range(len(_lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} _snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = 2 _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = None
36
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase__ :Tuple = imread(r"digital_image_processing/image_data/lena_small.jpg") lowercase__ :int = cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase ( ): '''simple docstring''' lowercase = cn.convert_to_negative(__a ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(__a , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def UpperCamelCase ( ): '''simple docstring''' lowercase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase ( ): '''simple docstring''' lowercase = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase = canny.canny(__a ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase ( ): '''simple docstring''' assert gg.gaussian_filter(__a , 5 , sigma=0.9 ).all() def UpperCamelCase ( ): '''simple docstring''' # laplace diagonals lowercase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase = conv.img_convolve(__a , __a ).astype(__a ) assert res.any() def UpperCamelCase ( ): '''simple docstring''' assert med.median_filter(__a , 3 ).any() def UpperCamelCase ( ): '''simple docstring''' lowercase , lowercase = sob.sobel_filter(__a ) assert grad.any() and theta.any() def UpperCamelCase ( ): '''simple docstring''' lowercase = sp.make_sepia(__a , 20 ) assert sepia.all() def UpperCamelCase ( lowerCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowercase = bs.Burkes(imread(__a , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase ( lowerCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowercase = rs.NearestNeighbour(imread(__a , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCamelCase ( ): '''simple docstring''' lowercase = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowercase = imread(__a , 0 ) # Test for get_neighbors_pixel function() return not None lowercase = 0 lowercase = 0 lowercase = image[x_coordinate][y_coordinate] lowercase = lbp.get_neighbors_pixel( __a , __a , __a , __a ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowercase = lbp.local_binary_value(__a , __a , __a ) assert lbp_image.any()
350
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.exp(lowerCAmelCase__ ) lowercase = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = config.output_attentions lowercase = config.output_hidden_states lowercase = nn.ModuleList([BertLayer(A__) for _ in range(config.num_hidden_layers)]) lowercase = nn.ModuleList([BertHighway(A__) for _ in range(config.num_hidden_layers)]) lowercase = [-1 for _ in range(config.num_hidden_layers)] def A__ ( self ,A__): if (type(A__) is float) or (type(A__) is int): for i in range(len(self.early_exit_entropy)): lowercase = x else: lowercase = x def A__ ( self ,A__): lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=None ,): lowercase = () lowercase = () lowercase = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = layer_module( A__ ,A__ ,head_mask[i] ,A__ ,A__) lowercase = layer_outputs[0] if self.output_attentions: lowercase = all_attentions + (layer_outputs[1],) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: lowercase = current_outputs + (all_attentions,) lowercase = self.highway[i](A__) # logits, pooled_output if not self.training: lowercase = highway_exit[0] lowercase = entropy(A__) lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ ,i + 1) else: lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = outputs + (all_hidden_states,) if self.output_attentions: lowercase = outputs + (all_attentions,) lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config lowercase = BertEmbeddings(A__) lowercase = DeeBertEncoder(A__) lowercase = BertPooler(A__) self.init_weights() def A__ ( self): self.encoder.init_highway_pooler(self.pooler) def A__ ( self): return self.embeddings.word_embeddings def A__ ( self ,A__): lowercase = value def A__ ( self ,A__): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__) @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''') elif input_ids is not None: lowercase = input_ids.size() elif inputs_embeds is not None: lowercase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''') lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if encoder_attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if token_type_ids is None: lowercase = torch.zeros(A__ ,dtype=torch.long ,device=A__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase = self.get_extended_attention_mask(A__ ,A__ ,A__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowercase = encoder_attention_mask[:, None, None, :] lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility lowercase = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase = self.get_head_mask(A__ ,self.config.num_hidden_layers) lowercase = self.embeddings( input_ids=A__ ,position_ids=A__ ,token_type_ids=A__ ,inputs_embeds=A__) lowercase = self.encoder( A__ ,attention_mask=A__ ,head_mask=A__ ,encoder_hidden_states=A__ ,encoder_attention_mask=A__ ,) lowercase = encoder_outputs[0] lowercase = self.pooler(A__) lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__): lowercase = message lowercase = exit_layer # start from 1! class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = BertPooler(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,config.num_labels) def A__ ( self ,A__): # Pooler lowercase = encoder_outputs[0] lowercase = self.pooler(A__) # "return" pooler_output # BertModel lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowercase = bmodel_output[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config.num_labels lowercase = config.num_hidden_layers lowercase = DeeBertModel(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=-1 ,A__=False ,): lowercase = self.num_layers try: lowercase = self.bert( A__ ,attention_mask=A__ ,token_type_ids=A__ ,position_ids=A__ ,head_mask=A__ ,inputs_embeds=A__ ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowercase = outputs[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase = e.message lowercase = e.exit_layer lowercase = outputs[0] if not self.training: lowercase = entropy(A__) lowercase = [] lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1)) # work with highway exits lowercase = [] for highway_exit in outputs[-1]: lowercase = highway_exit[0] if not self.training: highway_logits_all.append(A__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(highway_logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels) ,labels.view(-1)) highway_losses.append(A__) if train_highway: lowercase = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: lowercase = (loss,) + outputs if not self.training: lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
97
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=4 , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def a ( self : Tuple ) -> int: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a ( self : Any ) -> Optional[int]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def a ( self : Optional[int] ) -> str: for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("""albert-base-v2""" ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def a ( self : str ) -> Optional[int]: __lowerCAmelCase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowerCAmelCase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] __lowerCAmelCase = (1, 11, 7_68) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
229
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : TreeNode | None = None _SCREAMING_SNAKE_CASE : TreeNode | None = None def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(snake_case_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(snake_case_ , snake_case_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case_ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case_ ) ) return is_binary_search_tree_recursive_check(snake_case_ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: A_ : Any = data A_ : Node | None = None class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None A_ : str = None def __iter__( self ) -> Iterator[Any]: A_ : Dict = self.head while self.head: yield node.data A_ : Optional[Any] = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) A_ : Optional[int] = Node(_lowerCamelCase ) if self.head is None: A_ : str = new_node # first node points itself A_ : Union[str, Any] = new_node elif index == 0: # insert at head A_ : List[Any] = self.head A_ : List[Any] = new_node else: A_ : List[str] = self.head for _ in range(index - 1 ): A_ : Optional[int] = temp.next A_ : Tuple = temp.next A_ : str = new_node if index == len(self ) - 1: # insert at tail A_ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> List[Any]: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) A_ : int = self.head if self.head == self.tail: # just one node A_ : int = None elif index == 0: # delete head node A_ : Union[str, Any] = self.tail.next.next A_ : Tuple = self.head.next else: A_ : Optional[int] = self.head for _ in range(index - 1 ): A_ : Tuple = temp.next A_ : Any = temp.next A_ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail A_ : List[str] = temp return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return len(self ) == 0 def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Any = CircularLinkedList() assert len(a_ ) == 0 assert circular_linked_list.is_empty() is True assert str(a_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(a_ ) == i circular_linked_list.insert_nth(a_ , i + 1 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Any = 0 def UpperCAmelCase_ ( self ) -> Dict: A_ : str = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[int] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : List[str] = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[str] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Tuple = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type A_ : Dict = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Any = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A_ : str = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) A_ : Dict = CLIPImageProcessor(**_lowerCamelCase ) # save in new folder model_config.save_pretrained(_lowerCamelCase ) config.save_pretrained(_lowerCamelCase ) A_ : Any = AutoImageProcessor.from_pretrained(_lowerCamelCase ) # make sure private variable is not incorrectly saved A_ : int = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) A_ : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: with self.assertRaisesRegex( _lowerCamelCase , """clip-base is not a local folder and is not a valid model identifier""" ): A_ : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase_ ( self ) -> Dict: with self.assertRaisesRegex( _lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , revision="""aaaaaa""" ) def UpperCAmelCase_ ( self ) -> Any: with self.assertRaisesRegex( _lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): A_ : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase_ ( self ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): A_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): A_ : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) A_ : str = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase_ ( self ) -> Dict: try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Dict = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Optional[int] = CustomImageProcessor.from_pretrained(_lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : List[str] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self ) -> List[str]: class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = True try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # If remote code is not set, the default is to use local A_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_lowerCamelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
164
0
"""simple docstring""" UpperCAmelCase : Optional[Any] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
115
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
115
1
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase__ = 'http://www.mocksite.com/file1.txt' UpperCamelCase__ = '"text": ["foo", "foo"]' UpperCamelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A : __UpperCAmelCase : Union[str, Any] = 2_00 __UpperCAmelCase : Union[str, Any] = {'Content-Length': '100'} __UpperCAmelCase : Any = {} def lowercase_ (self : Optional[int] , **__UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return [bytes(__UpperCAmelCase , "utf-8" )] def lowerCAmelCase_ ( *__A, **__A ) -> str: '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict] ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]: '''simple docstring''' import requests monkeypatch.setattr(__A, "request", __A ) UpperCAmelCase__ = URL if issubclass(__A, __A ): UpperCAmelCase__ = url elif issubclass(__A, __A ): UpperCAmelCase__ = [url] elif issubclass(__A, __A ): UpperCAmelCase__ = {"train": url} UpperCAmelCase__ = "dummy" UpperCAmelCase__ = "downloads" UpperCAmelCase__ = tmp_path UpperCAmelCase__ = DownloadConfig( cache_dir=os.path.join(__A, __A ), use_etag=__A, ) UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A ) UpperCAmelCase__ = dl_manager.download(__A ) UpperCAmelCase__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__A, __A ): UpperCAmelCase__ = [downloaded_paths] UpperCAmelCase__ = [urls] elif isinstance(__A, __A ): assert "train" in downloaded_paths.keys() UpperCAmelCase__ = downloaded_paths.values() UpperCAmelCase__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__A, __A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase__ = Path(__A ) UpperCAmelCase__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase__ = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase__ = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() UpperCAmelCase__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict] ) def lowerCAmelCase_ ( __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = str(__A ) if issubclass(__A, __A ): UpperCAmelCase__ = filename elif issubclass(__A, __A ): UpperCAmelCase__ = [filename] elif issubclass(__A, __A ): UpperCAmelCase__ = {"train": filename} UpperCAmelCase__ = "dummy" UpperCAmelCase__ = xz_file.parent UpperCAmelCase__ = "extracted" UpperCAmelCase__ = DownloadConfig( cache_dir=__A, use_etag=__A, ) UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A ) UpperCAmelCase__ = dl_manager.extract(__A ) UpperCAmelCase__ = paths for extracted_paths in [extracted_paths]: if isinstance(__A, __A ): UpperCAmelCase__ = [extracted_paths] UpperCAmelCase__ = [paths] elif isinstance(__A, __A ): assert "train" in extracted_paths.keys() UpperCAmelCase__ = extracted_paths.values() UpperCAmelCase__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__A, __A ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase__ = Path(__A ) UpperCAmelCase__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__A, etag=__A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase__ = extracted_path.read_text() UpperCAmelCase__ = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(__A, start=1 ): UpperCAmelCase__ = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] ) def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = request.getfixturevalue(__A ) UpperCAmelCase__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ): _test_jsonl(__A, __A ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = request.getfixturevalue(__A ) UpperCAmelCase__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__A ), start=1 ): _test_jsonl(__A, __A ) assert num_tar == 1 assert num_jsonl == 2 def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__A ), start=1 ): assert os.path.basename(__A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
350
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli' __UpperCAmelCase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCAmelCase : Optional[int] = 'text_classifier' __UpperCAmelCase : int = AutoTokenizer __UpperCAmelCase : Dict = AutoModelForSequenceClassification __UpperCAmelCase : int = ['text', ['text']] __UpperCAmelCase : Optional[int] = ['text'] def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" super().setup() UpperCAmelCase__ = self.model.config UpperCAmelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase__ = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
143
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : Any = 250004 _lowercase : List[Any] = 250020 @require_sentencepiece @require_tokenizers class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = MBartaaTokenizer UpperCamelCase__ = MBartaaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing lowercase_ : int = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = """<s>""" lowercase_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowercase_ ) , 1054 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Tuple = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) lowercase_ : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowercase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): # fmt: off lowercase_ : Tuple = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase_ : Dict = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Tuple = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : str = tokenizer_r.save_pretrained(lowercase_ ) lowercase_ : Tuple = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowercase_ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowercase_ : Optional[int] = tokenizer_r.from_pretrained(lowercase_ ) lowercase_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True lowercase_ : Union[str, Any] = tempfile.mkdtemp() lowercase_ : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowercase_ : Union[str, Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowercase_ : Tuple = tokenizer_r.from_pretrained(lowercase_ ) lowercase_ : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : Any = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowercase_ : Optional[Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ ) lowercase_ : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = '''facebook/mbart-large-50-one-to-many-mmt''' UpperCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCamelCase__ = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int ): lowercase_ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowercase_ : Optional[Any] = 1 return cls def SCREAMING_SNAKE_CASE_ ( self : List[str] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) lowercase_ : Optional[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowercase_ : List[Any] = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) lowercase_ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowercase_ ) lowercase_ : Dict = 10 lowercase_ : int = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Union[str, Any] = tempfile.mkdtemp() lowercase_ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) lowercase_ : List[Any] = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors="""pt""" ) lowercase_ : List[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowercase_ : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowercase_ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[Any] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="""pt""" ) lowercase_ : str = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="""pt""" ) lowercase_ : List[Any] = targets["""input_ids"""] lowercase_ : Union[str, Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowercase_ ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
239
'''simple docstring''' import math def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase__ ) if number < 1: lowercase_ : Tuple = F'''Input value of [number={number}] must be > 0''' raise ValueError(UpperCAmelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase_ : Union[str, Any] = int(math.log(number // 3 , 2 ) ) + 2 lowercase_ : Any = [3, 5] lowercase_ : List[Any] = 2 lowercase_ : Optional[Any] = 3 for block in range(1 , UpperCAmelCase__ ): for _ in range(UpperCAmelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): _lowercase : Optional[Any] = 0 try: _lowercase : str = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
239
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __magic_name__ = "wavlm" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Optional[Any] = feat_extract_activation _lowerCAmelCase : List[str] = list(__UpperCAmelCase ) _lowerCAmelCase : Tuple = list(__UpperCAmelCase ) _lowerCAmelCase : List[str] = list(__UpperCAmelCase ) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Any = num_buckets _lowerCAmelCase : List[Any] = max_bucket_distance _lowerCAmelCase : List[Any] = num_conv_pos_embeddings _lowerCAmelCase : Optional[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : List[Any] = len(self.conv_dim ) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Tuple = hidden_dropout _lowerCAmelCase : Optional[Any] = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[int] = feat_proj_dropout _lowerCAmelCase : List[Any] = final_dropout _lowerCAmelCase : str = layerdrop _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[Any] = num_ctc_classes _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Optional[int] = do_stable_layer_norm _lowerCAmelCase : Dict = use_weighted_layer_sum _lowerCAmelCase : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Dict = apply_spec_augment _lowerCAmelCase : Union[str, Any] = mask_time_prob _lowerCAmelCase : List[str] = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : Dict = mask_feature_prob _lowerCAmelCase : Any = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : Tuple = num_codevector_groups _lowerCAmelCase : List[str] = contrastive_logits_temperature _lowerCAmelCase : List[str] = num_negatives _lowerCAmelCase : Any = codevector_dim _lowerCAmelCase : str = proj_codevector_dim _lowerCAmelCase : Any = diversity_loss_weight # ctc loss _lowerCAmelCase : Dict = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : List[Any] = adapter_kernel_size _lowerCAmelCase : int = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = list(__UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = list(__UpperCAmelCase ) _lowerCAmelCase : Dict = list(__UpperCAmelCase ) _lowerCAmelCase : Optional[int] = xvector_output_dim @property def a ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
import math def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: List[Any] = 0 while num > 0: SCREAMING_SNAKE_CASE_: int = num % 8 SCREAMING_SNAKE_CASE_: Dict = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 SCREAMING_SNAKE_CASE_: Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(__lowerCamelCase )}" def A_ ( ): print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(2_16 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(5_12 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
13
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase_ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return 0 elif n == 2: return 1 else: snake_case__ : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 2 while digits < n: index += 1 snake_case__ : Any = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
import os import sys lowercase__ :Tuple = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ :List[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
101
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase__( UpperCamelCase__ : Tuple )->List[Any]: if not is_accelerate_available(): return method A__ = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase__ ) < version.parse('''0.17.0''' ): return method def wrapper(self : Tuple , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Dict ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCamelCase__ , **UpperCamelCase__ ) return wrapper
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __UpperCamelCase : def __init__( self , __a=2 , __a=3 , __a=64 , __a=None ): '''simple docstring''' __a : str = np.random.default_rng(__UpperCAmelCase ) __a : List[str] = length __a : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __a : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): '''simple docstring''' return self.length def __getitem__( self , __a ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a=0 , __a=0 , __a=False ): '''simple docstring''' super().__init__() __a : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __a : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __a : Any = True def __UpperCAmelCase ( self , __a=None ): '''simple docstring''' if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __a : Optional[int] = False return x * self.a[0] + self.b[0] class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a=0 , __a=0 , __a=False ): '''simple docstring''' super().__init__() __a : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __a : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __a : str = True def __UpperCAmelCase ( self , __a=None ): '''simple docstring''' if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __a : int = False return x * self.a + self.b def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer __a : int = AutoTokenizer.from_pretrained('bert-base-cased' ) __a : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __a : Tuple = load_dataset('csv' , data_files=lowerCAmelCase__ ) __a : Optional[Any] = datasets["""train"""].unique('label' ) __a : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(_SCREAMING_SNAKE_CASE : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a : List[Any] = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='max_length' ) if "label" in examples: __a : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_SCREAMING_SNAKE_CASE : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __a : Optional[Any] = DataLoader(tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __a : List[Any] = DataLoader(tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
366
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowercase : Optional[Any] = True except (ImportError, ModuleNotFoundError): __lowercase : Dict = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): re.sub('<n>' , '' , _SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
294
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __a : def __init__( self : Tuple , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : str = value UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None class __a : def __init__( self : str , __magic_name__ : Node ) -> None: """simple docstring""" UpperCAmelCase_ : Dict = tree def UpperCAmelCase__ ( self : int , __magic_name__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
125
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Dict = 3 UpperCAmelCase_ : Dict = (32, 32) UpperCAmelCase_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ ) return image @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__magic_name__ ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def extract(*__magic_name__ : Dict , **__magic_name__ : Any ): class __a : def __init__( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = torch.ones([0] ) def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" self.pixel_values.to(__magic_name__ ) return self return Out() return extract def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.dummy_cond_unet UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : List[str] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : str = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCAmelCase_ : Any = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[str] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0] UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(pipe.scheduler , __magic_name__ ) assert pipe.safety_checker is None UpperCAmelCase_ : str = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_cond_unet UpperCAmelCase_ : Tuple = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCAmelCase_ : Tuple = self.dummy_vae UpperCAmelCase_ : Optional[Any] = self.dummy_text_encoder UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase_ : Union[str, Any] = unet.half() UpperCAmelCase_ : Any = vae.half() UpperCAmelCase_ : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : List[Any] = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Optional[int] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase_ : str = 40_03_66_03_46 UpperCAmelCase_ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Tuple = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ ) UpperCAmelCase_ : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase_ : Tuple = 27_34_97_17_55 UpperCAmelCase_ : List[str] = 7 UpperCAmelCase_ : Any = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : int = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase_ : List[Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[str] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Optional[int] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase_ : str = 10_44_35_52_34 UpperCAmelCase_ : int = 12 UpperCAmelCase_ : int = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : int = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
125
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A =logging.get_logger(__name__) __A ={'''tokenizer_file''': '''tokenizer.json'''} __A ={ '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class _SCREAMING_SNAKE_CASE ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = None def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<unk>" , lowercase="<s>" , lowercase="</s>" , lowercase="<pad>" , lowercase=False , lowercase=False , **lowercase , ) -> Any: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , pad_token=snake_case_ , add_prefix_space=snake_case_ , clean_up_tokenization_spaces=snake_case_ , **snake_case_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: lowerCamelCase_ = getattr(snake_case_ , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**snake_case_ ) lowerCamelCase_ = add_prefix_space def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: lowerCamelCase_ = kwargs.get("is_split_into_words" , snake_case_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' " pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Tuple: lowerCamelCase_ = kwargs.get("is_split_into_words" , snake_case_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' " pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[Any]: lowerCamelCase_ = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] ) if len(snake_case_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case ={ 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=1 ) -> str: """simple docstring""" __magic_name__ = tokenizer __magic_name__ = dataset __magic_name__ = len(UpperCamelCase__ ) if n_tasks is None else n_tasks __magic_name__ = n_copies def __iter__( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) __magic_name__ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __magic_name__ = start_length __magic_name__ = eof_strings __magic_name__ = tokenizer def __call__( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" __magic_name__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __magic_name__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCamelCase__ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = re.split("""(%s)""" % """|""".join(A_ ), A_ ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( A_, A_, A_, A_, A_, A_=20, **A_ ): '''simple docstring''' __magic_name__ = defaultdict(A_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A_ ) ): with torch.no_grad(): __magic_name__ = batch["""ids"""].shape[-1] __magic_name__ = accelerator.unwrap_model(A_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]], num_return_sequences=A_, **A_ ) # each task is generated batch_size times __magic_name__ = batch["""task_id"""].repeat(A_ ) __magic_name__ = accelerator.pad_across_processes( A_, dim=1, pad_index=tokenizer.pad_token_id ) __magic_name__ , __magic_name__ = accelerator.gather((generated_tokens, generated_tasks) ) __magic_name__ = generated_tokens.cpu().numpy() __magic_name__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A_, A_ ): gen_token_dict[task].append(A_ ) __magic_name__ = [[] for _ in range(A_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __magic_name__ = tokenizer.decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) code_gens[task].append(remove_last_block(A_ ) ) return code_gens def a__ ( ): '''simple docstring''' __magic_name__ = HfArgumentParser(A_ ) __magic_name__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __magic_name__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __magic_name__ = """false""" if args.num_workers is None: __magic_name__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __magic_name__ = Accelerator() set_seed(args.seed, device_specific=A_ ) # Load model and tokenizer __magic_name__ = AutoTokenizer.from_pretrained(args.model_ckpt ) __magic_name__ = tokenizer.eos_token __magic_name__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __magic_name__ = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0, A_, A_ )] ), } # Load evaluation dataset and metric __magic_name__ = load_dataset("""openai_humaneval""" ) __magic_name__ = load_metric("""code_eval""" ) __magic_name__ = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) __magic_name__ = args.n_samples // args.batch_size __magic_name__ = TokenizedDataset(A_, human_eval["""test"""], n_copies=A_, n_tasks=A_ ) # do not confuse args.batch_size, which is actually the num_return_sequences __magic_name__ = DataLoader(A_, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __magic_name__ = code_eval_metric.compute(references=[""""""], predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception __magic_name__ , __magic_name__ = accelerator.prepare(A_, A_ ) __magic_name__ = complete_code( A_, A_, A_, A_, n_tasks=A_, batch_size=args.batch_size, **A_, ) if accelerator.is_main_process: __magic_name__ = [] for task in tqdm(range(A_ ) ): __magic_name__ = human_eval["""test"""][task]["""test"""] __magic_name__ = f'''check({human_eval['test'][task]['entry_point']})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric __magic_name__ , __magic_name__ = code_eval_metric.compute( references=A_, predictions=A_, num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file, """w""" ) as fp: json.dump(A_, A_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
88
0
from __future__ import annotations from collections import Counter from random import random class __lowercase : """simple docstring""" def __init__( self ) -> str: snake_case : Optional[Any] = {} def UpperCAmelCase ( self , A ) -> None: snake_case : int = {} def UpperCAmelCase ( self , A , A , A ) -> None: if nodea not in self.connections: self.add_node(A ) if nodea not in self.connections: self.add_node(A ) snake_case : Tuple = probability def UpperCAmelCase ( self ) -> list[str]: return list(self.connections ) def UpperCAmelCase ( self , A ) -> str: snake_case : List[Any] = 0 snake_case : Union[str, Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> dict[str, int]: snake_case : str = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) snake_case : Any = Counter(graph.get_nodes() ) snake_case : List[str] = start for _ in range(lowercase ): snake_case : List[Any] = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
176
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool: snake_case : List[str] = first_str.lower().strip() snake_case : List[str] = second_str.lower().strip() # Remove whitespace snake_case : Any = first_str.replace(""" """ ,"""""" ) snake_case : List[str] = second_str.replace(""" """ ,"""""" ) # Strings of different lengths are not anagrams if len(lowercase ) != len(lowercase ): return False # Default values for count should be 0 snake_case : defaultdict[str, int] = defaultdict(lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : List[Any] = input('Enter the first string ').strip() lowerCamelCase : Optional[int] = input('Enter the second string ').strip() lowerCamelCase : Optional[Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
176
1
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = [randint(-10_00 , 10_00 ) for i in range(10 )] _snake_case : str = randint(-50_00 , 50_00 ) return (arr, r) A_ = make_dataset() def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" arr.sort() _snake_case : Any = len(snake_case__ ) for i in range(n - 1 ): _snake_case , _snake_case : Optional[int] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _snake_case : Optional[Any] = """ triplet_sum1(*dataset) """ _snake_case : int = """ triplet_sum2(*dataset) """ _snake_case : List[str] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 ) _snake_case : Optional[Any] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() A_ = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
64
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A_ = logging.get_logger(__name__) class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = None @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str, **a_: Dict ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCamelCase_ ( cls: Tuple ): '''simple docstring''' return f"`pip install {cls.pip_package or cls.name}`" class lowercase( __a ): '''simple docstring''' lowercase__ = "optuna" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: int, a_: str, **a_: List[str] ): '''simple docstring''' return run_hp_search_optuna(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Any ): '''simple docstring''' return default_hp_space_optuna(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "ray" lowercase__ = "'ray[tune]'" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_ray_available() def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: int, a_: str, **a_: List[Any] ): '''simple docstring''' return run_hp_search_ray(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Tuple ): '''simple docstring''' return default_hp_space_ray(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "sigopt" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: str, **a_: int ): '''simple docstring''' return run_hp_search_sigopt(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: List[str] ): '''simple docstring''' return default_hp_space_sigopt(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "wandb" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: str, **a_: Union[str, Any] ): '''simple docstring''' return run_hp_search_wandb(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Any ): '''simple docstring''' return default_hp_space_wandb(a_ ) A_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__ ) > 0: _snake_case : Any = available_backends[0].name if len(snake_case__ ) > 1: logger.info( F"{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
64
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase =500_000 UpperCAmelCase , UpperCAmelCase =os.path.split(__file__) UpperCAmelCase =os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _A ( _a : datasets.Dataset , **_a : Optional[int] ): """simple docstring""" A = dataset.map(**_a ) @get_duration def _A ( _a : datasets.Dataset , **_a : Union[str, Any] ): """simple docstring""" A = dataset.filter(**_a ) def _A ( ): """simple docstring""" A = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: A = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) A = generate_example_dataset( os.path.join(_a , """dataset.arrow""" ) , _a , num_examples=_a ) A = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_a ) def tokenize(_a : Dict ): return tokenizer(examples["""text"""] ) A = map(_a ) A = map(_a , batched=_a ) A = map(_a , function=lambda _a : None , batched=_a ) with dataset.formatted_as(type="""numpy""" ): A = map(_a , function=lambda _a : None , batched=_a ) with dataset.formatted_as(type="""pandas""" ): A = map(_a , function=lambda _a : None , batched=_a ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): A = map(_a , function=lambda _a : None , batched=_a ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): A = map(_a , function=lambda _a : None , batched=_a ) A = map(_a , function=_a , batched=_a ) A = filter(_a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_a , """wb""" ) as f: f.write(json.dumps(_a ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
77
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ): """simple docstring""" A = x_start A = fnc(_a ) A = 0.0 for _ in range(_a ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(_a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _A ( _a : Tuple ): """simple docstring""" return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCAmelCase =10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
77
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=64 , a__=5 , a__=4 , a__=64 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : str = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : Optional[Any] = scope def __A ( self ): return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = MPNetModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ , a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = MPNetForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Union[str, Any] = MPNetForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = self.num_choices _lowerCAmelCase : Tuple = MPNetForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = self.num_labels _lowerCAmelCase : List[str] = MPNetForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : int = config_and_inputs _lowerCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _UpperCamelCase : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : List[str] = True def __A ( self ): _lowerCAmelCase : int = MPNetModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a__ ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Optional[Any] = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) _lowerCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : Optional[int] = model(a__ )[0] _lowerCAmelCase : List[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
44
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = KandinskyImgaImgPipeline _UpperCamelCase : Optional[Any] = ["prompt", "image_embeds", "negative_image_embeds", "image"] _UpperCamelCase : List[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] _UpperCamelCase : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Union[str, Any] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): _lowerCAmelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _lowerCAmelCase : int = MultilingualCLIP(a__ ) _lowerCAmelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase : Optional[Any] = UNetaDConditionModel(**a__ ) return model @property def __A ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : int = self.dummy_unet _lowerCAmelCase : Dict = self.dummy_movq _lowerCAmelCase : Tuple = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase : Optional[Any] = DDIMScheduler(**a__ ) _lowerCAmelCase : List[Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , a__ , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ ) # create init_image _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : List[Any] = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : Any = """cpu""" _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**a__ ) _lowerCAmelCase : Optional[int] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Tuple = pipe( **self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0] _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : str = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase : Union[str, Any] = """A red cartoon frog, 4k""" _lowerCAmelCase : int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(a__ ) _lowerCAmelCase : Tuple = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) _lowerCAmelCase : Any = pipeline.to(a__ ) pipeline.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( a__ , generator=a__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase : Union[str, Any] = pipeline( a__ , image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ )
44
1
"""simple docstring""" from itertools import permutations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _a : List[Any] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0 ): '''simple docstring''' return sum( int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : str=5 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : str=None , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , *__SCREAMING_SNAKE_CASE : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # create attention mask __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = self.seq_length // 2 __SCREAMING_SNAKE_CASE = 0 # first forward pass __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __SCREAMING_SNAKE_CASE = ids_tensor((1,) , _UpperCAmelCase ).item() + 1 __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = random_other_next_tokens # append to next input_ids and attn_mask __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCAmelCase )] , dim=1 , ) # get two different outputs __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , *__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase ) # first forward pass __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[ 'last_hidden_state' ] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int=False ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptForCausalLM(_UpperCAmelCase ) model.to(_UpperCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , *__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptModel(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , *__SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BioGptForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) = config_and_inputs __SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCAmelCase ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCAmelCase , gradient_checkpointing=_UpperCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCAmelCase ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCAmelCase ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCAmelCase ) @slow def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __SCREAMING_SNAKE_CASE = 'left' # Define PAD Token = EOS Token = 50256 __SCREAMING_SNAKE_CASE = tokenizer.eos_token __SCREAMING_SNAKE_CASE = model.config.eos_token_id # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ 'Hello, my dog is a little', 'Today, I', ] __SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors="""pt""" , padding=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = inputs['input_ids'].to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model.generate( input_ids=_UpperCAmelCase , attention_mask=inputs["""attention_mask"""].to(_UpperCAmelCase ) , ) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BioGptModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = input_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 'multi_label_classification' __SCREAMING_SNAKE_CASE = input_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[2, 4_805, 9, 656, 21]] ) __SCREAMING_SNAKE_CASE = model(_UpperCAmelCase )[0] __SCREAMING_SNAKE_CASE = 42_384 __SCREAMING_SNAKE_CASE = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(_UpperCAmelCase ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model.generate( **_UpperCAmelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=_UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
267
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _lowerCAmelCase ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ) -> bool: __A : NDArray[floataa] = cross(__snake_case , __snake_case ) __A : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ : List[Any] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ : Dict = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ : Optional[int] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
190
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients A_ , A_ , A_ : Any = equationa A_ , A_ , A_ : Union[str, Any] = equationa # Calculate the determinants of the matrices A_ : Optional[Any] = aa * ba - aa * ba A_ : Optional[int] = ca * ba - ca * ba A_ : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A_ : Optional[int] = determinant_x / determinant A_ : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
65
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCamelCase__ : List[str] = False class lowerCamelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = '''A painting of a squirrel eating a burger ''' a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = generator.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = '''A painting of a squirrel eating a burger ''' a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
352
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A : str = logging.getLogger() def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) A__ = parser.parse_args() return args.f def __lowerCamelCase ( __a :Union[str, Any] , __a :str="eval" ) -> Any: """simple docstring""" A__ = os.path.join(__a , F'{split}_results.json' ) if os.path.exists(__a ): with open(__a , """r""" ) as f: return json.load(__a ) raise ValueError(F'can\'t find {path}' ) A : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_flax_glue.main() A__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_clm_flax.main() A__ = get_results(__lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_summarization_flax.main() A__ = get_results(__lowerCAmelCase , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_mlm_flax.main() A__ = get_results(__lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def a_ ( self : Tuple ) -> Dict: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_ta_mlm_flax.main() A__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def a_ ( self : Dict ) -> Optional[int]: """simple docstring""" A__ = 7 if get_gpu_count() > 1 else 2 A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_flax_ner.main() A__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): run_qa.main() A__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
274
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''xlm-roberta''' def __init__( self : Optional[Any] , __lowerCAmelCase : List[Any]=3_05_22 , __lowerCAmelCase : int=7_68 , __lowerCAmelCase : Tuple=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Union[str, Any]=30_72 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-12 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Tuple="absolute" , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=None , **__lowerCAmelCase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
274
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase_ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = True , ): __a = [file for file in os.listdir(_a ) if os.path.isfile(os.path.join(_a , _a ) )] if identifier is not None: __a = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_a , _a ): for n_ in n_identifier: __a = [file for file in files if n_ not in file] else: __a = [file for file in files if n_identifier not in file] __a = ignore_files or [] ignore_files.append('''__init__.py''' ) __a = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , _a ) if only_modules: __a = file.split('''.''' )[0] try: __a = getattr(_a , _a ) __a = doctest.DocTestSuite(_a ) __a = unittest.TextTestRunner().run(_a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __a = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCAmelCase ( self ): __a = Path('''src/transformers''' ) __a = """modeling""" __a = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_a , identifier=_a , ignore_files=_a ) def __UpperCAmelCase ( self ): __a = Path('''src/transformers''' ) __a = """tokenization""" self.analyze_directory(_a , identifier=_a ) def __UpperCAmelCase ( self ): __a = Path('''src/transformers''' ) __a = """configuration""" self.analyze_directory(_a , identifier=_a ) def __UpperCAmelCase ( self ): __a = Path('''src/transformers''' ) __a = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_a , n_identifier=_a ) def __UpperCAmelCase ( self ): __a = Path('''docs/source''' ) __a = ["""favicon.ico"""] self.analyze_directory(_a , ignore_files=_a , only_modules=_a )
355
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
200
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = [10, 20, 30, 40, 50, 60] _SCREAMING_SNAKE_CASE : List[str] = [2, 4, 6, 8, 10, 12] _SCREAMING_SNAKE_CASE : str = 100 self.assertEqual(kp.calc_profit(__snake_case , __snake_case , __snake_case ) , 210 ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Weight can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Profit can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex( __snake_case , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
200
1
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" a =len(lowercase ) a =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): a =True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): a =False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: a =subset[i - 1][j] if arr[i - 1] <= j: a =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
215
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A ( lowercase ): """simple docstring""" a ={} a =tokenizer(example['''content'''] , truncation=lowercase )['''input_ids'''] a =len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCamelCase_ : Optional[int] = HfArgumentParser(PretokenizationArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : Tuple = multiprocessing.cpu_count() lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase_ : Any = time.time() lowerCamelCase_ : int = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : str = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') lowerCamelCase_ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
215
1
from __future__ import annotations import requests lowercase_ = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "new" , SCREAMING_SNAKE_CASE__ : list | None = None ) -> dict: '''simple docstring''' A__ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(SCREAMING_SNAKE_CASE__ ) - valid_terms ) ): A__ = f'Invalid search term: {invalid_search_terms}' raise ValueError(SCREAMING_SNAKE_CASE__ ) A__ = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={'User-agent': 'A random string'} , ) if response.status_code == 429: raise requests.HTTPError A__ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(SCREAMING_SNAKE_CASE__ )} A__ = {} for id_ in range(SCREAMING_SNAKE_CASE__ ): A__ = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
7
'''simple docstring''' import requests __lowercase : Tuple = '' # <-- Put your OpenWeatherMap appid here! __lowercase : Tuple = 'https://api.openweathermap.org/data/2.5/' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Chicago" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Kolkata, India" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : float = 5_5.6_8 , _SCREAMING_SNAKE_CASE : float = 1_2.5_7 , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowercase : Dict = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
27
0
"""simple docstring""" from __future__ import annotations def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_failure_array(__a ) # 2) Step through text searching for pattern SCREAMING_SNAKE_CASE_ : int = 0, 0 # index into text, pattern while i < len(__a ): if pattern[j] == text[i]: if j == (len(__a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = failure[j - 1] continue i += 1 return False def _A (__a ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [0] SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while j < len(__a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: SCREAMING_SNAKE_CASE_ : Tuple = failure[i - 1] continue j += 1 failure.append(__a ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ : Any = """abc1abc12""" UpperCAmelCase_ : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase_ : Union[str, Any] = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ : Optional[Any] = """ABABX""" UpperCAmelCase_ : List[Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase_ : Tuple = """AAAB""" UpperCAmelCase_ : Optional[Any] = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase_ : Dict = """abcdabcy""" UpperCAmelCase_ : Dict = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase_ : Any = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
364
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _A (__a , __a , __a , __a ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _A (__a ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _A (__a ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = digit if sudoku(__a ) is not None: return grid SCREAMING_SNAKE_CASE_ : Any = 0 return None def _A (__a ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") UpperCAmelCase_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
318
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case_ , default=0 , help='''cuda_id.''' , ) UpperCamelCase__ :int = parser.parse_args() return args def a ( __a , __a , __a ) -> str: '''simple docstring''' if not len(snake_case_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = imgs[0].size UpperCamelCase__ :Tuple = Image.new('''RGB''' , size=(cols * w, rows * h) ) UpperCamelCase__ , UpperCamelCase__ :str = grid.size for i, img in enumerate(snake_case_ ): grid.paste(snake_case_ , box=(i % cols * w, i // cols * h) ) return grid def a ( __a , __a="robotic cat with wings" , __a=7.5 , __a=50 , __a=1 , __a=42 , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = torch.Generator(pipeline.device ).manual_seed(snake_case_ ) UpperCamelCase__ :Optional[Any] = pipeline( snake_case_ , guidance_scale=snake_case_ , num_inference_steps=snake_case_ , generator=snake_case_ , num_images_per_prompt=snake_case_ , ).images UpperCamelCase__ :List[Any] = int(math.sqrt(snake_case_ ) ) UpperCamelCase__ :str = image_grid(snake_case_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __snake_case = parse_args() # Load models and create wrapper for stable diffusion __snake_case = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __snake_case = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __snake_case = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __snake_case = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __snake_case = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __snake_case = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __snake_case = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __snake_case = unet.to(torch.device('''cuda''', args.cuda_id)) __snake_case = pipeline.to(unet.device) __snake_case = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __snake_case = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
97
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class _lowercase ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False _SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 _SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None _SCREAMING_SNAKE_CASE : int = 1280 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = False def a ( self : Dict , SCREAMING_SNAKE_CASE__ : jax.random.KeyArray ) -> FrozenDict: # init input tensors __lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) __lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )["params"] def a ( self : int ) -> List[str]: __lowerCAmelCase = self.block_out_channels __lowerCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) __lowerCAmelCase = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase = [] __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = down_blocks # mid __lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __lowerCAmelCase = [] __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": __lowerCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = output_channel __lowerCAmelCase = up_blocks # out __lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __lowerCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ): __lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCAmelCase = self.time_proj(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.time_embedding(SCREAMING_SNAKE_CASE__ ) # 2. pre-process __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) __lowerCAmelCase = self.conv_in(SCREAMING_SNAKE_CASE__ ) # 3. down __lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) else: __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __lowerCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase = new_down_block_res_samples # 4. mid __lowerCAmelCase = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] __lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = up_block( SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train , ) else: __lowerCAmelCase = up_block(SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train ) # 6. post-process __lowerCAmelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.silu(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.conv_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=SCREAMING_SNAKE_CASE__ )
229
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } __lowercase = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } __lowercase = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class _A ( _a ): """simple docstring""" UpperCAmelCase : Dict = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : List[str] = DistilBertTokenizer def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]="[UNK]" , __UpperCAmelCase : List[Any]="[SEP]" , __UpperCAmelCase : int="[PAD]" , __UpperCAmelCase : int="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Any , ): super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , __UpperCAmelCase) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase) != tokenize_chinese_chars ): a : List[str] = getattr(__UpperCAmelCase , normalizer_state.pop("type")) a : Any = do_lower_case a : List[str] = strip_accents a : List[Any] = tokenize_chinese_chars a : Optional[Any] = normalizer_class(**__UpperCAmelCase) a : Optional[int] = do_lower_case def __snake_case ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : str=None): a : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None): a : int = [self.sep_token_id] a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): a : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase)
226
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' try: with open(snake_case__ , 'rb' ) as flax_state_f: _UpperCAmelCase = from_bytes(snake_case__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(snake_case__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _UpperCAmelCase = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) _UpperCAmelCase = '' _UpperCAmelCase = flatten_dict(snake_case__ , sep='.' ) _UpperCAmelCase = pt_model.state_dict() # keep track of unexpected & missing keys _UpperCAmelCase = [] _UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] _UpperCAmelCase = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] _UpperCAmelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _UpperCAmelCase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(snake_case__ ): _UpperCAmelCase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) _UpperCAmelCase = '.'.join(snake_case__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _UpperCAmelCase = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor _UpperCAmelCase = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list _UpperCAmelCase = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(snake_case__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ' use it for predictions and inference.' ) return pt_model
339
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]: lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]: if split_mlp_wi: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowerCamelCase = (wi_a, wi_a) else: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict: lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) lowerCamelCase = collections.OrderedDict() # Shared embeddings. lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 2 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T lowerCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCamelCase = state_dict["""shared.weight"""] return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCamelCase = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCamelCase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str: lowerCamelCase = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase = UMTaEncoderModel(snake_case__ ) else: lowerCamelCase = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
291
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = args.log_outputs _UpperCamelCase = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric _UpperCamelCase = load_metric('''wer''' ) _UpperCamelCase = load_metric('''cer''' ) # compute metrics _UpperCamelCase = wer.compute(references=result['''target'''], predictions=result['''prediction'''] ) _UpperCamelCase = cer.compute(references=result['''target'''], predictions=result['''prediction'''] ) # print & log results _UpperCamelCase = F'''WER: {wer_result}\nCER: {cer_result}''' print(__snake_case ) with open(F'''{dataset_id}_eval_results.txt''', '''w''' ) as f: f.write(__snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _UpperCamelCase = F'''log_{dataset_id}_predictions.txt''' _UpperCamelCase = F'''log_{dataset_id}_targets.txt''' with open(__snake_case, '''w''' ) as p, open(__snake_case, '''w''' ) as t: # mapping function to write output def write_to_file(__snake_case, __snake_case ): p.write(F'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(__snake_case, with_indices=__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _UpperCamelCase = re.sub(__snake_case, '''''', text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _UpperCamelCase = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: _UpperCamelCase = ''' '''.join(text.split(__snake_case ) ) return text def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=__snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _UpperCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id ) _UpperCamelCase = feature_extractor.sampling_rate # resample audio _UpperCamelCase = dataset.cast_column('''audio''', Audio(sampling_rate=__snake_case ) ) # load eval pipeline if args.device is None: _UpperCamelCase = 0 if torch.cuda.is_available() else -1 _UpperCamelCase = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device ) # map function to decode audio def map_to_pred(__snake_case ): _UpperCamelCase = asr( batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) _UpperCamelCase = prediction['''text'''] _UpperCamelCase = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples _UpperCamelCase = dataset.map(__snake_case, remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__snake_case, __snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _a = parser.parse_args() main(args)
360
"""simple docstring""" import numpy class _UpperCAmelCase: def __init__( self , __a , __a) -> None: '''simple docstring''' _UpperCamelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _UpperCamelCase = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _UpperCamelCase = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _UpperCamelCase = numpy.random.rand(3 , 1) # Real output values provided. _UpperCamelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _UpperCamelCase = numpy.zeros(output_array.shape) def UpperCAmelCase ( self) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase ( self) -> None: '''simple docstring''' _UpperCamelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) _UpperCamelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) _UpperCamelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase ( self , __a , __a , __a) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1): _UpperCamelCase = self.feedforward() self.back_propagation() if give_loss: _UpperCamelCase = numpy.mean(numpy.square(output - self.feedforward())) print(F'''Iteration {iteration} Loss: {loss}''') def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' _UpperCamelCase = input_arr _UpperCamelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ), dtype=numpy.floataa, ) # True output values for the given input values. _UpperCamelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.floataa ) # Calling neural network class. _UpperCamelCase = TwoHiddenLayerNeuralNetwork( input_array=__snake_case, output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case, iterations=10, give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.floataa ) ) if __name__ == "__main__": example()
100
0
"""simple docstring""" # Algorithm for the pigeonhole sorting def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = min(__lowerCamelCase ) # min() finds the minimum value _UpperCAmelCase = max(__lowerCamelCase ) # max() finds the maximum value _UpperCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _UpperCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__lowerCamelCase , __lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _UpperCAmelCase = 0 for count in range(__lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _UpperCAmelCase = count + min_val i += 1 def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__lowerCamelCase ) print('''Sorted order is:''' , ''' '''.join(__lowerCamelCase ) ) if __name__ == "__main__": main()
260
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(__lowerCamelCase ) + 1 a = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
228
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=1 ) -> int: if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0 ) -> int: __lowerCamelCase = [] for old_item in old_list: __lowerCamelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) __lowerCamelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) __lowerCamelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) __lowerCamelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) __lowerCamelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) __lowerCamelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) __lowerCamelCase = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0 ) -> str: __lowerCamelCase = [] for old_item in old_list: __lowerCamelCase = old_item __lowerCamelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) __lowerCamelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) __lowerCamelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) __lowerCamelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) __lowerCamelCase = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Union[str, Any]: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __lowerCamelCase = old_checkpoint[path] __lowerCamelCase = old_tensor.shape[0] // 3 __lowerCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __lowerCamelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 __lowerCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = old_tensor.split(channels // num_heads , dim=1 ) __lowerCamelCase = query.reshape(UpperCamelCase__ ) __lowerCamelCase = key.reshape(UpperCamelCase__ ) __lowerCamelCase = value.reshape(UpperCamelCase__ ) for path in paths: __lowerCamelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __lowerCamelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) __lowerCamelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) __lowerCamelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: __lowerCamelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __lowerCamelCase = old_checkpoint[path['''old''']][:, :, 0] else: __lowerCamelCase = old_checkpoint[path['''old''']] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: __lowerCamelCase = {} __lowerCamelCase = checkpoint['''time_embed.0.weight'''] __lowerCamelCase = checkpoint['''time_embed.0.bias'''] __lowerCamelCase = checkpoint['''time_embed.2.weight'''] __lowerCamelCase = checkpoint['''time_embed.2.bias'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.weight'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.bias'''] __lowerCamelCase = checkpoint['''out.0.weight'''] __lowerCamelCase = checkpoint['''out.0.bias'''] __lowerCamelCase = checkpoint['''out.2.weight'''] __lowerCamelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the middle blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the output blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ ) } for i in range(1 , UpperCamelCase__ ): __lowerCamelCase = (i - 1) // (config['''num_res_blocks'''] + 1) __lowerCamelCase = (i - 1) % (config['''num_res_blocks'''] + 1) __lowerCamelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] __lowerCamelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: __lowerCamelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] __lowerCamelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ ) __lowerCamelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} __lowerCamelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase__ ) if len(UpperCamelCase__ ): __lowerCamelCase = renew_attention_paths(UpperCamelCase__ ) __lowerCamelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCamelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ , ) __lowerCamelCase = middle_blocks[0] __lowerCamelCase = middle_blocks[1] __lowerCamelCase = middle_blocks[2] __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) __lowerCamelCase = renew_attention_paths(UpperCamelCase__ ) __lowerCamelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ ) for i in range(UpperCamelCase__ ): __lowerCamelCase = i // (config['''num_res_blocks'''] + 1) __lowerCamelCase = i % (config['''num_res_blocks'''] + 1) __lowerCamelCase = [shave_segments(UpperCamelCase__ , 2 ) for name in output_blocks[i]] __lowerCamelCase = {} for layer in output_block_layers: __lowerCamelCase , __lowerCamelCase = layer.split('''.''' )[0], shave_segments(UpperCamelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase__ ) else: __lowerCamelCase = [layer_name] if len(UpperCamelCase__ ) > 1: __lowerCamelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] __lowerCamelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ ) __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ ) __lowerCamelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __lowerCamelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) __lowerCamelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] __lowerCamelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(UpperCamelCase__ ) == 2: __lowerCamelCase = [] if len(UpperCamelCase__ ): __lowerCamelCase = renew_attention_paths(UpperCamelCase__ ) __lowerCamelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCamelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=UpperCamelCase__ , ) else: __lowerCamelCase = renew_resnet_paths(UpperCamelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __lowerCamelCase = '''.'''.join(['''output_blocks''', str(UpperCamelCase__ ), path['''old''']] ) __lowerCamelCase = '''.'''.join(['''up_blocks''', str(UpperCamelCase__ ), '''resnets''', str(UpperCamelCase__ ), path['''new''']] ) __lowerCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCAmelCase =json.loads(f.read()) __UpperCAmelCase =convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCAmelCase =UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCAmelCase =DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) __UpperCAmelCase =VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) __UpperCAmelCase =LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
356
'''simple docstring''' __UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __lowerCAmelCase ( ) -> None: __lowerCamelCase = input('''Enter message: ''' ) __lowerCamelCase = input('''Enter key [alphanumeric]: ''' ) __lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowerCamelCase = '''encrypt''' __lowerCamelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): __lowerCamelCase = '''decrypt''' __lowerCamelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) print(f"""\n{mode.title()}ed message:""" ) print(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''encrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''decrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = key.upper() for symbol in message: __lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCamelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCamelCase__ ): __lowerCamelCase = 0 else: translated.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": main()
237
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _a ( UpperCamelCase__ ): def __get__( self : Optional[int] , lowercase : Tuple , lowercase : Tuple=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase = '''__cached_''' + self.fget.__name__ UpperCAmelCase = getattr(lowercase_ , lowercase_ , lowercase_ ) if cached is None: UpperCAmelCase = self.fget(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) return cached def snake_case_ (_a : Dict ): UpperCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def snake_case_ (_a : Any ): if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def snake_case_ (_a : str ): return isinstance(_lowerCamelCase , np.ndarray ) def snake_case_ (_a : Union[str, Any] ): return _is_numpy(_lowerCamelCase ) def snake_case_ (_a : Dict ): import torch return isinstance(_lowerCamelCase , torch.Tensor ) def snake_case_ (_a : Union[str, Any] ): return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def snake_case_ (_a : Any ): import torch return isinstance(_lowerCamelCase , torch.device ) def snake_case_ (_a : int ): return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def snake_case_ (_a : Optional[Any] ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def snake_case_ (_a : Any ): return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def snake_case_ (_a : List[Any] ): import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def snake_case_ (_a : List[str] ): return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def snake_case_ (_a : Union[str, Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def snake_case_ (_a : str ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def snake_case_ (_a : str ): import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def snake_case_ (_a : Tuple ): return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def snake_case_ (_a : Optional[int] ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case_ (_a : int ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class _a ( UpperCamelCase__ ): def A ( self : int ): '''simple docstring''' UpperCAmelCase = fields(self ) # Safety and consistency checks if not len(lowercase_ ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) UpperCAmelCase = getattr(self , class_fields[0].name ) UpperCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase_ ): if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = first_field.items() UpperCAmelCase = True else: try: UpperCAmelCase = iter(lowercase_ ) UpperCAmelCase = True except TypeError: UpperCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase_ ): if ( not isinstance(lowercase_ , (list, tuple) ) or not len(lowercase_ ) == 2 or not isinstance(element[0] , lowercase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase = element[1] elif first_field is not None: UpperCAmelCase = first_field else: for field in class_fields: UpperCAmelCase = getattr(self , field.name ) if v is not None: UpperCAmelCase = v def __delitem__( self : List[Any] , *lowercase : List[Any] , **lowercase : Optional[Any] ): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def A ( self : Tuple , *lowercase : int , **lowercase : int ): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def A ( self : List[Any] , *lowercase : Optional[int] , **lowercase : Tuple ): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def A ( self : Dict , *lowercase : Optional[int] , **lowercase : Any ): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase_ , lowercase_ ) super().__setattr__(lowercase_ , lowercase_ ) def __setitem__( self : Tuple , lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' super().__setitem__(lowercase_ , lowercase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase_ , lowercase_ ) def A ( self : List[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _a ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def A ( cls : Any , lowercase : int ): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class _a ( UpperCamelCase__ ): __a : Any = """longest""" __a : Union[str, Any] = """max_length""" __a : Union[str, Any] = """do_not_pad""" class _a ( UpperCamelCase__ ): __a : List[Any] = """pt""" __a : int = """tf""" __a : int = """np""" __a : Any = """jax""" class _a : def __init__( self : List[str] , lowercase : List[ContextManager] ): '''simple docstring''' UpperCAmelCase = context_managers UpperCAmelCase = ExitStack() def __enter__( self : Dict ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(lowercase_ ) def __exit__( self : List[Any] , *lowercase : Optional[Any] , **lowercase : str ): '''simple docstring''' self.stack.__exit__(*lowercase_ , **lowercase_ ) def snake_case_ (_a : Dict ): UpperCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case_ (_a : List[str] ): UpperCAmelCase = model_class.__name__ UpperCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case_ (_a : MutableMapping , _a : str = "" , _a : str = "." ): def _flatten_dict(_a : List[Any] , _a : int="" , _a : Any="." ): for k, v in d.items(): UpperCAmelCase = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def snake_case_ (_a : Union[str, Any] , _a : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case_ (_a : int , _a : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def snake_case_ (_a : Dict , _a : Any ): if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def snake_case_ (_a : List[str] , _a : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def snake_case_ (_a : List[str] , _a : Dict ): if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def snake_case_ (_a : List[str] ): if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def snake_case_ (_a : List[str] , _a : Optional[Any] ): for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): UpperCAmelCase = [F"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase = F"{repo_id}--{value}" return auto_map def snake_case_ (_a : Dict ): for base_class in inspect.getmro(_lowerCamelCase ): UpperCAmelCase = base_class.__module__ UpperCAmelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
34
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[int] =16 __lowerCAmelCase : Tuple =32 def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : DatasetDict , _lowerCamelCase : List[int] , _lowerCamelCase : List[int] , _lowerCamelCase : int = 16 ): A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = DatasetDict( { "train": dataset["train"].select(_lowerCamelCase ), "validation": dataset["train"].select(_lowerCamelCase ), "test": dataset["validation"], } ) def tokenize_function(_lowerCamelCase : Dict ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["test"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : str ): # New Code # A__ = [] # Download the dataset A__ = load_dataset("glue" , "mrpc" ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCamelCase ): A__, A__, A__ = get_fold_dataloaders( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__, A__, A__, A__, A__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_lowerCamelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(_lowerCamelCase , dim=0 ) A__ = torch.stack(_lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase ) accelerator.print("Average test metrics from all folds:" , _lowerCamelCase ) def UpperCamelCase ( ): A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowerCamelCase , default=3 , help="The number of splits to perform across the dataset" ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
237
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase_ = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ lowerCamelCase_ = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ lowerCamelCase_ = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): return float((preds == labels).mean() ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="binary" ): A : Optional[Any] = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) A : Tuple = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Optional[int] = {} for id_pred, label in zip(_lowerCamelCase , _lowerCamelCase ): A : List[str] = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" A : List[Any] = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A : str = [(pred, label)] A : Any = [], [] for question, preds_labels in question_map.items(): A : Tuple = zip(*_lowerCamelCase ) A : Optional[Any] = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average="macro" ) fas.append(_lowerCamelCase ) A : int = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCamelCase ) ) ems.append(_lowerCamelCase ) A : List[Any] = float(sum(_lowerCamelCase ) / len(_lowerCamelCase ) ) A : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase ) A : str = float(fa_score(y_true=_lowerCamelCase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(__lowerCamelCase , __lowerCamelCase , fa_avg="macro" ) elif self.config_name == "record": A : Union[str, Any] = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] A : Optional[int] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__lowerCamelCase , __lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__lowerCamelCase , __lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
362
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Dict = np.argmax(_lowerCamelCase , axis=1 ) return np.sum(outputs == labels ) def UpperCAmelCase ( _lowerCamelCase ): with open(_lowerCamelCase , encoding="utf_8" ) as f: A : Dict = csv.reader(_lowerCamelCase ) A : Optional[int] = [] next(_lowerCamelCase ) # skip the first line for line in tqdm(_lowerCamelCase ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : str = [] for dataset in encoded_datasets: A : List[str] = len(_lowerCamelCase ) A : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa ) A : Any = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) A : str = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowerCamelCase ): A : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A : str = with_conta A : Any = with_conta A : Union[str, Any] = len(_lowerCamelCase ) - 1 A : Dict = len(_lowerCamelCase ) - 1 A : int = with_conta A : int = with_conta A : int = mc_label A : Optional[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def UpperCAmelCase ( ): A : Any = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=_lowerCamelCase , default="" ) parser.add_argument("--eval_dataset" , type=_lowerCamelCase , default="" ) parser.add_argument("--seed" , type=_lowerCamelCase , default=42 ) parser.add_argument("--num_train_epochs" , type=_lowerCamelCase , default=3 ) parser.add_argument("--train_batch_size" , type=_lowerCamelCase , default=8 ) parser.add_argument("--eval_batch_size" , type=_lowerCamelCase , default=16 ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=_lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=_lowerCamelCase , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=_lowerCamelCase , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=_lowerCamelCase , default=6.25e-5 ) parser.add_argument("--warmup_steps" , default=0 , type=_lowerCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=_lowerCamelCase , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=_lowerCamelCase , default=0.01 ) parser.add_argument("--lm_coef" , type=_lowerCamelCase , default=0.9 ) parser.add_argument("--n_valid" , type=_lowerCamelCase , default=374 ) parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging." ) A : List[Any] = parser.parse_args() print(_lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A : Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) A : List[Any] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_lowerCamelCase , _lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A : List[Any] = ["_start_", "_delimiter_", "_classify_"] A : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowerCamelCase ) A : str = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) A : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowerCamelCase ) ) model.to(_lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(_lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): return obj return [tokenize_and_encode(_lowerCamelCase ) for o in obj] logger.info("Encoding dataset..." ) A : List[str] = load_rocstories_dataset(args.train_dataset ) A : List[str] = load_rocstories_dataset(args.eval_dataset ) A : str = (train_dataset, eval_dataset) A : Any = tokenize_and_encode(_lowerCamelCase ) # Compute the max input length for the Transformer A : Any = model.config.n_positions // 2 - 2 A : List[str] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A : Dict = min(_lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A : List[Any] = pre_process_datasets(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) A , A : Dict = tensor_datasets[0], tensor_datasets[1] A : Union[str, Any] = TensorDataset(*_lowerCamelCase ) A : Dict = RandomSampler(_lowerCamelCase ) A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.train_batch_size ) A : int = TensorDataset(*_lowerCamelCase ) A : List[str] = SequentialSampler(_lowerCamelCase ) A : Dict = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A : Any = args.max_steps A : str = args.max_steps // (len(_lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: A : Optional[int] = len(_lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs A : str = list(model.named_parameters() ) A : Tuple = ["bias", "LayerNorm.bias", "LayerNorm.weight"] A : List[Any] = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] A : Optional[Any] = AdamW(_lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) A : Any = get_linear_schedule_with_warmup( _lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowerCamelCase ) if args.do_train: A , A , A : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): A : List[Any] = 0 A : Any = 0 A : Dict = tqdm(_lowerCamelCase , desc="Training" ) for step, batch in enumerate(_lowerCamelCase ): A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch ) A , A , A , A : Any = batch A : Any = model(_lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase ) A : Any = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A : Dict = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A : Optional[int] = "Training loss: {:.2e} lr: {:.2e}".format(_lowerCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A : Tuple = model.module if hasattr(_lowerCamelCase , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A : Dict = os.path.join(args.output_dir , _lowerCamelCase ) A : Any = os.path.join(args.output_dir , _lowerCamelCase ) torch.save(model_to_save.state_dict() , _lowerCamelCase ) model_to_save.config.to_json_file(_lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowerCamelCase ) if args.do_eval: model.eval() A , A : Union[str, Any] = 0, 0 A , A : List[Any] = 0, 0 for batch in tqdm(_lowerCamelCase , desc="Evaluating" ): A : List[str] = tuple(t.to(_lowerCamelCase ) for t in batch ) A , A , A , A : Optional[int] = batch with torch.no_grad(): A , A , A , A : Any = model( _lowerCamelCase , mc_token_ids=_lowerCamelCase , lm_labels=_lowerCamelCase , mc_labels=_lowerCamelCase ) A : Dict = mc_logits.detach().cpu().numpy() A : Union[str, Any] = mc_labels.to("cpu" ).numpy() A : Union[str, Any] = accuracy(_lowerCamelCase , _lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A : Union[str, Any] = eval_loss / nb_eval_steps A : Tuple = eval_accuracy / nb_eval_examples A : Optional[int] = tr_loss / nb_tr_steps if args.do_train else None A : Dict = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} A : Optional[Any] = os.path.join(args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _lowerCamelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
256
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=4 , __snake_case=4 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = rotary_dim snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = vocab_size - 1 snake_case = vocab_size - 1 snake_case = vocab_size - 1 def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = 2_0 snake_case = model_class_name(__snake_case ) snake_case = model.init_cache(input_ids.shape[0] , __snake_case ) snake_case = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) snake_case = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case = model( input_ids[:, :-1] , attention_mask=__snake_case , past_key_values=__snake_case , position_ids=__snake_case , ) snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case = model( input_ids[:, -1:] , attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , position_ids=__snake_case , ) snake_case = model(__snake_case ) snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = 2_0 snake_case = model_class_name(__snake_case ) snake_case = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case = model.init_cache(input_ids.shape[0] , __snake_case ) snake_case = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case = model( input_ids[:, :-1] , attention_mask=__snake_case , past_key_values=__snake_case , position_ids=__snake_case , ) snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__snake_case , position_ids=__snake_case , ) snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __magic_name__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def a_ ( self ): snake_case = FlaxGPTJModelTester(self ) def a_ ( self ): for model_class_name in self.all_model_classes: snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case , __snake_case ) def a_ ( self ): for model_class_name in self.all_model_classes: snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __snake_case , __snake_case , __snake_case , __snake_case ) @tooslow def a_ ( self ): snake_case = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) snake_case = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=__snake_case , truncation=__snake_case ) snake_case = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) snake_case = False snake_case = model.config.eos_token_id snake_case = jax.jit(model.generate ) snake_case = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(__snake_case , __snake_case ) @is_pt_flax_cross_test def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case = self._prepare_for_class(__snake_case , __snake_case ) snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case = getattr(__snake_case , __snake_case ) snake_case , snake_case = pt_inputs['''input_ids'''].shape snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__snake_case ): snake_case = 0 snake_case = 1 snake_case = 0 snake_case = 1 snake_case = pt_model_class(__snake_case ).eval() snake_case = model_class(__snake_case , dtype=jnp.floataa ) snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __snake_case ) snake_case = fx_state with torch.no_grad(): snake_case = pt_model(**__snake_case ).to_tuple() snake_case = fx_model(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__snake_case , __snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__snake_case ) snake_case = model_class.from_pretrained(__snake_case , from_pt=__snake_case ) snake_case = fx_model_loaded(**__snake_case ).to_tuple() self.assertEqual( len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(__snake_case , __snake_case ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case = self._prepare_for_class(__snake_case , __snake_case ) snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case = getattr(__snake_case , __snake_case ) snake_case = pt_model_class(__snake_case ).eval() snake_case = model_class(__snake_case , dtype=jnp.floataa ) snake_case = load_flax_weights_in_pytorch_model(__snake_case , fx_model.params ) snake_case , snake_case = pt_inputs['''input_ids'''].shape snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__snake_case ): snake_case = 0 snake_case = 1 snake_case = 0 snake_case = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case = pt_model(**__snake_case ).to_tuple() snake_case = fx_model(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__snake_case , __snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__snake_case ) snake_case = pt_model_class.from_pretrained(__snake_case , from_flax=__snake_case ) with torch.no_grad(): snake_case = pt_model_loaded(**__snake_case ).to_tuple() self.assertEqual( len(__snake_case ) , len(__snake_case ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__snake_case , __snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def a_ ( self ): for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
127
def UpperCAmelCase__ (UpperCamelCase_ = 4_00_00_00 ): """simple docstring""" snake_case = [0, 1] snake_case = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case = 0 for j in range(len(UpperCamelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
127
1
from math import sqrt def __a ( lowerCAmelCase_ : int ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" UpperCAmelCase_= True # 0 and 1 are none primes. if number <= 1: UpperCAmelCase_= False for divisor in range(2 ,int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCAmelCase_= False break # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'status' must been from type bool" return status def __a ( lowerCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCAmelCase_= list(range(2 ,n + 1 ) ) UpperCAmelCase_= [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 ,len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCAmelCase_= 0 # filters actual prime numbers. UpperCAmelCase_= [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list" return ans def __a ( lowerCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" UpperCAmelCase_= [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list" return ans def __a ( lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" UpperCAmelCase_= [] # this list will be returns of the function. # potential prime number factors. UpperCAmelCase_= 2 UpperCAmelCase_= number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type list" return ans def __a ( lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase_= 0 # prime factorization of 'number' UpperCAmelCase_= prime_factorization(lowerCAmelCase_ ) UpperCAmelCase_= max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type int" return ans def __a ( lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase_= 0 # prime factorization of 'number' UpperCAmelCase_= prime_factorization(lowerCAmelCase_ ) UpperCAmelCase_= min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'ans' must been from type int" return ans def __a ( lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 ,lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def __a ( lowerCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 ,lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def __a ( lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" UpperCAmelCase_= [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCAmelCase_= get_prime_numbers(lowerCAmelCase_ ) UpperCAmelCase_= len(lowerCAmelCase_ ) # run variable for while-loops. UpperCAmelCase_= 0 UpperCAmelCase_= None # exit variable. for break up the loops UpperCAmelCase_= True while i < len_pn and loop: UpperCAmelCase_= i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCAmelCase_= False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase_= 0 while numbera != 0: UpperCAmelCase_= numbera % numbera UpperCAmelCase_= numbera UpperCAmelCase_= rest # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase_= 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCAmelCase_= prime_factorization(lowerCAmelCase_ ) UpperCAmelCase_= prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: UpperCAmelCase_= [] UpperCAmelCase_= [] UpperCAmelCase_= max(lowerCAmelCase_ ,lowerCAmelCase_ ) UpperCAmelCase_= 0 UpperCAmelCase_= 0 UpperCAmelCase_= [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ ) UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ ,lowerCAmelCase_ ) ): ans *= n else: UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCAmelCase_= prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __a ( lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" UpperCAmelCase_= 0 UpperCAmelCase_= 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCAmelCase_= p_number_a + 1 # jump to the next number UpperCAmelCase_= [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __a ( lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" UpperCAmelCase_= [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def __a ( lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCAmelCase_= get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCAmelCase_= gcd(abs(lowerCAmelCase_ ) ,abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __a ( lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" UpperCAmelCase_= 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def __a ( lowerCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" UpperCAmelCase_= 0 UpperCAmelCase_= 1 UpperCAmelCase_= 1 # this will be return for _ in range(n - 1 ): UpperCAmelCase_= ans ans += fiba UpperCAmelCase_= tmp return ans
371
import warnings from functools import wraps from typing import Callable def __a ( lowerCAmelCase_ : Callable ) -> Callable: '''simple docstring''' @wraps(lowerCAmelCase_ ) def _inner_fn(*lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : Tuple ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowerCAmelCase_ ,) return fn(*lowerCAmelCase_ ,**lowerCAmelCase_ ) return _inner_fn
277
0
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = [] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_init_end' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_train_begin' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_train_end' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_epoch_begin' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_epoch_end' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_step_begin' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_step_end' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_evaluate' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_predict' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_save' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_log' ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" self.events.append('on_prediction_step' ) @require_torch class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() def UpperCamelCase ( self ): """simple docstring""" shutil.rmtree(self.output_dir ) def UpperCamelCase ( self , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=64 , UpperCAmelCase=64 , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = RegressionDataset(length=UpperCAmelCase ) _UpperCAmelCase = RegressionDataset(length=UpperCAmelCase ) _UpperCAmelCase = RegressionModelConfig(a=UpperCAmelCase , b=UpperCAmelCase ) _UpperCAmelCase = RegressionPreTrainedModel(UpperCAmelCase ) _UpperCAmelCase = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase , report_to=[] , **UpperCAmelCase ) return Trainer( UpperCAmelCase , UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , callbacks=UpperCAmelCase , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) # Order doesn't matter _UpperCAmelCase = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ ) _UpperCAmelCase = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(UpperCAmelCase , cba.__class__ ) elif not isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(cba.__class__ , UpperCAmelCase ) else: self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ['on_init_end', 'on_train_begin'] _UpperCAmelCase = 0 _UpperCAmelCase = len(trainer.get_eval_dataloader() ) _UpperCAmelCase = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_trainer() _UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _UpperCAmelCase = self.get_trainer(disable_tqdm=UpperCAmelCase ) _UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _UpperCAmelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase ) expected_callbacks.remove(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) _UpperCAmelCase = self.get_trainer() _UpperCAmelCase = trainer.pop_callback(UpperCAmelCase ) self.assertEqual(cb.__class__ , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) trainer.add_callback(UpperCAmelCase ) expected_callbacks.insert(0 , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # We can also add, pop, or remove by instance _UpperCAmelCase = self.get_trainer() _UpperCAmelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase ) expected_callbacks.remove(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) _UpperCAmelCase = self.get_trainer() _UpperCAmelCase = trainer.callback_handler.callbacks[0] _UpperCAmelCase = trainer.pop_callback(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) trainer.add_callback(UpperCAmelCase ) expected_callbacks.insert(0 , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=UpperCAmelCase ) _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # Independent log/save/eval _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _UpperCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # A bit of everything _UpperCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() _UpperCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: _UpperCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase ) in warn_mock.call_args[0][0]
39
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ): '''simple docstring''' A_ : Union[str, Any] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : DatasetInfo ): '''simple docstring''' A_ : Union[str, Any] = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) A_ : str = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase ,'dataset_info.json' ) ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[Any] = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) A_ : Tuple = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) A_ : Dict = yaml.safe_dump(__lowercase ) A_ : Tuple = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase ( ): '''simple docstring''' A_ : Any = DatasetInfo() A_ : Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : DatasetInfosDict ): '''simple docstring''' A_ : Union[str, Any] = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A_ : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A_ : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase ,'README.md' ) )
367
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.dummy_uncond_unet A_ : List[Any] = DDIMScheduler() A_ : Any = self.dummy_vq_model A_ : int = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A_ : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) A_ : str = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) A_ : Tuple = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) A_ : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
192
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') a__ : Optional[Any] = int(input('Enter number: ').strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
80
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a_ : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Union[str, Any] = sorted(arg_to_scheduler.keys()) a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a ( pl.LightningModule ): def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) _a = 0 _a = Path(self.hparams.output_dir ) _a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: _a = config _a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: _a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: _a = tokenizer _a = MODEL_MODES[mode] if model is None: _a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: _a = model def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = arg_to_scheduler[self.hparams.lr_scheduler] _a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> Any: _a = self.model _a = ['bias', 'LayerNorm.weight'] _a = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _a = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: _a = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _a = optimizer _a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]: return self.validation_step(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.validation_end(__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: if stage == "test": _a = len(self.test_dataloader().dataset ) else: _a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ ) _a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Tuple: return self.train_loader def __UpperCAmelCase ( self ) -> Dict: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.output_dir.joinpath('best_tfmr' ) _a = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]: parser.add_argument( '--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ ) parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--adafactor' , action='store_true' ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = trainer.lr_schedulers[0]['scheduler'] _a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: rank_zero_info('***** Validation results *****' ) _a = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: rank_zero_info('***** Test results *****' ) _a = trainer.callback_metrics # Log and save results to file _a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__magic_name__ , 'w' ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None: '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model _a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: _a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: _a = LoggingCallback() _a = {} if args.fpaa: _a = 16 if args.gpus > 1: _a = 'auto' _a = 'ddp' _a = args.accumulate_grad_batches _a = None _a = 'auto' _a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
168
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''Salesforce/blip-image-captioning-base''' __SCREAMING_SNAKE_CASE = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __SCREAMING_SNAKE_CASE = '''image_captioner''' __SCREAMING_SNAKE_CASE = AutoModelForVisionaSeq __SCREAMING_SNAKE_CASE = ['''image'''] __SCREAMING_SNAKE_CASE = ['''text'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""vision"""] ) super().__init__(*lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase ) -> Any: return self.pre_processor(images=lowercase , return_tensors="""pt""" ) def __lowerCamelCase ( self , lowercase ) -> Optional[int]: return self.model.generate(**lowercase ) def __lowerCamelCase ( self , lowercase ) -> List[str]: return self.pre_processor.batch_decode(lowercase , skip_special_tokens=lowercase )[0].strip()
243
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( A__ ): snake_case_ : int = ["image_processor", "tokenizer"] snake_case_ : List[Any] = "FlavaImageProcessor" snake_case_ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[Any] , snake_case__ : Tuple=None , snake_case__ : Optional[Any]=None , **snake_case__ : List[str] ): """simple docstring""" _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) _UpperCAmelCase = kwargs.pop("feature_extractor" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) _UpperCAmelCase = self.image_processor def __call__( self : List[str] , snake_case__ : Optional[ImageInput] = None , snake_case__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , snake_case__ : bool = True , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Union[bool, str, TruncationStrategy] = False , snake_case__ : Optional[int] = None , snake_case__ : int = 0 , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : str , ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCAmelCase = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if images is not None: _UpperCAmelCase = self.image_processor( _a , return_image_mask=_a , return_codebook_pixels=_a , return_tensors=_a , **_a , ) if text is not None and images is not None: encoding.update(_a ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*_a , **_a ) def UpperCamelCase ( self : List[str] , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*_a , **_a ) @property def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
133
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
0
'''simple docstring''' def _A ( _lowerCAmelCase ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCAmelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCamelCase = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =EfficientNetConfig() __lowercase =CONFIG_MAP[model_name]['hidden_dim'] __lowercase =CONFIG_MAP[model_name]['width_coef'] __lowercase =CONFIG_MAP[model_name]['depth_coef'] __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =CONFIG_MAP[model_name]['dropout_rate'] __lowercase =CONFIG_MAP[model_name]['dw_padding'] __lowercase ='huggingface/label-files' __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} return config def _A ( ): """simple docstring""" __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_lowerCAmelCase , ) return preprocessor def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __lowercase =sorted(set(_lowerCAmelCase ) ) __lowercase =len(_lowerCAmelCase ) __lowercase ={b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )} __lowercase =[] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __lowercase =block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __lowercase ={} for item in rename_keys: if item[0] in original_param_names: __lowercase ='efficientnet.' + item[1] __lowercase ='classifier.weight' __lowercase ='classifier.bias' return key_mapping def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue __lowercase =key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase =torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: __lowercase =torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =model_classes[model_name]( include_top=_lowerCAmelCase , weights='imagenet' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1_000 , classifier_activation='softmax' , ) __lowercase =original_model.trainable_variables __lowercase =original_model.non_trainable_variables __lowercase ={param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase =param.numpy() __lowercase =list(tf_params.keys() ) # Load HuggingFace model __lowercase =get_efficientnet_config(_lowerCAmelCase ) __lowercase =EfficientNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __lowercase =rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Initialize preprocessor and preprocess input image __lowercase =convert_image_processor(_lowerCAmelCase ) __lowercase =preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase =hf_model(**_lowerCAmelCase ) __lowercase =outputs.logits.detach().numpy() # Original model inference __lowercase =False __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase =image.img_to_array(_lowerCAmelCase ) __lowercase =np.expand_dims(_lowerCAmelCase , axis=0 ) __lowercase =original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) __lowercase =f"""efficientnet-{model_name}""" preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = '''data2vec-text''' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) -> Any: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) A_ : List[Any] = vocab_size A_ : str = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : int = hidden_act A_ : str = intermediate_size A_ : Any = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : Any = initializer_range A_ : List[Any] = layer_norm_eps A_ : Any = position_embedding_type A_ : Tuple = use_cache A_ : Any = classifier_dropout class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
0
import glob import os import random from string import ascii_lowercase, digits import cva __A ='''''' __A ='''''' __A ='''''' __A =1 # (0 is vertical, 1 is horizontal) def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = get_dataset(lowerCamelCase__ , lowerCamelCase__ ) print("Processing..." ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = update_image_and_anno(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for index, image in enumerate(lowerCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase_ = random_chars(3_2 ) lowerCamelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] lowerCamelCase_ = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , lowerCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F'Success {index+1}/{len(lowerCamelCase__ )} with {file_name}' ) lowerCamelCase_ = [] for anno in new_annos[index]: lowerCamelCase_ = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(lowerCamelCase__ ) with open(F'/{file_root}.txt' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] for label_file in glob.glob(os.path.join(lowerCamelCase__ , "*.txt" ) ): lowerCamelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowerCamelCase__ ) as in_file: lowerCamelCase_ = in_file.readlines() lowerCamelCase_ = os.path.join(lowerCamelCase__ , F'{label_name}.jpg' ) lowerCamelCase_ = [] for obj_list in obj_lists: lowerCamelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowerCamelCase__ ) labels.append(lowerCamelCase__ ) return img_paths, labels def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for idx in range(len(lowerCamelCase__ ) ): lowerCamelCase_ = [] lowerCamelCase_ = img_list[idx] path_list.append(lowerCamelCase__ ) lowerCamelCase_ = anno_list[idx] lowerCamelCase_ = cva.imread(lowerCamelCase__ ) if flip_type == 1: lowerCamelCase_ = cva.flip(lowerCamelCase__ , lowerCamelCase__ ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase_ = cva.flip(lowerCamelCase__ , lowerCamelCase__ ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowerCamelCase__ ) new_imgs_list.append(lowerCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase_ ( lowerCamelCase__ = 3_2 ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase_ = ascii_lowercase + digits return "".join(random.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
47
import copy import re class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 'hp' lowerCAmelCase__ = {} lowerCAmelCase__ = None @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = prefix lowerCamelCase_ = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: if len(lowercase ) == 0: return "" lowerCamelCase_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowercase ) + 1 ): lowerCamelCase_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCamelCase_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowercase ): lowerCamelCase_ = "" while integer != 0: lowerCamelCase_ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowerCamelCase_ = 0 while True: lowerCamelCase_ = word + "#" + int_to_alphabetic(lowercase ) if sword in info["reverse_short_word"]: continue else: lowerCamelCase_ = sword break lowerCamelCase_ = short_word lowerCamelCase_ = word return short_word @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> int: lowerCamelCase_ = param_name.split("_" ) lowerCamelCase_ = [TrialShortNamer.shortname_for_word(lowercase , lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCamelCase_ = ["", "_"] for separator in separators: lowerCamelCase_ = separator.join(lowercase ) if shortname not in info["reverse_short_param"]: lowerCamelCase_ = shortname lowerCamelCase_ = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = TrialShortNamer.shortname_for_key(lowercase , lowercase ) lowerCamelCase_ = short_name lowerCamelCase_ = param_name @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Dict: if cls.NAMING_INFO is not None: return lowerCamelCase_ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowerCamelCase_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowercase , lowercase ) lowerCamelCase_ = info @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> Optional[int]: cls.build_naming_info() assert cls.PREFIX is not None lowerCamelCase_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCamelCase_ = cls.NAMING_INFO["short_param"][k] if isinstance(lowercase , lowercase ): lowerCamelCase_ = 1 if v else 0 lowerCamelCase_ = "" if isinstance(lowercase , (int, float) ) else "-" lowerCamelCase_ = f'{key}{sep}{v}' name.append(lowercase ) return "_".join(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> List[Any]: lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCamelCase_ = [] else: lowerCamelCase_ = repr.split("_" ) lowerCamelCase_ = {} for value in values: if "-" in value: lowerCamelCase_ , lowerCamelCase_ = value.split("-" ) else: lowerCamelCase_ = re.sub("[0-9.]" , "" , lowercase ) lowerCamelCase_ = float(re.sub("[^0-9.]" , "" , lowercase ) ) lowerCamelCase_ = cls.NAMING_INFO["reverse_short_param"][p_k] lowerCamelCase_ = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCamelCase_ = cls.DEFAULTS[k] return parameters
47
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase__ ( __lowercase : int , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[int]=1024 ) -> Dict: """simple docstring""" __UpperCamelCase , __UpperCamelCase = [], [] __UpperCamelCase = list(zip(__lowercase , __lowercase ) ) __UpperCamelCase , __UpperCamelCase = sorted_examples[0] def is_too_big(__lowercase : Optional[Any] ): return tok(__lowercase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __UpperCamelCase = new_src + ' ' + src __UpperCamelCase = new_tgt + ' ' + tgt if is_too_big(__lowercase ) or is_too_big(__lowercase ): # cant fit, finalize example finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) __UpperCamelCase , __UpperCamelCase = src, tgt else: # can fit, keep adding __UpperCamelCase , __UpperCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) return finished_src, finished_tgt def lowercase__ ( __lowercase : List[str] , __lowercase : Path , __lowercase : Dict , __lowercase : Dict ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = Path(__lowercase ) save_path.mkdir(exist_ok=__lowercase ) for split in ["train"]: __UpperCamelCase , __UpperCamelCase = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __UpperCamelCase = [x.rstrip() for x in Path(__lowercase ).open().readlines()] __UpperCamelCase = [x.rstrip() for x in Path(__lowercase ).open().readlines()] __UpperCamelCase , __UpperCamelCase = pack_examples(__lowercase , __lowercase , __lowercase , __lowercase ) print(F'''packed {split} split from {len(__lowercase )} examples -> {len(__lowercase )}.''' ) Path(save_path / F'''{split}.source''' ).open('w' ).write('\n'.join(__lowercase ) ) Path(save_path / F'''{split}.target''' ).open('w' ).write('\n'.join(__lowercase ) ) for split in ["val", "test"]: __UpperCamelCase , __UpperCamelCase = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(__lowercase , save_path / F'''{split}.source''' ) shutil.copyfile(__lowercase , save_path / F'''{split}.target''' ) def lowercase__ ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=__lowercase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=__lowercase , default=128 ) parser.add_argument('--data_dir' , type=__lowercase ) parser.add_argument('--save_path' , type=__lowercase ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
53
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
1
"""simple docstring""" import os from math import logaa def __lowercase ( snake_case_ : str = "base_exp.txt" ) ->int: '''simple docstring''' __A : float = 0 __A : Tuple = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_snake_case ) ,_snake_case ) ) ): __A : List[str] = list(map(_snake_case ,line.split(''',''' ) ) ) if x * logaa(_snake_case ) > largest: __A : str = x * logaa(_snake_case ) __A : int = i + 1 return result if __name__ == "__main__": print(solution())
369
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule a_ = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
291
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Tuple = (DDIMParallelScheduler,) snake_case__ : Dict = (("""eta""", 0.0), ("""num_inference_steps""", 5_0)) def _A ( self : Optional[Any] , **__lowerCamelCase : Any ): UpperCamelCase :Any = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**__lowerCamelCase ) return config def _A ( self : Optional[Any] , **__lowerCamelCase : List[Any] ): UpperCamelCase :Dict = self.scheduler_classes[0] UpperCamelCase :List[str] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase :List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = 10, 0.0 UpperCamelCase :Any = self.dummy_model() UpperCamelCase :int = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase :Tuple = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def _A ( self : Optional[int] ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _A ( self : Any ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase :int = self.scheduler_classes[0] UpperCamelCase :List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase :List[str] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _A ( self : List[str] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def _A ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def _A ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _A ( self : List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def _A ( self : List[str] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def _A ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def _A ( self : str ): self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def _A ( self : Tuple ): for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def _A ( self : List[str] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def _A ( self : Dict ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :str = self.scheduler_classes[0] UpperCamelCase :Tuple = self.get_scheduler_config() UpperCamelCase :int = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def _A ( self : Dict ): UpperCamelCase :List[Any] = self.scheduler_classes[0] UpperCamelCase :Optional[Any] = self.get_scheduler_config() UpperCamelCase :List[Any] = scheduler_class(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase :Any = self.dummy_model() UpperCamelCase :Union[str, Any] = self.dummy_sample_deter UpperCamelCase :Optional[Any] = self.dummy_sample_deter + 0.1 UpperCamelCase :List[str] = self.dummy_sample_deter - 0.1 UpperCamelCase :List[Any] = samplea.shape[0] UpperCamelCase :Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase :List[Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase :str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase :str = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase :Any = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase :Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def _A ( self : List[str] ): UpperCamelCase :Tuple = self.full_loop() UpperCamelCase :Any = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase :Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase :List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase :Optional[int] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def _A ( self : List[str] ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase :int = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase :Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def _A ( self : List[Any] ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase :Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase :Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
38
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCAmelCase_ : int = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' UpperCAmelCase_ : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' UpperCAmelCase_ : int = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any="binary" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = simple_accuracy(__magic_name__ , __magic_name__ ) UpperCamelCase :Dict = float(fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average=__magic_name__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = {} for id_pred, label in zip(__magic_name__ , __magic_name__ ): UpperCamelCase :str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" UpperCamelCase :Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase :Dict = [(pred, label)] UpperCamelCase , UpperCamelCase :Optional[int] = [], [] for question, preds_labels in question_map.items(): UpperCamelCase , UpperCamelCase :Optional[Any] = zip(*__magic_name__ ) UpperCamelCase :Optional[int] = fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average="""macro""" ) fas.append(__magic_name__ ) UpperCamelCase :int = int(sum(pred == label for pred, label in preds_labels ) == len(__magic_name__ ) ) ems.append(__magic_name__ ) UpperCamelCase :Optional[int] = float(sum(__magic_name__ ) / len(__magic_name__ ) ) UpperCamelCase :str = sum(__magic_name__ ) / len(__magic_name__ ) UpperCamelCase :Tuple = float(fa_score(y_true=__magic_name__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _A ( self : Optional[Any] ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _A ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : str ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(__lowerCamelCase , __lowerCamelCase , fa_avg="""macro""" ) elif self.config_name == "record": UpperCamelCase :Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCamelCase :Tuple = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__lowerCamelCase , __lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__lowerCamelCase , __lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
38
1
'''simple docstring''' import os from collections.abc import Iterator def __UpperCAmelCase ( a_: str = "." ): for dir_path, dir_names, filenames in os.walk(_a ): _UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_a )[1] in (".py", ".ipynb"): yield os.path.join(_a, _a ).lstrip("./" ) def __UpperCAmelCase ( a_: Dict ): return f"""{i * ' '}*""" if i else "\n##" def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : str = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_a ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_a )} {new_part.replace('_', ' ' ).title()}""" ) return new_path def __UpperCAmelCase ( a_: str = "." ): _UpperCAmelCase : List[str] = "" for filepath in sorted(good_file_paths(_a ) ): _UpperCAmelCase , _UpperCAmelCase : Dict = os.path.split(_a ) if filepath != old_path: _UpperCAmelCase : List[Any] = print_path(_a, _a ) _UpperCAmelCase : int = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Optional[int] = f"""{filepath}/{filename}""".replace(" ", "%20" ) _UpperCAmelCase : Optional[Any] = os.path.splitext(filename.replace("_", " " ).title() )[0] print(f"""{md_prefix(_a )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] )->int: '''simple docstring''' print("Loading config file..." ) def flatten_yaml_as_dict(lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Optional[int]="" , lowerCAmelCase_ :int="." ): snake_case_ = [] for k, v in d.items(): snake_case_ = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_ , sep=lowerCAmelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase_ ) snake_case_ = argparse.Namespace() with open(lowerCAmelCase_ , "r" ) as yaml_file: try: snake_case_ = yaml.load(lowerCAmelCase_ , Loader=yaml.FullLoader ) snake_case_ = flatten_yaml_as_dict(lowerCAmelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) ) return config def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Tuple )->Union[str, Any]: '''simple docstring''' snake_case_ = MobileViTVaConfig() snake_case_ = False # dataset if task_name.startswith("imagenet1k_" ): snake_case_ = 1_000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case_ = 384 else: snake_case_ = 256 snake_case_ = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): snake_case_ = 21_000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case_ = 384 else: snake_case_ = 256 snake_case_ = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): snake_case_ = 151 snake_case_ = 512 snake_case_ = "ade20k-id2label.json" snake_case_ = True elif task_name.startswith("voc_" ): snake_case_ = 21 snake_case_ = 512 snake_case_ = "pascal-voc-id2label.json" snake_case_ = True # orig_config snake_case_ = load_orig_config_file(lowerCAmelCase_ ) assert getattr(lowerCAmelCase_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" snake_case_ = getattr(lowerCAmelCase_ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(lowerCAmelCase_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" snake_case_ = getattr(lowerCAmelCase_ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label snake_case_ = "huggingface/label-files" snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowerCAmelCase_ :Any , lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :Optional[Any] )->Optional[Any]: '''simple docstring''' snake_case_ = dct.pop(lowerCAmelCase_ ) snake_case_ = val def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :int=False )->Dict: '''simple docstring''' if base_model: snake_case_ = "" else: snake_case_ = "mobilevitv2." snake_case_ = [] for k in state_dict.keys(): if k[:8] == "encoder.": snake_case_ = k[8:] else: snake_case_ = k if ".block." in k: snake_case_ = k_new.replace(".block." , "." ) if ".conv." in k: snake_case_ = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: snake_case_ = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: snake_case_ = k_new.replace("conv_1." , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: snake_case_ = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: snake_case_ = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: snake_case_ = [0, 1] elif i == 4: snake_case_ = [0, 1, 2, 3] elif i == 5: snake_case_ = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: snake_case_ = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: snake_case_ = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: snake_case_ = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: snake_case_ = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: snake_case_ = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: snake_case_ = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: snake_case_ = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: snake_case_ = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: snake_case_ = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: snake_case_ = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: snake_case_ = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Optional[int]: '''simple docstring''' snake_case_ = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(lowerCAmelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( )->List[Any]: '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" snake_case_ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict )->Dict: '''simple docstring''' snake_case_ = get_mobilevitva_config(lowerCAmelCase_ , lowerCAmelCase_ ) # load original state_dict snake_case_ = torch.load(lowerCAmelCase_ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): snake_case_ = MobileViTVaForSemanticSegmentation(lowerCAmelCase_ ).eval() snake_case_ = False else: snake_case_ = MobileViTVaForImageClassification(lowerCAmelCase_ ).eval() snake_case_ = False # remove and rename some keys of load the original model snake_case_ = checkpoint remove_unused_keys(lowerCAmelCase_ ) snake_case_ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load modified state_dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case_ = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case_ = model(**lowerCAmelCase_ ) # verify classification model if task_name.startswith("imagenet" ): snake_case_ = outputs.logits snake_case_ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant snake_case_ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
159
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def snake_case( __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : Optional[int] = int(UpperCAmelCase__ ) assert noofclusters < len(UpperCAmelCase__ ) # Find out the dimensionality lowercase : Optional[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase : str = list(range(len(UpperCAmelCase__ ) ) ) shuffle(UpperCAmelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase : int = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase : Union[str, Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase : List[Any] = tf.placeholder('''float64''' , [dim] ) lowercase : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase : Dict = [tf.Variable(0 ) for i in range(len(UpperCAmelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase : str = tf.placeholder('''int32''' ) lowercase : int = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase : Dict = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase : Union[str, Any] = tf.reduce_mean(UpperCAmelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase : Optional[Any] = tf.placeholder('''float''' , [dim] ) lowercase : int = tf.placeholder('''float''' , [dim] ) lowercase : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase__ , UpperCAmelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase : Tuple = tf.placeholder('''float''' , [noofclusters] ) lowercase : Union[str, Any] = tf.argmin(UpperCAmelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCAmelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase : Dict = 1_00 for _ in range(UpperCAmelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCAmelCase__ ) ): lowercase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase : Any = [ sess.run(UpperCAmelCase__ , feed_dict={va: vect, va: sess.run(UpperCAmelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase : Optional[int] = sess.run( UpperCAmelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCAmelCase__ ): # Collect all the vectors assigned to this cluster lowercase : Dict = [ vectors[i] for i in range(len(UpperCAmelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase : Optional[Any] = sess.run( UpperCAmelCase__ , feed_dict={mean_input: array(UpperCAmelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase : Dict = sess.run(UpperCAmelCase__ ) lowercase : List[Any] = sess.run(UpperCAmelCase__ ) return centroids, assignments
363
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = (PNDMScheduler,) _UpperCamelCase : Optional[int] = (('''num_inference_steps''', 5_0),) def __a ( self : Union[str, Any] , **_A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_A ) return config def __a ( self : Optional[Any] , _A : Any=0 , **_A : int ) -> Dict: """simple docstring""" lowercase : List[Any] = dict(self.forward_default_kwargs ) lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A ) lowercase : Optional[Any] = self.dummy_sample lowercase : str = 0.1 * sample lowercase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : Dict = self.get_scheduler_config(**_A ) lowercase : int = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals lowercase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowercase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals lowercase : int = dummy_past_residuals[:] lowercase : List[str] = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample lowercase : List[Any] = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Dict = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample lowercase : List[Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : int ) -> List[str]: """simple docstring""" pass def __a ( self : Optional[Any] , _A : Optional[int]=0 , **_A : str ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = dict(self.forward_default_kwargs ) lowercase : Optional[int] = kwargs.pop('''num_inference_steps''' , _A ) lowercase : Union[str, Any] = self.dummy_sample lowercase : Any = 0.1 * sample lowercase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.get_scheduler_config() lowercase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowercase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) lowercase : Optional[Any] = dummy_past_residuals[:] lowercase : int = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample lowercase : Tuple = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Any = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample lowercase : Union[str, Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : Union[str, Any] , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : str = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config(**_A ) lowercase : int = scheduler_class(**_A ) lowercase : Any = 10 lowercase : Optional[int] = self.dummy_model() lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : List[str] = model(_A , _A ) lowercase : Any = scheduler.step_prk(_A , _A , _A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : Dict = model(_A , _A ) lowercase : List[Any] = scheduler.step_plms(_A , _A , _A ).prev_sample return sample def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : int = dict(self.forward_default_kwargs ) lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: lowercase : Optional[Any] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_A ) lowercase : Dict = self.dummy_sample lowercase : str = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): lowercase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase : Optional[Any] = dummy_past_residuals[:] lowercase : Optional[int] = scheduler.step_prk(_A , 0 , _A , **_A ).prev_sample lowercase : str = scheduler.step_prk(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase : Dict = scheduler.step_plms(_A , 0 , _A , **_A ).prev_sample lowercase : Tuple = scheduler.step_plms(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __a ( self : Any ) -> Optional[Any]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def __a ( self : Tuple ) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) lowercase : str = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config(steps_offset=1 ) lowercase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __a ( self : int ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __a ( self : List[str] ) -> Tuple: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __a ( self : List[str] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __a ( self : Tuple ) -> str: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_A ) def __a ( self : List[Any] ) -> str: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_A ) def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : str = 27 for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.dummy_sample lowercase : Union[str, Any] = 0.1 * sample lowercase : int = self.get_scheduler_config() lowercase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : Union[str, Any] = scheduler.step_prk(_A , _A , _A ).prev_sample def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" with self.assertRaises(_A ): lowercase : Dict = self.scheduler_classes[0] lowercase : Union[str, Any] = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**_A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __a ( self : str ) -> Dict: """simple docstring""" lowercase : List[str] = self.full_loop() lowercase : List[Any] = torch.sum(torch.abs(_A ) ) lowercase : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase : List[str] = self.full_loop(prediction_type='''v_prediction''' ) lowercase : Optional[int] = torch.sum(torch.abs(_A ) ) lowercase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def __a ( self : str ) -> Optional[Any]: """simple docstring""" lowercase : Any = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) lowercase : List[str] = torch.sum(torch.abs(_A ) ) lowercase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) lowercase : int = torch.sum(torch.abs(_A ) ) lowercase : int = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
116
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) A_ : Optional[int] = AlbertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
186
def A ( lowercase ) -> list: '''simple docstring''' UpperCamelCase = len(lowercase ) for i in range(1 , lowercase ): UpperCamelCase = collection[i] UpperCamelCase = 0 UpperCamelCase = i - 1 while low <= high: UpperCamelCase = (low + high) // 2 if val < collection[mid]: UpperCamelCase = mid - 1 else: UpperCamelCase = mid + 1 for j in range(lowercase , lowercase , -1 ): UpperCamelCase = collection[j - 1] UpperCamelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : List[Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
222
0
import random def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" A__ = num - 1 A__ = 0 while s % 2 == 0: A__ = s // 2 t += 1 for _ in range(5 ): A__ = random.randrange(2 , num - 1 ) A__ = pow(lowercase_ , lowercase_ , lowercase_ ) if v != 1: A__ = 0 while v != (num - 1): if i == t - 1: return False else: A__ = i + 1 A__ = (v**2) % num return True def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" if num < 2: return False A__ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ = 1_024 ) -> int: """simple docstring""" while True: A__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowercase_ ): return num if __name__ == "__main__": _lowerCamelCase : List[Any] = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
368
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" create_state_space_tree(lowercase_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: """simple docstring""" if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
231
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _A ( unittest.TestCase ): def __init__( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=100 , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , ): '''simple docstring''' __a = parent __a = vocab_size __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def _lowerCamelCase ( self : Any): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = FlaxBeitModel(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = FlaxBeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.type_sequence_label_size __a = FlaxBeitForImageClassification(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __a = 1 __a = FlaxBeitForImageClassification(__SCREAMING_SNAKE_CASE) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __a = model(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = FlaxBeitModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = model_class(__SCREAMING_SNAKE_CASE) @jax.jit def model_jitted(__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[int]): return model(pixel_values=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) with self.subTest('''JIT Enabled'''): __a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): __a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE)) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(jitted_output.shape , output.shape) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''') __a = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def __snake_case ( ): __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''') if is_vision_available() else None @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''').pixel_values # prepare bool_masked_pos __a = np.ones((1, 196) , dtype=__SCREAMING_SNAKE_CASE) # forward pass __a = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 196, 8_192) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]]) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-2)) @slow def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') # forward pass __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 1_000) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array([-1.23_85, -1.09_87, -1.01_08]) self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) __a = 281 self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') # forward pass __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 21_841) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array([1.68_81, -0.27_87, 0.59_01]) self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) __a = 2_396 self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE)
49
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
49
1
import os def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : Optional[int] = len(grid[0] ) __a : Optional[int] = len(lowerCAmelCase__ ) __a : Tuple = 0 __a : int = 0 __a : int = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowerCAmelCase__ ): for j in range(n_rows - 3 ): __a : int = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __a : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __a : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __a : Optional[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __a : Union[str, Any] = max( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if max_product > largest: __a : List[str] = max_product return largest def __UpperCamelCase ( ): __a : Tuple = [] with open(os.path.dirname(lowerCAmelCase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __a : Union[str, Any] = [[int(lowerCAmelCase__ ) for i in grid[j]] for j in range(len(lowerCAmelCase__ ) )] return largest_product(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
90
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer pass
90
1
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: A__ = "mock-s3-bucket" A__ = f"""s3://{mock_bucket}""" A__ = extract_path_from_uri(lowercase_ ) assert dataset_path.startswith("s3://" ) is False A__ = "./local/path" A__ = extract_path_from_uri(lowercase_ ) assert dataset_path == new_dataset_path def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: A__ = is_remote_filesystem(lowercase_ ) assert is_remote is True A__ = fsspec.filesystem("file" ) A__ = is_remote_filesystem(lowercase_ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} A__ = input_paths[compression_fs_class.protocol] if input_path is None: A__ = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase_ ) A__ = fsspec.filesystem(compression_fs_class.protocol , fo=lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) A__ = os.path.basename(lowercase_ ) A__ = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowercase_ , "r" , encoding="utf-8" ) as f, open(lowercase_ , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: A__ = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} A__ = compressed_file_paths[protocol] A__ = "dataset.jsonl" A__ = f"""{protocol}://{member_file_path}::{compressed_file_path}""" A__, *A__ = fsspec.get_fs_token_paths(lowercase_ ) assert fs.isfile(lowercase_ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: A__ = hf_api.dataset_info(lowercase_ , token=lowercase_ ) A__ = HfFileSystem(repo_info=lowercase_ , token=lowercase_ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowercase_ ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: A__ = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowercase_ , lowercase_ , clobber=lowercase_ ) with pytest.warns(lowercase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowercase_ ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
247
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( A_ ): lowercase__ = '''openai/whisper-base''' lowercase__ = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) lowercase__ = '''transcriber''' lowercase__ = WhisperProcessor lowercase__ = WhisperForConditionalGeneration lowercase__ = ['''audio'''] lowercase__ = ['''text'''] def __magic_name__ ( self : Optional[int] , snake_case_ : Dict ) -> int: '''simple docstring''' return self.pre_processor(snake_case_ , return_tensors="pt" ).input_features def __magic_name__ ( self : int , snake_case_ : int ) -> str: '''simple docstring''' return self.model.generate(inputs=snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(snake_case_ , skip_special_tokens=snake_case_ )[0]
247
1
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ = """AutoImageProcessor""" lowerCAmelCase_ = """AutoTokenizer""" def __init__( self , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A_ , ) UpperCamelCase = kwargs.pop('feature_extractor' ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_ , A_ ) UpperCamelCase = self.image_processor UpperCamelCase = False def __call__( self , *A_ , **A_ )-> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) UpperCamelCase = kwargs.pop('images' , A_ ) UpperCamelCase = kwargs.pop('text' , A_ ) if len(A_ ) > 0: UpperCamelCase = args[0] UpperCamelCase = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: UpperCamelCase = self.image_processor(A_ , *A_ , **A_ ) if text is not None: UpperCamelCase = self.tokenizer(A_ , **A_ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase = encodings['input_ids'] return inputs def UpperCAmelCase_ ( self , *A_ , **A_ )-> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def UpperCAmelCase_ ( self , *A_ , **A_ )-> str: '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) UpperCamelCase = True UpperCamelCase = self.tokenizer yield UpperCamelCase = self.image_processor UpperCamelCase = False def UpperCAmelCase_ ( self , A_ , A_=False , A_=None )-> Optional[Any]: '''simple docstring''' if added_vocab is None: UpperCamelCase = self.tokenizer.get_added_vocab() UpperCamelCase = {} while tokens: UpperCamelCase = re.search(R'<s_(.*?)>' , A_ , re.IGNORECASE ) if start_token is None: break UpperCamelCase = start_token.group(1 ) UpperCamelCase = re.search(RF'''</s_{key}>''' , A_ , re.IGNORECASE ) UpperCamelCase = start_token.group() if end_token is None: UpperCamelCase = tokens.replace(A_ , '' ) else: UpperCamelCase = end_token.group() UpperCamelCase = re.escape(A_ ) UpperCamelCase = re.escape(A_ ) UpperCamelCase = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , A_ , re.IGNORECASE ) if content is not None: UpperCamelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node UpperCamelCase = self.tokenajson(A_ , is_inner_value=A_ , added_vocab=A_ ) if value: if len(A_ ) == 1: UpperCamelCase = value[0] UpperCamelCase = value else: # leaf nodes UpperCamelCase = [] for leaf in content.split(R'<sep/>' ): UpperCamelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": UpperCamelCase = leaf[1:-2] # for categorical special tokens output[key].append(A_ ) if len(output[key] ) == 1: UpperCamelCase = output[key][0] UpperCamelCase = tokens[tokens.find(A_ ) + len(A_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=A_ , added_vocab=A_ ) if len(A_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , ) return self.image_processor
251
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """deberta-v2""" def __init__( self , A_=128100 , A_=1536 , A_=24 , A_=24 , A_=6144 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0 , A_=0.02 , A_=1e-7 , A_=False , A_=-1 , A_=0 , A_=True , A_=None , A_=0 , A_="gelu" , **A_ , )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = relative_attention UpperCamelCase = max_relative_positions UpperCamelCase = pad_token_id UpperCamelCase = position_biased_input # Backwards compatibility if type(A_ ) == str: UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('|' )] UpperCamelCase = pos_att_type UpperCamelCase = vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = kwargs.get('pooler_hidden_size' , A_ ) UpperCamelCase = pooler_dropout UpperCamelCase = pooler_hidden_act class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return 12 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' UpperCamelCase = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
251
1