code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Dict = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = 32 , snake_case_=PILImageResampling.BILINEAR , snake_case_ = True , **snake_case_ , ): _A = do_resize _A = do_rescale _A = size_divisor _A = resample super().__init__(**snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ): _A, _A = get_image_size(snake_case_ ) # Rounds the height and width down to the closest multiple of size_divisor _A = height // size_divisor * size_divisor _A = width // size_divisor * size_divisor _A = resize(snake_case_ , (new_h, new_w) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) return image def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ): return rescale(image=snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _A = do_resize if do_resize is not None else self.do_resize _A = do_rescale if do_rescale is not None else self.do_rescale _A = size_divisor if size_divisor is not None else self.size_divisor _A = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) _A = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. _A = [to_numpy_array(snake_case_ ) for img in images] if do_resize: _A = [self.resize(snake_case_ , size_divisor=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _A = [self.rescale(snake_case_ , scale=1 / 255 ) for image in images] _A = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ShapEImgaImgPipeline __magic_name__ = ['image'] __magic_name__ = ['image'] __magic_name__ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __magic_name__ = False @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ): return 8 @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A = CLIPVisionModel(snake_case_ ) return model @property def lowerCAmelCase__ ( self ): _A = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case_ , do_normalize=snake_case_ , do_resize=snake_case_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _A = PriorTransformer(**snake_case_ ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _A = ShapERenderer(**snake_case_ ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_prior _A = self.dummy_image_encoder _A = self.dummy_image_processor _A = self.dummy_renderer _A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=snake_case_ , clip_sample=snake_case_ , clip_sample_range=1.0 , ) _A = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase__ ( self ): _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**snake_case_ ) _A = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = pipe(**self.get_dummy_inputs(snake_case_ ) ) _A = output.images[0] _A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self ): _A = torch_device == 'cpu' _A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case_ , relax_max_difference=snake_case_ , ) def lowerCAmelCase__ ( self ): _A = self.get_dummy_components() _A = self.pipeline_class(**snake_case_ ) _A = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = 1 _A = 2 _A = self.get_dummy_inputs(snake_case_ ) for key in inputs.keys(): if key in self.batch_params: _A = batch_size * [inputs[key]] _A = pipe(**snake_case_ , num_images_per_prompt=snake_case_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _A = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _A = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.Generator(device=snake_case_ ).manual_seed(0 ) _A = pipe( snake_case_ , generator=snake_case_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
27
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
1
import math __A : List[str] = 10 __A : Any = 7 __A : str = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 20 ) -> str: """simple docstring""" _A = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE ) _A = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
27
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _A = get_sagemaker_input() else: _A = get_cluster_input() return config def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('config' , description=_SCREAMING_SNAKE_CASE ) else: _A = argparse.ArgumentParser('Accelerate config command' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = get_user_input() if args.config_file is not None: _A = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _A = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(F"accelerate configuration saved at {config_file}" ) def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" _A = config_command_parser() _A = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" def count_of_possible_combinations(_SCREAMING_SNAKE_CASE ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _A = sum( count_of_possible_combinations_with_dp_array(target - item , _SCREAMING_SNAKE_CASE ) for item in array ) _A = answer return answer _A = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = [0] * (target + 1) _A = 1 for i in range(1 , target + 1 ): for j in range(_SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __A : str = 3 __A : Tuple = 5 __A : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
27
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
1
import string def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = '' for i in sequence: _A = ord(_SCREAMING_SNAKE_CASE ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = string.ascii_letters _A = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_SCREAMING_SNAKE_CASE )] if c in letters else c for c in sequence ) def __lowerCAmelCase( ) -> None: """simple docstring""" from timeit import timeit print('Running performance benchmarks...' ) _A = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_SCREAMING_SNAKE_CASE )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=_SCREAMING_SNAKE_CASE )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
27
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import itertools import string from collections.abc import Generator, Iterable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _A = iter(_SCREAMING_SNAKE_CASE ) while True: _A = tuple(itertools.islice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not chunk: return yield chunk def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _A = '' if len(_SCREAMING_SNAKE_CASE ) < 2: return dirty for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_SCREAMING_SNAKE_CASE ) & 1: clean += "X" return clean def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" _A = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _A = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_SCREAMING_SNAKE_CASE ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_SCREAMING_SNAKE_CASE ) return table def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = generate_table(_SCREAMING_SNAKE_CASE ) _A = prepare_input(_SCREAMING_SNAKE_CASE ) _A = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): _A, _A = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) _A, _A = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = generate_table(_SCREAMING_SNAKE_CASE ) _A = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): _A, _A = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) _A, _A = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ ): _A = len(snake_case_ ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , snake_case_ ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase__ ( self , snake_case_ ): _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(snake_case_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : str = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
27
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
1
import fire from utils import calculate_rouge, save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = [x.strip() for x in open(_SCREAMING_SNAKE_CASE ).readlines()] _A = [x.strip() for x in open(_SCREAMING_SNAKE_CASE ).readlines()][: len(_SCREAMING_SNAKE_CASE )] _A = calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if save_path is not None: save_json(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _A = len(_SCREAMING_SNAKE_CASE ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_SCREAMING_SNAKE_CASE ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _A = [] depth_first_search([] , [] , [] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Print all the boards for board in boards: for column in board: print(_SCREAMING_SNAKE_CASE ) print('' ) print(len(_SCREAMING_SNAKE_CASE ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
27
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __A : Dict = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __A : Optional[Any] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __A : Optional[int] = BeautifulSoup(res.text, "html.parser") __A : List[str] = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 42 class lowerCamelCase( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 6_5536 , snake_case_ = None , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 0 , snake_case_ = "fourier" , snake_case_ = True , snake_case_ = False , snake_case_ = 0.0 , snake_case_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , snake_case_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , snake_case_ = "UNetMidBlock1D" , snake_case_ = None , snake_case_ = (32, 32, 64) , snake_case_ = None , snake_case_ = 8 , snake_case_ = 1 , snake_case_ = False , ): super().__init__() _A = sample_size # time if time_embedding_type == "fourier": _A = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=snake_case_ , log=snake_case_ , flip_sin_to_cos=snake_case_ ) _A = 2 * block_out_channels[0] elif time_embedding_type == "positional": _A = Timesteps( block_out_channels[0] , flip_sin_to_cos=snake_case_ , downscale_freq_shift=snake_case_ ) _A = block_out_channels[0] if use_timestep_embedding: _A = block_out_channels[0] * 4 _A = TimestepEmbedding( in_channels=snake_case_ , time_embed_dim=snake_case_ , act_fn=snake_case_ , out_dim=block_out_channels[0] , ) _A = nn.ModuleList([] ) _A = None _A = nn.ModuleList([] ) _A = None # down _A = in_channels for i, down_block_type in enumerate(snake_case_ ): _A = output_channel _A = block_out_channels[i] if i == 0: input_channel += extra_in_channels _A = i == len(snake_case_ ) - 1 _A = get_down_block( snake_case_ , num_layers=snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(snake_case_ ) # mid _A = get_mid_block( snake_case_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=snake_case_ , add_downsample=snake_case_ , ) # up _A = list(reversed(snake_case_ ) ) _A = reversed_block_out_channels[0] if out_block_type is None: _A = out_channels else: _A = block_out_channels[0] for i, up_block_type in enumerate(snake_case_ ): _A = output_channel _A = ( reversed_block_out_channels[i + 1] if i < len(snake_case_ ) - 1 else final_upsample_channels ) _A = i == len(snake_case_ ) - 1 _A = get_up_block( snake_case_ , num_layers=snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(snake_case_ ) _A = output_channel # out _A = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _A = get_out_block( out_block_type=snake_case_ , num_groups_out=snake_case_ , embed_dim=block_out_channels[0] , out_channels=snake_case_ , act_fn=snake_case_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = True , ): _A = timestep if not torch.is_tensor(snake_case_ ): _A = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: _A = timesteps[None].to(sample.device ) _A = self.time_proj(snake_case_ ) if self.config.use_timestep_embedding: _A = self.time_mlp(snake_case_ ) else: _A = timestep_embed[..., None] _A = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _A = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _A = () for downsample_block in self.down_blocks: _A, _A = downsample_block(hidden_states=snake_case_ , temb=snake_case_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _A = self.mid_block(snake_case_ , snake_case_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _A = down_block_res_samples[-1:] _A = down_block_res_samples[:-1] _A = upsample_block(snake_case_ , res_hidden_states_tuple=snake_case_ , temb=snake_case_ ) # 5. post-process if self.out_block: _A = self.out_block(snake_case_ , snake_case_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case_ )
27
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A : int = None __A : str = logging.get_logger(__name__) __A : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A : Dict = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } __A : Tuple = "▁" class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = BigBirdTokenizer __magic_name__ = ['input_ids', 'attention_mask'] __magic_name__ = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<unk>" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="[SEP]" , snake_case_="[MASK]" , snake_case_="[CLS]" , **snake_case_ , ): _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _A = vocab_file _A = False if not self.vocab_file else True def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
27
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if "img_encoder.pos_embed" in name: _A = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _A = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _A = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _A = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _A = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _A = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _A = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _A = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _A = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _A = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _A = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _A = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _A = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _A = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _A = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _A = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _A = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _A = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _A = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _A = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _A = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _A = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _A = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _A = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _A = key.split('.' ) _A, _A = int(key_split[2] ), int(key_split[4] ) _A = config.vision_config.hidden_size if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _A = key.split('.' ) _A = int(key_split[3] ) _A = config.text_config.hidden_size if "weight" in key: _A = val[:dim, :] _A = val[ dim : dim * 2, : ] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = rename_key(_SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _A = val.squeeze_() else: _A = val return orig_state_dict def __lowerCAmelCase( ) -> str: """simple docstring""" _A = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="groupvit-gcc-yfcc" , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _A = GroupViTConfig() _A = GroupViTModel(_SCREAMING_SNAKE_CASE ).eval() _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] _A = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A, _A = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_SCREAMING_SNAKE_CASE ) == 0) # verify result _A = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _A = prepare_img() _A = processor(text=['a photo of a cat', 'a photo of a dog'] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) with torch.no_grad(): _A = model(**_SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": _A = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": _A = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3 ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print('Successfully saved processor and model to' , _SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization='nielsr' ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization='nielsr' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) __A : Tuple = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): _A = 1 for n in range(m + 1 ): for k in range(1 , _SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A : Optional[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __A : Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = [] for part_id in partition_order: _A = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(_SCREAMING_SNAKE_CASE ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> str: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(100 ).repartition(1 ) _A = Spark(_SCREAMING_SNAKE_CASE ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> int: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(10 ).repartition(2 ) _A = [1, 0] _A = _generate_iterable_examples(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Reverse the partitions. _A = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _A, _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> Optional[int]: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(10 ).repartition(1 ) _A = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: _A = lambda _SCREAMING_SNAKE_CASE : x.reverse() _A = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [2, 1, 0] ) _A = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shuffle_data_sources(_SCREAMING_SNAKE_CASE ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): _A, _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> List[str]: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _A = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [0, 2] ) for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): _A, _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _A = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [1, 3] ) for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): _A, _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase( ) -> int: """simple docstring""" _A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _A = spark.range(100 ).repartition(1 ) _A = Spark(_SCREAMING_SNAKE_CASE ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A : int = logging.get_logger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = R'\w+[.]\d+' _A = re.findall(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for pat in pats: _A = key.replace(_SCREAMING_SNAKE_CASE , '_'.join(pat.split('.' ) ) ) return key def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _A = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=42 ) -> Union[str, Any]: """simple docstring""" _A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _A = flax_model.init_weights(PRNGKey(_SCREAMING_SNAKE_CASE ) ) _A = flatten_dict(_SCREAMING_SNAKE_CASE ) _A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _A = rename_key(_SCREAMING_SNAKE_CASE ) _A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _A, _A = rename_key_and_reshape_tensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown _A = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE )
27
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Union[str, Any] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'openai-gpt' __magic_name__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , snake_case_=4_0478 , snake_case_=512 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_="cls_index" , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=0.1 , **snake_case_ , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**snake_case_ )
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'microsoft/speecht5_tts' __magic_name__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) __magic_name__ = 'text_reader' __magic_name__ = SpeechTaProcessor __magic_name__ = SpeechTaForTextToSpeech __magic_name__ = SpeechTaHifiGan __magic_name__ = ['text'] __magic_name__ = ['audio'] def lowerCAmelCase__ ( self ): if self.post_processor is None: _A = 'microsoft/speecht5_hifigan' super().setup() def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ): _A = self.pre_processor(text=snake_case_ , return_tensors='pt' , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) _A = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) _A = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase__ ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __A : str = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
from math import factorial class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = real if isinstance(snake_case_ , snake_case_ ): _A = [1] * rank else: _A = rank def __repr__( self ): return ( F"{self.real}+" F"{'+'.join(str(snake_case_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def lowerCAmelCase__ ( self ): _A = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case_ ) def __add__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): return Dual(self.real + other , self.duals ) _A = self.duals.copy() _A = other.duals.copy() if len(snake_case_ ) > len(snake_case_ ): o_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) elif len(snake_case_ ) < len(snake_case_ ): s_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) _A = [] for i in range(len(snake_case_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case_ ) __magic_name__ = __add__ def __sub__( self , snake_case_ ): return self + other * -1 def __mul__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case_ ) _A = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case_ ) __magic_name__ = __mul__ def __truediv__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case_ ) raise ValueError def __floordiv__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case_ ) raise ValueError def __pow__( self , snake_case_ ): if n < 0 or isinstance(snake_case_ , snake_case_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _A = self for _ in range(n - 1 ): x *= self return x def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if not callable(_SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(_SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires an int as input for order' ) _A = Dual(_SCREAMING_SNAKE_CASE , 1 ) _A = func(_SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
27
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" def merge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_SCREAMING_SNAKE_CASE ) <= 1: return collection _A = len(_SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __A : Tuple = input("Enter numbers separated by a comma:\n").strip() __A : Tuple = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
27
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _A = generate_pascal_triangle(_SCREAMING_SNAKE_CASE ) for row_idx in range(_SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[list[int]]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _A = [] for current_row_idx in range(_SCREAMING_SNAKE_CASE ): _A = populate_current_row(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) triangle.append(_SCREAMING_SNAKE_CASE ) return triangle def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" _A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _A, _A = 1, 1 for current_col_idx in range(1 , _SCREAMING_SNAKE_CASE ): calculate_current_element( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return current_row def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _A = triangle[current_row_idx - 1][current_col_idx - 1] _A = triangle[current_row_idx - 1][current_col_idx] _A = above_to_left_elt + above_to_right_elt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[list[int]]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _A = [[1]] for row_index in range(1 , _SCREAMING_SNAKE_CASE ): _A = [0] + result[-1] + [0] _A = row_index + 1 # Calculate the number of distinct elements in a row _A = sum(divmod(_SCREAMING_SNAKE_CASE , 2 ) ) _A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _A = row_first_half + row_second_half result.append(_SCREAMING_SNAKE_CASE ) return result def __lowerCAmelCase( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: _A = F"{func.__name__}({value})" _A = timeit(F"__main__.{call}" , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
27
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding='utf_8' ) as f: _A = csv.reader(_SCREAMING_SNAKE_CASE ) _A = [] next(_SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(_SCREAMING_SNAKE_CASE ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = [] for dataset in encoded_datasets: _A = len(_SCREAMING_SNAKE_CASE ) _A = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _A = np.zeros((n_batch, 2) , dtype=np.intaa ) _A = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _A = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_SCREAMING_SNAKE_CASE ): _A = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A = with_conta _A = with_conta _A = len(_SCREAMING_SNAKE_CASE ) - 1 _A = len(_SCREAMING_SNAKE_CASE ) - 1 _A = with_conta _A = with_conta _A = mc_label _A = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def __lowerCAmelCase( ) -> List[str]: """simple docstring""" _A = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_SCREAMING_SNAKE_CASE , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--eval_dataset' , type=_SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--num_train_epochs' , type=_SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument('--train_batch_size' , type=_SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument('--eval_batch_size' , type=_SCREAMING_SNAKE_CASE , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_SCREAMING_SNAKE_CASE , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_SCREAMING_SNAKE_CASE , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_SCREAMING_SNAKE_CASE , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_SCREAMING_SNAKE_CASE , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('--lm_coef' , type=_SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument('--n_valid' , type=_SCREAMING_SNAKE_CASE , default=374 ) parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) _A = parser.parse_args() print(_SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _A = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _A = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _A = ['_start_', '_delimiter_', '_classify_'] _A = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_SCREAMING_SNAKE_CASE ) _A = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) _A = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) model.to(_SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(_SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(_SCREAMING_SNAKE_CASE ) for o in obj] logger.info('Encoding dataset...' ) _A = load_rocstories_dataset(args.train_dataset ) _A = load_rocstories_dataset(args.eval_dataset ) _A = (train_dataset, eval_dataset) _A = tokenize_and_encode(_SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer _A = model.config.n_positions // 2 - 2 _A = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _A = min(_SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _A = pre_process_datasets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) _A, _A = tensor_datasets[0], tensor_datasets[1] _A = TensorDataset(*_SCREAMING_SNAKE_CASE ) _A = RandomSampler(_SCREAMING_SNAKE_CASE ) _A = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) _A = TensorDataset(*_SCREAMING_SNAKE_CASE ) _A = SequentialSampler(_SCREAMING_SNAKE_CASE ) _A = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _A = args.max_steps _A = args.max_steps // (len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: _A = len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs _A = list(model.named_parameters() ) _A = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _A = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _A = AdamW(_SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) _A = get_linear_schedule_with_warmup( _SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE ) if args.do_train: _A, _A, _A = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _A = 0 _A = 0 _A = tqdm(_SCREAMING_SNAKE_CASE , desc='Training' ) for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): _A = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch ) _A, _A, _A, _A = batch _A = model(_SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE ) _A = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _A = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _A = 'Training loss: {:.2e} lr: {:.2e}'.format(_SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _A = model.module if hasattr(_SCREAMING_SNAKE_CASE , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _A = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) _A = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , _SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(_SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _A = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _A = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() _A, _A = 0, 0 _A, _A = 0, 0 for batch in tqdm(_SCREAMING_SNAKE_CASE , desc='Evaluating' ): _A = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch ) _A, _A, _A, _A = batch with torch.no_grad(): _A, _A, _A, _A = model( _SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE ) _A = mc_logits.detach().cpu().numpy() _A = mc_labels.to('cpu' ).numpy() _A = accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _A = eval_loss / nb_eval_steps _A = eval_accuracy / nb_eval_examples _A = tr_loss / nb_tr_steps if args.do_train else None _A = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _A = os.path.join(args.output_dir , 'eval_results.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
27
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TextToVideoSDPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __magic_name__ = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _A = CLIPTextModel(snake_case_ ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = TextToVideoSDPipeline(**snake_case_ ) _A = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = 'np' _A = sd_pipe(**snake_case_ ).frames _A = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCAmelCase__ ( self ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
27
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
from __future__ import annotations __A : List[str] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = graph # mapping node to its parent in resulting breadth first tree _A = {} _A = source_vertex def lowerCAmelCase__ ( self ): _A = {self.source_vertex} _A = None _A = [self.source_vertex] # first in first out queue while queue: _A = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case_ ) _A = vertex queue.append(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): if target_vertex == self.source_vertex: return self.source_vertex _A = self.parent.get(snake_case_ ) if target_vertex_parent is None: _A = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(snake_case_ ) return self.shortest_path(snake_case_ ) + F"->{target_vertex}" if __name__ == "__main__": __A : Optional[int] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 8 , snake_case_=32 * 8 , snake_case_=4 , snake_case_=64 , ): _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = hidden_dim _A = hidden_dim def lowerCAmelCase__ ( self ): _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) _A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self ): _A = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _A = self.num_queries _A = self.num_labels _A = [1, 1, 1, 1] _A = self.num_channels _A = 64 _A = 128 _A = self.hidden_dim _A = self.hidden_dim _A = self.hidden_dim return config def lowerCAmelCase__ ( self ): _A, _A, _A, _A, _A = self.prepare_config_and_inputs() _A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_layers ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ): with torch.no_grad(): _A = MaskaFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _A = model(snake_case_ , output_hidden_states=snake_case_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MaskaFormerForUniversalSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _A = model(snake_case_ ) comm_check_on_output(snake_case_ ) _A = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __magic_name__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = MaskaFormerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase__ ( self ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _A = MaskaFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase__ ( self ): _A = (self.model_tester.min_size,) * 2 _A = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case_ ), 'mask_labels': torch.randn((2, 10, *size) , device=snake_case_ ), 'class_labels': torch.zeros(2 , 10 , device=snake_case_ ).long(), } _A = self.model_tester.get_config() _A = MaskaFormerForUniversalSegmentation(snake_case_ ).to(snake_case_ ) _A = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ).to(snake_case_ ) _A = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase__ ( self ): if not self.model_tester.is_training: return _A = self.all_model_classes[1] _A, _A, _A, _A, _A = self.model_tester.prepare_config_and_inputs() _A = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _A = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def lowerCAmelCase__ ( self ): _A = self.all_model_classes[1] _A, _A, _A, _A, _A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(snake_case_ ).to(snake_case_ ) model.train() _A = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A : Optional[Any] = 1E-4 def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase__ ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase__ ( self ): _A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**snake_case_ ) _A = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _A = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _A = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() _A = self.default_image_processor _A = prepare_img() _A = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**snake_case_ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _A = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _A = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() _A = self.default_image_processor _A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) _A = inputs['pixel_values'].to(snake_case_ ) _A = [el.to(snake_case_ ) for el in inputs['mask_labels']] _A = [el.to(snake_case_ ) for el in inputs['class_labels']] with torch.no_grad(): _A = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
27
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
1
from random import shuffle import tensorflow as tf from numpy import array def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = int(_SCREAMING_SNAKE_CASE ) assert noofclusters < len(_SCREAMING_SNAKE_CASE ) # Find out the dimensionality _A = len(vectors[0] ) # Will help select random centroids from among the available vectors _A = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) shuffle(_SCREAMING_SNAKE_CASE ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _A = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _A = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _A = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_SCREAMING_SNAKE_CASE ) ] ##These nodes will assign the centroid Variables the appropriate ##values _A = tf.placeholder('float64' , [dim] ) _A = [] for centroid in centroids: cent_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _A = [tf.Variable(0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ##These nodes will assign an assignment Variable the appropriate ##value _A = tf.placeholder('int32' ) _A = [] for assignment in assignments: cluster_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _A = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _A = tf.reduce_mean(_SCREAMING_SNAKE_CASE , 0 ) ##Node for computing Euclidean distances # Placeholders for input _A = tf.placeholder('float' , [dim] ) _A = tf.placeholder('float' , [dim] ) _A = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _A = tf.placeholder('float' , [noofclusters] ) _A = tf.argmin(_SCREAMING_SNAKE_CASE , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _A = tf.initialize_all_variables() # Initialize all variables sess.run(_SCREAMING_SNAKE_CASE ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _A = 100 for _ in range(_SCREAMING_SNAKE_CASE ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_SCREAMING_SNAKE_CASE ) ): _A = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _A = [ sess.run(_SCREAMING_SNAKE_CASE , feed_dict={va: vect, va: sess.run(_SCREAMING_SNAKE_CASE )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _A = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_SCREAMING_SNAKE_CASE ): # Collect all the vectors assigned to this cluster _A = [ vectors[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _A = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={mean_input: array(_SCREAMING_SNAKE_CASE )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _A = sess.run(_SCREAMING_SNAKE_CASE ) _A = sess.run(_SCREAMING_SNAKE_CASE ) return centroids, assignments
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(_SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(_SCREAMING_SNAKE_CASE , n - 1 ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _A, _A = ( collection[index], collection[index - 1], ) insert_next(_SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": __A : str = input("Enter integers separated by spaces: ") __A : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
27
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
1
import operator as op __A : List[Any] = "scaler.pt" __A : Optional[int] = "pytorch_model" __A : List[str] = "random_states" __A : Any = "optimizer" __A : Optional[int] = "scheduler" __A : List[Any] = "pytorch_model.bin" __A : Any = "pytorch_model.bin.index.json" __A : Any = "model.safetensors" __A : Union[str, Any] = "model.safetensors.index.json" __A : List[str] = "1.10.2" __A : Dict = "py38" __A : Any = "4.17.0" __A : Optional[int] = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __A : Tuple = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __A : Dict = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __A : Optional[Any] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __A : List[Any] = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __A : Dict = "2.0.1" __A : Tuple = ["pdsh", "standard", "openmpi", "mvapich"] __A : List[Any] = ["default", "reduce-overhead", "max-autotune"] __A : Optional[int] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A : List[Any] = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __A : Dict = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __A : List[Any] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : Optional[int] = logging.get_logger(__name__) __A : Dict = Dict[str, Any] __A : Optional[int] = List[Prediction] @add_end_docstrings(__snake_case ) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): super().__init__(*snake_case_ , **snake_case_ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCAmelCase__ ( self , **snake_case_ ): _A = {} if "threshold" in kwargs: _A = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *snake_case_ , **snake_case_ ): return super().__call__(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_image(snake_case_ ) _A = torch.IntTensor([[image.height, image.width]] ) _A = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _A = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _A = target_size return inputs def lowerCAmelCase__ ( self , snake_case_ ): _A = model_inputs.pop('target_size' ) _A = self.model(**snake_case_ ) _A = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _A = model_inputs['bbox'] return model_outputs def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0.9 ): _A = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _A, _A = target_size[0].tolist() def unnormalize(snake_case_ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _A, _A = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _A = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _A = [unnormalize(snake_case_ ) for bbox in model_outputs['bbox'].squeeze(0 )] _A = ['score', 'label', 'box'] _A = [dict(zip(snake_case_ , snake_case_ ) ) for vals in zip(scores.tolist() , snake_case_ , snake_case_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _A = self.image_processor.post_process_object_detection(snake_case_ , snake_case_ , snake_case_ ) _A = raw_annotations[0] _A = raw_annotation['scores'] _A = raw_annotation['labels'] _A = raw_annotation['boxes'] _A = scores.tolist() _A = [self.model.config.idalabel[label.item()] for label in labels] _A = [self._get_bounding_box(snake_case_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _A = ['score', 'label', 'box'] _A = [ dict(zip(snake_case_ , snake_case_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def lowerCAmelCase__ ( self , snake_case_ ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _A, _A, _A, _A = box.int().tolist() _A = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCamelCase( __snake_case ): '''simple docstring''' @staticmethod def lowerCAmelCase__ ( snake_case_ ): _A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = model _A = cache _A = force _A = trust_remote_code def lowerCAmelCase__ ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A : Optional[Any] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : List[str] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __A : Any = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __A : int = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __A : Union[str, Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A : List[Any] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = DPRContextEncoderTokenizer class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = DPRQuestionEncoderTokenizer __A : List[str] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A : Optional[int] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A : Union[str, Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case ) class lowerCamelCase: '''simple docstring''' def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: _A = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _A = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] _A = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] _A = len(snake_case_ ) _A = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages assert len(snake_case_ ) == len( snake_case_ ), F"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." _A = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] _A = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] _A = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: _A = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = 16 , snake_case_ = 64 , snake_case_ = 4 , ): _A = reader_input['input_ids'] _A, _A, _A = reader_output[:3] _A = len(snake_case_ ) _A = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) _A = [] for doc_id in sorted_docs: _A = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A = sequence_ids.index(self.pad_token_id ) else: _A = len(snake_case_ ) _A = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) _A = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _A = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class lowerCamelCase( __snake_case , __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = READER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = READER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = ['input_ids', 'attention_mask'] __magic_name__ = DPRReaderTokenizer
27
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A, _A = image.size _A, _A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) _A = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 _A = image[None].transpose(0 , 3 , 1 , 2 ) _A = torch.from_numpy(_SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = None , snake_case_ = 1 , snake_case_ = 100 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _A = 1 elif isinstance(snake_case_ , torch.Tensor ): _A = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}" ) if isinstance(snake_case_ , PIL.Image.Image ): _A = preprocess(snake_case_ ) _A, _A = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A = (batch_size, self.unet.config.in_channels // 2, height, width) _A = next(self.unet.parameters() ).dtype _A = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _A = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _A = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _A = torch.cat([latents, image] , dim=1 ) _A = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _A = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _A = self.vqvae.decode(snake_case_ ).sample _A = torch.clamp(snake_case_ , -1.0 , 1.0 ) _A = image / 2 + 0.5 _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = F"Input value of [number={number}] must be an integer" raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 1: _A = F"Input value of [number={number}] must be > 0" raise ValueError(_SCREAMING_SNAKE_CASE ) _A = 1 for i in range(1 , _SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , **snake_case_ , ): super().__init__(**snake_case_ ) _A = size if size is not None else {'shortest_edge': 224} _A = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _A = crop_size if crop_size is not None else {'height': 224, 'width': 224} _A = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='crop_size' ) _A = do_resize _A = size _A = resample _A = do_center_crop _A = crop_size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A = image_std if image_std is not None else OPENAI_CLIP_STD _A = do_convert_rgb def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ): _A = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _A = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): _A = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(snake_case_ , param_name='size' , default_to_square=snake_case_ ) _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(snake_case_ , param_name='crop_size' , default_to_square=snake_case_ ) _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _A = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _A = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: _A = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: _A = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _A = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _A = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase: '''simple docstring''' __magic_name__ = None def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) _A = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('env' ) else: _A = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = torch.__version__ _A = torch.cuda.is_available() _A = is_xpu_available() _A = is_npu_available() _A = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ).to_dict() _A = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'PyTorch XPU available': str(_SCREAMING_SNAKE_CASE ), 'PyTorch NPU available': str(_SCREAMING_SNAKE_CASE ), 'System RAM': F"{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB", } if pt_cuda_available: _A = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) _A = ( '\n'.join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F"\t{accelerate_config}" ) print(_SCREAMING_SNAKE_CASE ) _A = accelerate_config return info def __lowerCAmelCase( ) -> int: """simple docstring""" _A = env_command_parser() _A = parser.parse_args() env_command(_SCREAMING_SNAKE_CASE ) return 0 if __name__ == "__main__": raise SystemExit(main())
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = int(_SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE ) _A, _A = divmod(_SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('No input value was provided' ) _A = '-' if number.startswith('-' ) else '' _A = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}" if __name__ == "__main__": from doctest import testmod testmod()
27
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __A : Union[str, Any] = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __A : List[Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 2 ) -> List[Any]: """simple docstring""" def get_dataset(_SCREAMING_SNAKE_CASE ): _A = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_SCREAMING_SNAKE_CASE , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _A = get_dataset(_SCREAMING_SNAKE_CASE ) _A = get_dataset(_SCREAMING_SNAKE_CASE ) _A = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) _A = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" _A = [] for epoch in range(_SCREAMING_SNAKE_CASE ): # Train quickly model.train() for batch in dataloader: _A, _A = batch _A = model(_SCREAMING_SNAKE_CASE ) _A = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() _A = nn.Parameter(torch.randn(1 ) ) _A = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ ( self , snake_case_ ): return x * self.a + self.b class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() # Train baseline _A = Accelerator() _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial _A = os.path.join(snake_case_ , 'initial' ) accelerator.save_state(snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() _A = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() # Train partially set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = Accelerator() _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _A = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything _A = os.path.join(snake_case_ , 'checkpoint' ) accelerator.save_state(snake_case_ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case_ ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() _A = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() # Train partially set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ ) _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _A = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_A), (_A)) = model.a.item(), model.b.item() _A = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = torch.tensor([1, 2, 3] ) _A = torch.tensor([2, 3, 4] ) _A = DummyModel() _A = torch.optim.Adam(net.parameters() ) _A = Accelerator() with self.assertRaises(snake_case_ ) as ve: accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _A = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.99 ) _A, _A = dummy_dataloaders() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A, _A, _A, _A, _A = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() _A = scheduler.state_dict() train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(snake_case_ , scheduler.state_dict() ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A = DummyModel() _A = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 ) # Train baseline _A = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _A = accelerator.prepare(snake_case_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def lowerCAmelCase__ ( self ): _A = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __A : Tuple = "/tmp/accelerate/state_checkpointing" __A : List[str] = DummyModel() __A : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) __A : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __A , __A : Dict = dummy_dataloaders() __A : Any = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __A : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __A , __A , __A , __A , __A : int = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __A , __A : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __A : Optional[int] = group["params"][0].device break assert param_device.type == accelerator.device.type __A : str = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __A : int = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __A : Tuple = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
27
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "x" , _SCREAMING_SNAKE_CASE = 10**-10 , _SCREAMING_SNAKE_CASE = 1 , ) -> complex: """simple docstring""" _A = symbols(_SCREAMING_SNAKE_CASE ) _A = lambdify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = lambdify(_SCREAMING_SNAKE_CASE , diff(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _A = starting_point while True: if diff_function(_SCREAMING_SNAKE_CASE ) != 0: _A = prev_guess - multiplicity * func(_SCREAMING_SNAKE_CASE ) / diff_function( _SCREAMING_SNAKE_CASE ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _A = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
27
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self ): _A = 1 _A = 3 _A = (32, 32) _A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=350 , ) _A = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.Generator(device=snake_case_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images _A = torch.Generator(device=snake_case_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=snake_case_ , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _A = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=350 , ) _A = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images assert image.shape[0] == 2 _A = torch.Generator(device=snake_case_ ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase__ ( self ): _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _A = unet.half() _A = text_encoder.half() # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=350 , ) _A = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type='np' , ).images _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained(snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , num_inference_steps=5 , output_type='np' , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
import os import pytest from attr import dataclass __A : int = "us-east-1" # defaults region @dataclass class lowerCamelCase: '''simple docstring''' __magic_name__ = 42 __magic_name__ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' __magic_name__ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } __magic_name__ = {**hyperparameters, 'max_steps': 1_000} @property def lowerCAmelCase__ ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase__ ( self ): return F"{self.framework}-transfromers-test" @property def lowerCAmelCase__ ( self ): return F"./tests/sagemaker/scripts/{self.framework}" @property def lowerCAmelCase__ ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = SageMakerTestEnvironment(framework=request.cls.framework )
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" _A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _A = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _A = '' else: _A = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _A = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[ : config.hidden_size, : ] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = dct.pop(_SCREAMING_SNAKE_CASE ) _A = val def __lowerCAmelCase( ) -> str: """simple docstring""" _A = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: """simple docstring""" _A = ViTConfig() # patch_size if model_name[-1] == "8": _A = 8 # set labels if required if not base_model: _A = 1_000 _A = 'huggingface/label-files' _A = 'imagenet-1k-id2label.json' _A = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _A = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _A = 384 _A = 1_536 _A = 12 _A = 6 # load original model from torch hub _A = torch.hub.load('facebookresearch/dino:main' , _SCREAMING_SNAKE_CASE ) original_model.eval() # load state_dict of original model, remove and rename some keys _A = original_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) _A = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if base_model: _A = ViTModel(_SCREAMING_SNAKE_CASE , add_pooling_layer=_SCREAMING_SNAKE_CASE ).eval() else: _A = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor _A = ViTImageProcessor() _A = image_processor(images=prepare_img() , return_tensors='pt' ) _A = encoding['pixel_values'] _A = model(_SCREAMING_SNAKE_CASE ) if base_model: _A = original_model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _A = original_model(_SCREAMING_SNAKE_CASE ) assert logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __A : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
27
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __A : Union[str, Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __A : int = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" _A = checkpoint[F"{old_prefix}.in_layers.0.weight"] _A = checkpoint[F"{old_prefix}.in_layers.0.bias"] _A = checkpoint[F"{old_prefix}.in_layers.2.weight"] _A = checkpoint[F"{old_prefix}.in_layers.2.bias"] _A = checkpoint[F"{old_prefix}.emb_layers.1.weight"] _A = checkpoint[F"{old_prefix}.emb_layers.1.bias"] _A = checkpoint[F"{old_prefix}.out_layers.0.weight"] _A = checkpoint[F"{old_prefix}.out_layers.0.bias"] _A = checkpoint[F"{old_prefix}.out_layers.3.weight"] _A = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: _A = checkpoint[F"{old_prefix}.skip_connection.weight"] _A = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" _A, _A, _A = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) _A, _A, _A = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) _A = checkpoint[F"{old_prefix}.norm.weight"] _A = checkpoint[F"{old_prefix}.norm.bias"] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"down_blocks.{i}.attentions.{j}" _A = F"input_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"down_blocks.{i}.downsamplers.0" _A = F"input_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.1" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"up_blocks.{i}.attentions.{j}" _A = F"output_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.2" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __A : Optional[Any] = parser.parse_args() __A : List[str] = strabool(args.class_cond) __A : List[str] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: __A : str = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __A : List[Any] = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: __A : Optional[int] = None __A : str = con_pt_to_diffuser(args.unet_path, unet_config) __A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __A : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") __A : Dict = CMStochasticIterativeScheduler(**scheduler_config) __A : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]: """simple docstring""" _A, _A = set(_SCREAMING_SNAKE_CASE ), [start] while stack: _A = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored __A : Optional[int] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
27
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} __A : str = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __A : Dict = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } __A : Dict = "▁" class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_ = None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) _A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _A = len(self.sp_model ) - 1 _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ): return len(self.sp_model ) def lowerCAmelCase__ ( self ): _A = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(snake_case_ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _A = True _A = [] else: current_sub_tokens.append(snake_case_ ) _A = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __getstate__( self ): _A = self.__dict__.copy() _A = None return state def __setstate__( self , snake_case_ ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Dict = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["ConvNextFeatureExtractor"] __A : Optional[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __A : Optional[Any] = object() # For specifying empty leaf dict `{}` __A : Union[str, Any] = object() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE ) + 1 ): _A = [x.match(_SCREAMING_SNAKE_CASE ) for x, y in zip(_SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(_SCREAMING_SNAKE_CASE ): return True return False def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" def replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for rule, replacement in rules: if _match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return replacement return val return replace def __lowerCAmelCase( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , _SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P('mp' , _SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_SCREAMING_SNAKE_CASE , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , _SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_SCREAMING_SNAKE_CASE , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , _SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = _get_partition_rules() _A = _replacement_rules(_SCREAMING_SNAKE_CASE ) _A = {k: _unmatched for k in flatten_dict(_SCREAMING_SNAKE_CASE )} _A = {k: replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_SCREAMING_SNAKE_CASE ) )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["ConditionalDetrFeatureExtractor"] __A : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
1
import baseaa def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return baseaa.aaadecode(_SCREAMING_SNAKE_CASE ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
27
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __A : Tuple = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = {} state_dict.pop('pixel_mean' , _SCREAMING_SNAKE_CASE ) state_dict.pop('pixel_std' , _SCREAMING_SNAKE_CASE ) _A = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _A = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: _A = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _A = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _A = key.replace('layers.2' , 'proj_out' ) _A = value _A = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ) -> Optional[int]: """simple docstring""" _A = hf_hub_download(_SCREAMING_SNAKE_CASE , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: _A = SamConfig() elif "sam_vit_l" in model_name: _A = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _A = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: _A = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _A = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) _A = replace_keys(_SCREAMING_SNAKE_CASE ) _A = SamImageProcessor() _A = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) _A = SamModel(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _A = hf_model.to('cuda' ) _A = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _A = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) _A = [[[400, 650]]] _A = [[1]] _A = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 _A = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 _A = ((75, 275, 1_725, 850),) _A = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. _A = [[[400, 650], [800, 650]]] _A = [[1, 1]] _A = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() __A : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __A : Union[str, Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = 0 _A = 0 while num > 0: _A = num % 8 _A = octal + (remainder * math.floor(math.pow(10 , _SCREAMING_SNAKE_CASE ) )) counter += 1 _A = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(_SCREAMING_SNAKE_CASE )}" def __lowerCAmelCase( ) -> None: """simple docstring""" print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope _A = self.vocab_size - 1 def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _A = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _A = OpenAIGPTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _A = OpenAIGPTLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _A = OpenAIGPTDoubleHeadsModel(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _A = self.num_labels _A = OpenAIGPTForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __magic_name__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __magic_name__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_=False ): _A = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _A = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ , ) _A = inputs_dict['labels'] _A = inputs_dict['labels'] _A = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case_ , ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase__ ( self ): _A = OpenAIGPTModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = OpenAIGPTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(snake_case_ ) _A = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=snake_case_ ) # the president is _A = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _A = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A : str = logging.get_logger(__name__) __A : Any = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'blip_2_vision_model' def __init__( self , snake_case_=1408 , snake_case_=6144 , snake_case_=39 , snake_case_=16 , snake_case_=224 , snake_case_=14 , snake_case_="gelu" , snake_case_=0.0_0001 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=True , **snake_case_ , ): super().__init__(**snake_case_ ) _A = hidden_size _A = intermediate_size _A = num_hidden_layers _A = num_attention_heads _A = patch_size _A = image_size _A = initializer_range _A = attention_dropout _A = layer_norm_eps _A = hidden_act _A = qkv_bias @classmethod def lowerCAmelCase__ ( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) _A, _A = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'blip_2_qformer' def __init__( self , snake_case_=3_0522 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0 , snake_case_="absolute" , snake_case_=2 , snake_case_=1408 , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = cross_attention_frequency _A = encoder_hidden_size @classmethod def lowerCAmelCase__ ( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) _A, _A = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _A = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'blip-2' __magic_name__ = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=32 , **snake_case_ ): super().__init__(**snake_case_ ) if vision_config is None: _A = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _A = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _A = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _A = BlipaVisionConfig(**snake_case_ ) _A = BlipaQFormerConfig(**snake_case_ ) _A = text_config['model_type'] if 'model_type' in text_config else 'opt' _A = CONFIG_MAPPING[text_model_type](**snake_case_ ) _A = self.text_config.tie_word_embeddings _A = self.text_config.is_encoder_decoder _A = num_query_tokens _A = self.vision_config.hidden_size _A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _A = 1.0 _A = 0.02 @classmethod def lowerCAmelCase__ ( cls , snake_case_ , snake_case_ , snake_case_ , **snake_case_ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case_ , ) def lowerCAmelCase__ ( self ): _A = copy.deepcopy(self.__dict__ ) _A = self.vision_config.to_dict() _A = self.qformer_config.to_dict() _A = self.text_config.to_dict() _A = self.__class__.model_type return output
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
import argparse import datetime def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _A = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_SCREAMING_SNAKE_CASE ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _A = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _A = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _A = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _A = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _A = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _A = datetime.date(int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) ) # Start math if m <= 2: _A = y - 1 _A = m + 12 # maths var _A = int(str(_SCREAMING_SNAKE_CASE )[:2] ) _A = int(str(_SCREAMING_SNAKE_CASE )[2:] ) _A = int(2.6 * m - 5.39 ) _A = int(c / 4 ) _A = int(k / 4 ) _A = int(d + k ) _A = int(t + u + v + x ) _A = int(z - (2 * c) ) _A = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _A = F"Your date {date_input}, is a {days[str(_SCREAMING_SNAKE_CASE )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() __A : Tuple = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) __A : Tuple = parser.parse_args() zeller(args.date_input)
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : Optional[int] = logging.get_logger(__name__) __A : Any = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'imagegpt' __magic_name__ = ['past_key_values'] __magic_name__ = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , snake_case_=512 + 1 , snake_case_=32 * 32 , snake_case_=512 , snake_case_=24 , snake_case_=8 , snake_case_=None , snake_case_="quick_gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , **snake_case_ , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = scale_attn_by_inverse_layer_idx _A = reorder_and_upcast_attn _A = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case_ , **snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = 1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 32 , snake_case_ = 32 , ): _A = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A = dict(preprocessor(images=snake_case_ , return_tensors=snake_case_ ) ) return inputs
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" _A = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _A = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __A : int = [] __A : List[Any] = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): __A : Optional[Any] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) __A : Any = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter __A : Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] __A : Optional[Any] = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f"Following is minimal change for {value}: ") __A : int = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
27
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=[1, 1, 2] , snake_case_=1 , snake_case_=32 , snake_case_=4 , snake_case_=8 , snake_case_=37 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=512 , snake_case_=3 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=False , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = block_sizes _A = num_decoder_layers _A = d_model _A = n_head _A = d_head _A = d_inner _A = hidden_act _A = hidden_dropout _A = attention_dropout _A = activation_dropout _A = max_position_embeddings _A = type_vocab_size _A = 2 _A = num_labels _A = num_choices _A = scope _A = initializer_std # Used in the tests to check the size of the first attention layer _A = n_head # Used in the tests to check the size of the first hidden state _A = self.d_model # Used in the tests to check the number of output hidden states/attentions _A = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _A = self.num_hidden_layers + 2 def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = TFFunnelModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _A = False _A = TFFunnelModel(config=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _A = False _A = TFFunnelModel(config=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = TFFunnelBaseModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _A = False _A = TFFunnelBaseModel(config=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _A = False _A = TFFunnelBaseModel(config=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = TFFunnelForPreTraining(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = TFFunnelForMaskedLM(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = self.num_labels _A = TFFunnelForSequenceClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = self.num_choices _A = TFFunnelForMultipleChoice(config=snake_case_ ) _A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = self.num_labels _A = TFFunnelForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = TFFunnelForQuestionAnswering(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFFunnelModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @require_tf class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFFunnelModelTester(self , base=snake_case_ ) _A = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
27
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __lowerCAmelCase( ) -> Optional[int]: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __lowerCAmelCase( ) -> List[str]: """simple docstring""" _A = 'mock-s3-bucket' _A = F"s3://{mock_bucket}" _A = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path.startswith('s3://' ) is False _A = './local/path' _A = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path == new_dataset_path def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is True _A = fsspec.filesystem('file' ) _A = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} _A = input_paths[compression_fs_class.protocol] if input_path is None: _A = F"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_SCREAMING_SNAKE_CASE ) _A = fsspec.filesystem(compression_fs_class.protocol , fo=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = os.path.basename(_SCREAMING_SNAKE_CASE ) _A = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f, open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} _A = compressed_file_paths[protocol] _A = 'dataset.jsonl' _A = F"{protocol}://{member_file_path}::{compressed_file_path}" _A, *_A = fsspec.get_fs_token_paths(_SCREAMING_SNAKE_CASE ) assert fs.isfile(_SCREAMING_SNAKE_CASE ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = hf_api.dataset_info(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) _A = HfFileSystem(repo_info=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(_SCREAMING_SNAKE_CASE ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def __lowerCAmelCase( ) -> str: """simple docstring""" _A = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , clobber=_SCREAMING_SNAKE_CASE ) with pytest.warns(_SCREAMING_SNAKE_CASE ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_SCREAMING_SNAKE_CASE ) == 1 assert ( str(warning_info[0].message ) == F"A filesystem protocol was already set for {protocol} and will be overwritten." )
27
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=3 , snake_case_=224 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , ): _A = size if size is not None else {'height': 18, 'width': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std def lowerCAmelCase__ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): _A = EfficientFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self ): return self.image_proc_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input _A = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _A = image_processor(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowerCAmelCase__ ( self ): # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input _A = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _A = image_processor(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowerCAmelCase__ ( self ): # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input _A = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _A = image_processor(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
27
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[list[int]]: """simple docstring""" _A = [] if len(_SCREAMING_SNAKE_CASE ) == 1: return [nums.copy()] for _ in range(len(_SCREAMING_SNAKE_CASE ) ): _A = nums.pop(0 ) _A = permute(_SCREAMING_SNAKE_CASE ) for perm in permutations: perm.append(_SCREAMING_SNAKE_CASE ) result.extend(_SCREAMING_SNAKE_CASE ) nums.append(_SCREAMING_SNAKE_CASE ) return result def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" def backtrack(_SCREAMING_SNAKE_CASE ): if start == len(_SCREAMING_SNAKE_CASE ) - 1: output.append(nums[:] ) else: for i in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _A, _A = nums[i], nums[start] backtrack(start + 1 ) _A, _A = nums[i], nums[start] # backtrack _A = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __A : Optional[int] = permutea([1, 2, 3]) print(res) doctest.testmod()
27
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_attention_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_choices def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_attention_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() _A, _A, _A, _A = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = True __magic_name__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self ): _A = FlaxRoFormerModelTester(self ) @slow def lowerCAmelCase__ ( self ): for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=snake_case_ ) _A = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ ) @require_flax class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _A = jnp.array([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = 5_0000 _A = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case_ ) _A = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = '' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , snake_case_ = "" , snake_case_ = None , snake_case_ = None , **snake_case_ ): super().__init__(self , **snake_case_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _A = fsspec.open( snake_case_ , mode='rb' , protocol=snake_case_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _A = os.path.basename(self.file.path.split('::' )[0] ) _A = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _A = None @classmethod def lowerCAmelCase__ ( cls , snake_case_ ): # compressed file paths are always relative to the archive root return super()._strip_protocol(snake_case_ ).lstrip('/' ) def lowerCAmelCase__ ( self ): if self.dir_cache is None: _A = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _A = {f['name']: f} def lowerCAmelCase__ ( self , snake_case_ ): return self.file.open().read() def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = "rb" , snake_case_=None , snake_case_=True , snake_case_=None , **snake_case_ , ): _A = self._strip_protocol(snake_case_ ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'bz2' __magic_name__ = 'bz2' __magic_name__ = '.bz2' class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'gzip' __magic_name__ = 'gzip' __magic_name__ = '.gz' class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'lz4' __magic_name__ = 'lz4' __magic_name__ = '.lz4' class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'xz' __magic_name__ = 'xz' __magic_name__ = '.xz' class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'zstd' __magic_name__ = 'zstd' __magic_name__ = '.zst' def __init__( self , snake_case_ , snake_case_ = "rb" , snake_case_ = None , snake_case_ = None , snake_case_ = DEFAULT_BLOCK_SIZE , **snake_case_ , ): super().__init__( fo=snake_case_ , mode=snake_case_ , target_protocol=snake_case_ , target_options=snake_case_ , block_size=snake_case_ , **snake_case_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _A = self.file.__enter__ class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ ): _A = file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self , *snake_case_ , **snake_case_ ): self._file.__exit__(*snake_case_ , **snake_case_ ) def __iter__( self ): return iter(self._file ) def lowerCAmelCase__ ( self ): return next(self._file ) def __getattr__( self , snake_case_ ): return getattr(self._file , snake_case_ ) def fixed_enter(*snake_case_ , **snake_case_ ): return WrappedFile(_enter(*snake_case_ , **snake_case_ ) ) _A = fixed_enter
27
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Union[str, Any] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'nllb-moe' __magic_name__ = ['past_key_values'] __magic_name__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , snake_case_=12_8112 , snake_case_=1024 , snake_case_=12 , snake_case_=4096 , snake_case_=16 , snake_case_=12 , snake_case_=4096 , snake_case_=16 , snake_case_=0.05 , snake_case_=0.05 , snake_case_=True , snake_case_=True , snake_case_="relu" , snake_case_=1024 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_="float32" , snake_case_=False , snake_case_=128 , snake_case_=64 , snake_case_=4 , snake_case_=4 , snake_case_=0.001 , snake_case_=0.001 , snake_case_="all" , snake_case_=False , snake_case_=False , snake_case_=1.0 , snake_case_=0.2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=False , **snake_case_ , ): _A = vocab_size _A = max_position_embeddings _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = router_z_loss_coef _A = router_aux_loss_coef _A = decoder_sparse_step _A = encoder_sparse_step _A = num_experts _A = expert_capacity _A = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) _A = router_dtype _A = router_ignore_padding_tokens _A = batch_prioritized_routing _A = second_expert_policy _A = normalize_router_prob_before_dropping _A = moe_eval_capacity_token_fraction _A = moe_token_dropout _A = output_router_logits super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
27
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __A : List[str] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _A = original_name.split('.' )[0] _A = key.split('.' ) _A = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 2] ) _A = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 1] ) _A = orig_block_num - offset _A = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = OrderedDict() _A, _A = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _A = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _A = key[: key.find('proj' )] _A = key.replace(_SCREAMING_SNAKE_CASE , F"patch_embeddings.{total_embed_found}." ) _A = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _A = 'poolformer.encoder.' + key if "mlp.fc1" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'norm1' , 'before_norm' ) if "norm2" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _A = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _A = key.replace('head' , 'classifier' ) _A = value return new_state_dict def __lowerCAmelCase( ) -> List[Any]: """simple docstring""" _A = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = PoolFormerConfig() # set attributes based on model_name _A = 'huggingface/label-files' _A = model_name[-3:] _A = 1_000 _A = 'imagenet-1k-id2label.json' _A = (1, 1_000) # set config attributes _A = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _A = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} if size == "s12": _A = [2, 2, 6, 2] _A = [64, 128, 320, 512] _A = 4.0 _A = 0.9 elif size == "s24": _A = [4, 4, 12, 4] _A = [64, 128, 320, 512] _A = 4.0 _A = 0.9 elif size == "s36": _A = [6, 6, 18, 6] _A = [64, 128, 320, 512] _A = 4.0 _A = 1e-6 _A = 0.9 elif size == "m36": _A = [6, 6, 18, 6] _A = [96, 192, 384, 768] _A = 4.0 _A = 1e-6 _A = 0.95 elif size == "m48": _A = [8, 8, 24, 8] _A = [96, 192, 384, 768] _A = 4.0 _A = 1e-6 _A = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor _A = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) # Prepare image _A = prepare_img() _A = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict _A = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) # rename keys _A = rename_keys(_SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict _A = PoolFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # Define image processor _A = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) _A = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _A = model(_SCREAMING_SNAKE_CASE ) _A = outputs.logits # define expected logit slices for different models if size == "s12": _A = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _A = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _A = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _A = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _A = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : List[Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : str = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('Input value must be a \'int\' type' ) return bin(_SCREAMING_SNAKE_CASE ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
27
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "spiece.model"} __A : Dict = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } __A : str = {"bert_for_seq_generation": 512} class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<::::>" , snake_case_ = None , **snake_case_ , ): _A = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sep_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def lowerCAmelCase__ ( self ): return self.sp_model.get_piece_size() def lowerCAmelCase__ ( self ): _A = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _A = self.__dict__.copy() _A = None return state def __setstate__( self , snake_case_ ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.piece_to_id(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A = self.sp_model.IdToPiece(snake_case_ ) return token def lowerCAmelCase__ ( self , snake_case_ ): _A = [] _A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _A = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
27
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = KandinskyVaaControlnetPipeline __magic_name__ = ['image_embeds', 'negative_image_embeds', 'hint'] __magic_name__ = ['image_embeds', 'negative_image_embeds', 'hint'] __magic_name__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __magic_name__ = False @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return self.time_input_dim @property def lowerCAmelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ): return 100 @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _A = UNetaDConditionModel(**snake_case_ ) return model @property def lowerCAmelCase__ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_unet _A = self.dummy_movq _A = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case_ , ) _A = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case_ ) # create hint _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase__ ( self ): _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**snake_case_ ) _A = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = pipe(**self.get_dummy_inputs(snake_case_ ) ) _A = output.images _A = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _A = torch.from_numpy(np.array(snake_case_ ) ).float() / 255.0 _A = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _A = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) _A = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _A = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) _A = 'A robot, 4k photo' _A = torch.Generator(device='cuda' ).manual_seed(0 ) _A, _A = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _A = torch.Generator(device='cuda' ).manual_seed(0 ) _A = pipeline( image_embeds=snake_case_ , negative_image_embeds=snake_case_ , hint=snake_case_ , generator=snake_case_ , num_inference_steps=100 , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = ViTMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(snake_case_ ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() _A, _A, _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __magic_name__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): # make masks reproducible np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _A = model_class.from_pretrained(snake_case_ ) model.to(snake_case_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase__ ( self ): pass @slow def lowerCAmelCase__ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=snake_case_ , return_tensors='pt' ).to(snake_case_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**snake_case_ , noise=torch.from_numpy(snake_case_ ).to(device=snake_case_ ) ) # verify the logits _A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case_ ) , atol=1E-4 ) )
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __A : Optional[int] = logging.get_logger(__name__) # General docstring __A : Optional[Any] = "PoolFormerConfig" # Base docstring __A : Tuple = "sail/poolformer_s12" __A : List[str] = [1, 512, 7, 7] # Image classification docstring __A : Optional[int] = "sail/poolformer_s12" __A : Union[str, Any] = "tabby, tabby cat" __A : int = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = False ) -> str: """simple docstring""" if drop_prob == 0.0 or not training: return input _A = 1 - drop_prob _A = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _A = keep_prob + torch.rand(_SCREAMING_SNAKE_CASE , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _A = input.div(_SCREAMING_SNAKE_CASE ) * random_tensor return output class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ = None ): super().__init__() _A = drop_prob def lowerCAmelCase__ ( self , snake_case_ ): return drop_path(snake_case_ , self.drop_prob , self.training ) def lowerCAmelCase__ ( self ): return "p={}".format(self.drop_prob ) class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): super().__init__() _A = patch_size if isinstance(snake_case_ , collections.abc.Iterable ) else (patch_size, patch_size) _A = stride if isinstance(snake_case_ , collections.abc.Iterable ) else (stride, stride) _A = padding if isinstance(snake_case_ , collections.abc.Iterable ) else (padding, padding) _A = nn.Convad(snake_case_ , snake_case_ , kernel_size=snake_case_ , stride=snake_case_ , padding=snake_case_ ) _A = norm_layer(snake_case_ ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self , snake_case_ ): _A = self.projection(snake_case_ ) _A = self.norm(snake_case_ ) return embeddings class lowerCamelCase( nn.GroupNorm ): '''simple docstring''' def __init__( self , snake_case_ , **snake_case_ ): super().__init__(1 , snake_case_ , **snake_case_ ) class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__() _A = nn.AvgPoolad(snake_case_ , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): return self.pool(snake_case_ ) - hidden_states class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): super().__init__() _A = nn.Convad(snake_case_ , snake_case_ , 1 ) _A = nn.Convad(snake_case_ , snake_case_ , 1 ) _A = PoolFormerDropPath(snake_case_ ) if isinstance(config.hidden_act , snake_case_ ): _A = ACTaFN[config.hidden_act] else: _A = config.hidden_act def lowerCAmelCase__ ( self , snake_case_ ): _A = self.conva(snake_case_ ) _A = self.act_fn(snake_case_ ) _A = self.drop(snake_case_ ) _A = self.conva(snake_case_ ) _A = self.drop(snake_case_ ) return hidden_states class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): super().__init__() _A = PoolFormerPooling(snake_case_ ) _A = PoolFormerOutput(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A = PoolFormerGroupNorm(snake_case_ ) _A = PoolFormerGroupNorm(snake_case_ ) # Useful for training neural nets _A = PoolFormerDropPath(snake_case_ ) if drop_path > 0.0 else nn.Identity() _A = config.use_layer_scale if config.use_layer_scale: _A = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case_) ) , requires_grad=snake_case_ ) _A = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case_) ) , requires_grad=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): if self.use_layer_scale: _A = self.pooling(self.before_norm(snake_case_ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _A = hidden_states + self.drop_path(snake_case_ ) _A = () _A = self.output(self.after_norm(snake_case_ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _A = hidden_states + self.drop_path(snake_case_ ) _A = (output,) + outputs return outputs else: _A = self.drop_path(self.pooling(self.before_norm(snake_case_ ) ) ) # First residual connection _A = pooling_output + hidden_states _A = () # Second residual connection inside the PoolFormerOutput block _A = self.drop_path(self.output(self.after_norm(snake_case_ ) ) ) _A = hidden_states + layer_output _A = (output,) + outputs return outputs class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__() _A = config # stochastic depth decay rule _A = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _A = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _A = nn.ModuleList(snake_case_ ) # Transformer blocks _A = [] _A = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _A = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(snake_case_ ) ) _A = nn.ModuleList(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_=False , snake_case_=True ): _A = () if output_hidden_states else None _A = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _A, _A = layers # Get patch embeddings from hidden_states _A = embedding_layer(snake_case_ ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case_ ): _A = blk(snake_case_ ) _A = layer_outputs[0] if output_hidden_states: _A = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = PoolFormerConfig __magic_name__ = 'poolformer' __magic_name__ = 'pixel_values' __magic_name__ = True def lowerCAmelCase__ ( self , snake_case_ ): if isinstance(snake_case_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case_ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_=False ): if isinstance(snake_case_ , snake_case_ ): _A = value __A : Tuple = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A : str = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __snake_case , ) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__(snake_case_ ) _A = config _A = PoolFormerEncoder(snake_case_ ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _A = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , ) _A = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case_ , hidden_states=encoder_outputs.hidden_states , ) class lowerCamelCase( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__() _A = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self , snake_case_ ): _A = self.dense(snake_case_ ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __snake_case , ) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , snake_case_ ): super().__init__(snake_case_ ) _A = config.num_labels _A = PoolFormerModel(snake_case_ ) # Final norm _A = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _A = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.poolformer( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , ) _A = outputs[0] _A = self.classifier(self.norm(snake_case_ ).mean([-2, -1] ) ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = 'single_label_classification' else: _A = 'multi_label_classification' if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(snake_case_ , snake_case_ ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(snake_case_ , snake_case_ ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
1
import os import numpy import onnx def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = a.name _A = b.name _A = '' _A = '' _A = a == b _A = name_a _A = name_b return res def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = list(model.graph.initializer ) _A = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _A = inits[i].name _A = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = os.path.dirname(_SCREAMING_SNAKE_CASE ) _A = os.path.basename(_SCREAMING_SNAKE_CASE ) _A = onnx.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _A = list(model.graph.initializer ) _A = set() _A = {} _A = [] _A = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_SCREAMING_SNAKE_CASE ) dup_set.add(_SCREAMING_SNAKE_CASE ) _A = inits[j].data_type _A = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size _A = inits[i].name _A = inits[j].name if name_i in dup_map: dup_map[name_i].append(_SCREAMING_SNAKE_CASE ) else: _A = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) _A = sorted(_SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'optimized_' + model_file_name _A = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) onnx.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new_model
27
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
1
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000 ) -> int: """simple docstring""" _A = -1 _A = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _A = (n * n - 2 * a * n) // (2 * n - 2 * a) _A = n - a - b if c * c == (a * a + b * b): _A = a * b * c if candidate >= product: _A = candidate return product if __name__ == "__main__": print(f"{solution() = }")
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Any = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : Union[str, Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[str] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): _A = getattr(snake_case_ , normalizer_state.pop('type' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**snake_case_ ) _A = do_lower_case def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ): _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
27
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : str = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["MobileViTFeatureExtractor"] __A : List[Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __A : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if "." in tensor_name: _A = tensor_name.split('.' ) for split in splits[:-1]: _A = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _A = new_module _A = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _A = tensor_name in module._buffers _A = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _A = False _A = False if is_buffer or not is_bitsandbytes_available(): _A = False _A = False else: _A = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _A = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _A = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _A = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _A = value.to('cpu' ) if value.dtype == torch.inta: _A = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _A = torch.tensor(_SCREAMING_SNAKE_CASE , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _SCREAMING_SNAKE_CASE ) and fpaa_statistics is None: _A = new_value.T _A = old_value.__dict__ if is_abit: _A = bnb.nn.IntaParams(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) elif is_abit: _A = bnb.nn.Paramsabit(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _A = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(_SCREAMING_SNAKE_CASE ) ) else: if value is None: _A = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _A = value.to(_SCREAMING_SNAKE_CASE ) else: _A = torch.tensor(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) if is_buffer: _A = new_value else: _A = nn.Parameter(_SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad ) _A = new_value def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _A = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if (isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(_SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A, _A = module.weight.shape else: _A = module.in_features _A = module.out_features if quantization_config.quantization_method() == "llm_int8": _A = bnb.nn.LinearabitLt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _A = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _A = bnb.nn.Linearabit( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _A = True # Store the module class in case we need to transpose the weight later _A = type(_SCREAMING_SNAKE_CASE ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_SCREAMING_SNAKE_CASE ) if len(list(module.children() ) ) > 0: _A, _A = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_been_replaced=_SCREAMING_SNAKE_CASE , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" _A = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _A, _A = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _SCREAMING_SNAKE_CASE , ) return replace_with_bnb_linear(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _SCREAMING_SNAKE_CASE , ) return set_module_quantized_tensor_to_device(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _A = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A = sum(_SCREAMING_SNAKE_CASE , [] ) _A = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model _A = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A = list(model.named_children() ) _A = [list_modules[-1][0]] # add last module together with tied weights _A = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _A = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys _A = ['.weight', '.bias'] _A = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A = name.replace(_SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names
27
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = 0 while b > 0: if b & 1: _A = ((res % c) + (a % c)) % c a += a b >>= 1 return res
27
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __A : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Any = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } __A : Optional[int] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } __A : Dict = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ElectraTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): _A = getattr(snake_case_ , normalizer_state.pop('type' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**snake_case_ ) _A = do_lower_case def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ): _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
27
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
1
import numpy as np __A : int = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class lowerCamelCase: '''simple docstring''' def __init__( self ): _A = np.array(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A, _A = np.where(letter == self.SQUARE ) _A = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase__ ( self , snake_case_ ): _A = message.lower() _A = message.replace(' ' , '' ) _A = message.replace('j' , 'i' ) _A = np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): _A = self.letter_to_numbers(message[letter_index] ) _A = numbers[0] _A = numbers[1] _A = first_step.reshape(2 * len(snake_case_ ) ) _A = '' for numbers_index in range(len(snake_case_ ) ): _A = int(second_step[numbers_index * 2] ) _A = int(second_step[(numbers_index * 2) + 1] ) _A = self.numbers_to_letter(snake_case_ , snake_case_ ) _A = encoded_message + letter return encoded_message def lowerCAmelCase__ ( self , snake_case_ ): _A = message.lower() message.replace(' ' , '' ) _A = np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): _A = self.letter_to_numbers(message[letter_index] ) _A = numbers[0] _A = numbers[1] _A = first_step.reshape((2, len(snake_case_ )) ) _A = '' for numbers_index in range(len(snake_case_ ) ): _A = int(second_step[0, numbers_index] ) _A = int(second_step[1, numbers_index] ) _A = self.numbers_to_letter(snake_case_ , snake_case_ ) _A = decoded_message + letter return decoded_message
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) _A = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: """simple docstring""" _A = [] _A = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): _A = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowerCAmelCase( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = '' for i in table: res += inp[i - 1] return res def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return data[1:] + data[0] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = '' for i in range(len(_SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = int('0b' + data[0] + data[-1] , 2 ) _A = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = message[:4] _A = message[4:] _A = apply_table(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = xor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = apply_sbox(_SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 _A = apply_sbox(_SCREAMING_SNAKE_CASE , temp[4:] ) _A = '0' * (2 - len(_SCREAMING_SNAKE_CASE )) + l # noqa: E741 _A = '0' * (2 - len(_SCREAMING_SNAKE_CASE )) + r _A = apply_table(l + r , _SCREAMING_SNAKE_CASE ) _A = xor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": __A : Any = input("Enter 10 bit key: ") __A : Optional[Any] = input("Enter 8 bit message: ") __A : Union[str, Any] = [6, 3, 7, 4, 8, 5, 10, 9] __A : List[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __A : List[str] = [2, 4, 3, 1] __A : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] __A : List[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __A : Any = [4, 1, 2, 3, 2, 3, 4, 1] __A : Optional[int] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A : List[str] = apply_table(key, paa_table) __A : List[str] = temp[:5] __A : Optional[Any] = temp[5:] __A : Dict = left_shift(left) __A : Tuple = left_shift(right) __A : List[str] = apply_table(left + right, pa_table) __A : Optional[int] = left_shift(left) __A : str = left_shift(right) __A : int = left_shift(left) __A : Any = left_shift(right) __A : Optional[int] = apply_table(left + right, pa_table) # encryption __A : Tuple = apply_table(message, IP) __A : Union[str, Any] = function(expansion, sa, sa, keya, temp) __A : Any = temp[4:] + temp[:4] __A : List[Any] = function(expansion, sa, sa, keya, temp) __A : Any = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __A : int = apply_table(CT, IP) __A : Tuple = function(expansion, sa, sa, keya, temp) __A : Any = temp[4:] + temp[:4] __A : Tuple = function(expansion, sa, sa, keya, temp) __A : List[Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
27
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
1
from ..utils import DummyObject, requires_backends class lowerCamelCase( metaclass=__snake_case ): '''simple docstring''' __magic_name__ = ['torch', 'torchsde'] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ['torch', 'torchsde'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['torch', 'torchsde'] )
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = (CMStochasticIterativeScheduler,) __magic_name__ = 10 def lowerCAmelCase__ ( self , **snake_case_ ): _A = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**snake_case_ ) return config def lowerCAmelCase__ ( self ): _A = 10 _A = self.get_scheduler_config() _A = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) _A = scheduler.timesteps[0] _A = scheduler.timesteps[1] _A = self.dummy_sample _A = 0.1 * sample _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = 1 scheduler.set_timesteps(snake_case_ ) _A = scheduler.timesteps _A = torch.manual_seed(0 ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input _A = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual _A = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(snake_case_ ) ) _A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) _A = scheduler.timesteps _A = torch.manual_seed(0 ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _A = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual _A = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(snake_case_ ) ) _A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [39, 30, 12, 1, 0] _A = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case_ )
27
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1