code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ : str = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } SCREAMING_SNAKE_CASE__ : List[str] = """▁""" class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ :Any = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) __magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) __magic_name__ :Optional[Any] = do_lower_case __magic_name__ :Any = remove_space __magic_name__ :List[str] = keep_accents __magic_name__ :int = vocab_file __magic_name__ :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def A ( self ): """simple docstring""" return len(self.sp_model ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __magic_name__ :Tuple = self.__dict__.copy() __magic_name__ :Union[str, Any] = None return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ :Optional[Any] = {} __magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self , __lowerCAmelCase ): """simple docstring""" if self.remove_space: __magic_name__ :List[str] = ''' '''.join(inputs.strip().split() ) else: __magic_name__ :Optional[int] = inputs __magic_name__ :Dict = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __magic_name__ :str = unicodedata.normalize('''NFKD''' , __lowerCAmelCase ) __magic_name__ :Any = ''''''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: __magic_name__ :Optional[Any] = outputs.lower() return outputs def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = self.preprocess_text(__lowerCAmelCase ) __magic_name__ :Dict = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) __magic_name__ :Any = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __magic_name__ :List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ :str = cur_pieces[1:] else: __magic_name__ :List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.PieceToId(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.IdToPiece(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = [] __magic_name__ :List[str] = '''''' __magic_name__ :List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token __magic_name__ :Union[str, Any] = True __magic_name__ :Tuple = [] else: current_sub_tokens.append(__lowerCAmelCase ) __magic_name__ :Optional[int] = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Any = [self.sep_token_id] __magic_name__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Union[str, Any] = [self.sep_token_id] __magic_name__ :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ :int = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: __magic_name__ :int = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
from math import pow, sqrt def _A ( *_lowercase ) -> bool: """simple docstring""" __UpperCamelCase = len(_lowercase ) > 0 and all(value > 0.0 for value in values ) return result def _A ( _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Union[str, Any]=[0, 1, 2, 3] , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : str=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Union[str, Any]=[1, 3_84, 24, 24] , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=None , ) -> List[Any]: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = backbone_out_indices _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = num_labels _A = backbone_featmap_shape _A = scope _A = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def snake_case_ ( self : str ) -> str: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def snake_case_ ( self : Any ) -> int: _A = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> List[str]: _A = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> Optional[Any]: _A = self.num_labels _A = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ) -> Tuple: _A = self.num_labels _A = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self : Dict ) -> List[str]: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a__ : Dict = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a__ : Optional[Any] = False a__ : Any = False a__ : List[str] = False def snake_case_ ( self : List[Any] ) -> Any: _A = DPTModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def snake_case_ ( self : Any ) -> str: pass def snake_case_ ( self : str ) -> Any: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def snake_case_ ( self : Dict ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__lowerCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Any ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True if model_class in get_values(__lowerCAmelCase ): continue _A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _A = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = model(**__lowerCAmelCase ).loss loss.backward() def snake_case_ ( self : List[str] ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = False _A = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() _A = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = model(**__lowerCAmelCase ).loss loss.backward() def snake_case_ ( self : Tuple ) -> Optional[int]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: _A = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone _A = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _A = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : Any ) -> Optional[int]: pass @slow def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _A = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( self : str ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = '''add''' with self.assertRaises(__lowerCAmelCase ): _A = DPTForDepthEstimation(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Dict ) -> str: _A = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) _A = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__lowerCAmelCase ) _A = prepare_img() _A = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _A = model(**__lowerCAmelCase ) _A = outputs.predicted_depth # verify the predicted depth _A = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) _A = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __lowerCAmelCase , atol=1E-4 ) )
2
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : str = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A (__lowerCamelCase :NDArray[floataa] , __lowerCamelCase :NDArray[floataa] , __lowerCamelCase :list[int] , __lowerCamelCase :int , ): _lowerCAmelCase , _lowerCAmelCase = coefficient_matrix.shape _lowerCAmelCase , _lowerCAmelCase = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if colsa != 1: _lowerCAmelCase = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != rowsa: _lowerCAmelCase = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(__lowerCamelCase )} and {rowsa}' ) raise ValueError(__lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCAmelCase , _lowerCAmelCase = table.shape strictly_diagonally_dominant(__lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase ): _lowerCAmelCase = [] for row in range(__lowerCamelCase ): _lowerCAmelCase = 0 for col in range(__lowerCamelCase ): if col == row: _lowerCAmelCase = table[row][col] elif col == cols - 1: _lowerCAmelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase = (temp + val) / denom new_val.append(__lowerCamelCase ) _lowerCAmelCase = new_val return [float(__lowerCamelCase ) for i in new_val] def A (__lowerCamelCase :NDArray[floataa] ): _lowerCAmelCase , _lowerCAmelCase = table.shape _lowerCAmelCase = True for i in range(0 , __lowerCamelCase ): _lowerCAmelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
5
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''vit''' def __init__( self : Dict , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=3_072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=16 , **_UpperCAmelCase : List[Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = encoder_stride class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1E-4
7
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase__ : List[Any] = logging.getLogger() def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> List[str]: __A : Tuple = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) lowercase__ : Optional[Any] = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase__ : Optional[Any] = '''sshleifer/tiny-mbart''' lowercase__ : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' __A : Optional[Any] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __A : Optional[int] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = str(Path(self.get_auto_remove_tmp_dir()) / 'scores.json') __A : Dict = 'translation_en_to_de' if model == T5_TINY else 'summarization' __A : Any = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase): run_generate() assert Path(_UpperCAmelCase).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.run_eval_tester(_UpperCAmelCase) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' self.run_eval_tester(_UpperCAmelCase) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Tuple = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' __A : str = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __A : int = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __A : Dict = Path(self.get_auto_remove_tmp_dir()) __A : str = str(tmp_dir / 'scores.json') __A : int = str(tmp_dir / 'val.target') _dump_articles(_UpperCAmelCase , text['en']) _dump_articles(_UpperCAmelCase , text['de']) __A : Optional[int] = 'translation_en_to_de' if model == T5_TINY else 'summarization' __A : int = F'\n run_eval_search.py\n {model}\n {str(_UpperCAmelCase)}\n {str(_UpperCAmelCase)}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0']) with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase): with CaptureStdout() as cs: run_search() __A : str = [' num_beams | length_penalty', model, 'Best score args'] __A : List[Any] = ['Info'] if "translation" in task: expected_strings.append('bleu') else: expected_strings.extend(_UpperCAmelCase) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCAmelCase).exists() os.remove(Path(_UpperCAmelCase))
8
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A ( __UpperCamelCase ) -> Optional[Any]: A__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> int: A__ , A__ = emb.weight.shape A__ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) A__ = emb.weight.data return lin_layer def A ( __UpperCamelCase ) -> Optional[int]: A__ = torch.load(__UpperCamelCase , map_location='cpu' ) A__ = mam_aaa['args'] or mam_aaa['cfg']['model'] A__ = mam_aaa['model'] remove_ignore_keys_(__UpperCamelCase ) A__ = state_dict['encoder.embed_tokens.weight'].shape[0] A__ = MaMaaaConfig( vocab_size=__UpperCamelCase , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) A__ = state_dict['decoder.embed_tokens.weight'] A__ = MaMaaaForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) A__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return 10 - x * x def lowerCAmelCase (__A , __A): """simple docstring""" if equation(__A) * equation(__A) >= 0: raise ValueError('''Wrong space!''') _a = a while (b - a) >= 0.01: # Find middle point _a = (a + b) / 2 # Check if middle point is root if equation(__A) == 0.0: break # Decide the side to repeat the steps if equation(__A) * equation(__A) < 0: _a = c else: _a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' for attribute in key.split(""".""" ): lowercase__ : Union[str, Any] = getattr(lowercase_ , lowercase_ ) if weight_type is not None: lowercase__ : str = getattr(lowercase_ , lowercase_ ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ : Union[str, Any] = value elif weight_type == "weight_g": lowercase__ : str = value elif weight_type == "weight_v": lowercase__ : str = value elif weight_type == "bias": lowercase__ : Optional[int] = value else: lowercase__ : Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = fairseq_model.state_dict() lowercase__ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ : str = True else: for key, mapped_key in MAPPING.items(): lowercase__ : Optional[int] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ : Tuple = True if "*" in mapped_key: lowercase__ : Optional[Any] = name.split(lowercase_ )[0].split(""".""" )[-2] lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: lowercase__ : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase__ : Dict = """weight_v""" elif "weight" in name: lowercase__ : List[str] = """weight""" elif "bias" in name: lowercase__ : str = """bias""" else: lowercase__ : List[Any] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = full_name.split("""conv_layers.""" )[-1] lowercase__ : int = name.split(""".""" ) lowercase__ : Union[str, Any] = int(items[0] ) lowercase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ : Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ : Optional[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Optional[Any] = SEWConfig() if is_finetuned: lowercase__ : Any = model.wav_encoder.wav_model.cfg else: lowercase__ : Dict = model.cfg lowercase__ : Optional[Any] = fs_config.conv_bias lowercase__ : Tuple = eval(fs_config.conv_feature_layers ) lowercase__ : List[str] = [x[0] for x in conv_layers] lowercase__ : Dict = [x[1] for x in conv_layers] lowercase__ : Tuple = [x[2] for x in conv_layers] lowercase__ : List[str] = """gelu""" lowercase__ : Union[str, Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase__ : Union[str, Any] = 0.0 lowercase__ : Tuple = fs_config.activation_fn.name lowercase__ : Tuple = fs_config.encoder_embed_dim lowercase__ : List[str] = 0.02 lowercase__ : Optional[Any] = fs_config.encoder_ffn_embed_dim lowercase__ : Optional[Any] = 1E-5 lowercase__ : List[Any] = fs_config.encoder_layerdrop lowercase__ : Any = fs_config.encoder_attention_heads lowercase__ : Any = fs_config.conv_pos_groups lowercase__ : Dict = fs_config.conv_pos lowercase__ : List[Any] = len(lowercase_ ) lowercase__ : Union[str, Any] = fs_config.encoder_layers lowercase__ : Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ : Optional[Any] = model.cfg lowercase__ : Union[str, Any] = fs_config.final_dropout lowercase__ : int = fs_config.layerdrop lowercase__ : int = fs_config.activation_dropout lowercase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ : Tuple = fs_config.attention_dropout lowercase__ : Any = fs_config.dropout_input lowercase__ : Any = fs_config.dropout lowercase__ : Dict = fs_config.mask_channel_length lowercase__ : Optional[int] = fs_config.mask_channel_prob lowercase__ : Any = fs_config.mask_length lowercase__ : Dict = fs_config.mask_prob lowercase__ : Dict = """Wav2Vec2FeatureExtractor""" lowercase__ : List[Any] = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> int: '''simple docstring''' if is_finetuned: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ : Optional[Any] = SEWConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = convert_config(model[0] , lowercase_ ) lowercase__ : Dict = model[0].eval() lowercase__ : Any = True if config.feat_extract_norm == """layer""" else False lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) if is_finetuned: if dict_path: lowercase__ : Optional[int] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : List[Any] = target_dict.pad_index lowercase__ : int = target_dict.bos_index lowercase__ : Optional[Any] = target_dict.pad_index lowercase__ : List[str] = target_dict.bos_index lowercase__ : Optional[int] = target_dict.eos_index lowercase__ : Union[str, Any] = len(target_dict.symbols ) lowercase__ : Optional[int] = os.path.join(lowercase_ , """vocab.json""" ) if not os.path.isdir(lowercase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowercase_ ) lowercase__ : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , ) lowercase__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) lowercase__ : List[str] = SEWForCTC(lowercase_ ) else: lowercase__ : str = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
12
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' import numpy # List of input, output pairs A__ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A__ : Union[str, Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A__ : str = [2, 4, 1, 5] A__ : Dict = len(train_data) A__ : Tuple = 0.0_0_9 def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="train" ) -> str: return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Optional[int] = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Tuple: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=m ) -> Dict: __lowerCamelCase : List[str] = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCamelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def UpperCAmelCase__ ( ) -> Optional[int]: global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase : List[str] = 0.000_002 __lowerCamelCase : str = 0 __lowerCamelCase : int = 0 while True: j += 1 __lowerCamelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): __lowerCamelCase : Any = get_cost_derivative(i - 1 ) __lowerCamelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break __lowerCamelCase : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCAmelCase__ ( ) -> Tuple: for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
13
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
from ....configuration_utils import PretrainedConfig from ....utils import logging a__ = logging.get_logger(__name__) # TODO: upload to AWS a__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "retribert" def __init__( self , _a=3_0_5_2_2 , _a=7_6_8 , _a=8 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=True , _a=1_2_8 , _a=0 , **_a , ) -> Optional[int]: super().__init__(pad_token_id=_a , **_a ) _a : Any = vocab_size _a : Optional[int] = hidden_size _a : str = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : List[str] = hidden_act _a : str = intermediate_size _a : List[str] = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : Union[str, Any] = initializer_range _a : Tuple = layer_norm_eps _a : int = share_encoders _a : List[str] = projection_dim
14
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> int: """simple docstring""" lowercase__ = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase ( __magic_name__ : int ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = """""" for i in range(len(__magic_name__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict ) -> Dict: """simple docstring""" lowercase__ = int("""0b""" + data[0] + data[-1] , 2 ) lowercase__ = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = message[:4] lowercase__ = message[4:] lowercase__ = apply_table(__magic_name__ , __magic_name__ ) lowercase__ = xor(__magic_name__ , __magic_name__ ) lowercase__ = apply_sbox(__magic_name__ , temp[:4] ) # noqa: E741 lowercase__ = apply_sbox(__magic_name__ , temp[4:] ) lowercase__ = """0""" * (2 - len(__magic_name__ )) + l # noqa: E741 lowercase__ = """0""" * (2 - len(__magic_name__ )) + r lowercase__ = apply_table(l + r , __magic_name__ ) lowercase__ = xor(__magic_name__ , __magic_name__ ) return temp + right if __name__ == "__main__": A : Union[str, Any] = input('Enter 10 bit key: ') A : Dict = input('Enter 8 bit message: ') A : str = [6, 3, 7, 4, 8, 5, 1_0, 9] A : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] A : List[str] = [2, 4, 3, 1] A : Dict = [2, 6, 3, 1, 4, 8, 5, 7] A : int = [4, 1, 3, 5, 7, 2, 8, 6] A : List[str] = [4, 1, 2, 3, 2, 3, 4, 1] A : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A : List[str] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A : Any = apply_table(key, paa_table) A : List[Any] = temp[:5] A : Optional[Any] = temp[5:] A : List[Any] = left_shift(left) A : Any = left_shift(right) A : Dict = apply_table(left + right, pa_table) A : List[Any] = left_shift(left) A : str = left_shift(right) A : Union[str, Any] = left_shift(left) A : int = left_shift(right) A : Tuple = apply_table(left + right, pa_table) # encryption A : str = apply_table(message, IP) A : Dict = function(expansion, sa, sa, keya, temp) A : str = temp[4:] + temp[:4] A : Optional[int] = function(expansion, sa, sa, keya, temp) A : List[str] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption A : Optional[Any] = apply_table(CT, IP) A : Dict = function(expansion, sa, sa, keya, temp) A : List[Any] = temp[4:] + temp[:4] A : int = function(expansion, sa, sa, keya, temp) A : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
15
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "swin" lowerCamelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , __lowerCamelCase : int=224 , __lowerCamelCase : int=4 , __lowerCamelCase : int=3 , __lowerCamelCase : str=96 , __lowerCamelCase : Any=[2, 2, 6, 2] , __lowerCamelCase : Tuple=[3, 6, 12, 24] , __lowerCamelCase : Any=7 , __lowerCamelCase : Optional[int]=4.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=0.0 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Dict=1e-5 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : str , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Tuple ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : List[str] ): return 1e-4
16
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCAmelCase_ : Tuple = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __A : int = """https://pypi.org/pypi/diffusers/json""" __A : List[str] = json.loads(request.urlopen(a__ ).read() )["""releases"""].keys() return sorted(a__ ,key=lambda a__ : version.Version(a__ ) ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ ,exist_ok=a__ ) __A : str = Path(a__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def __SCREAMING_SNAKE_CASE ( a__ : Union[str, os.PathLike] ) -> List[Any]: init_hf_modules() __A : Union[str, Any] = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ ,exist_ok=a__ ) __A : Optional[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Optional[int]: with open(a__ ,"""r""" ,encoding="""utf-8""" ) as f: __A : Optional[int] = f.read() # Imports of the form `import .xxx` __A : str = re.findall("""^\s*import\s+\.(\S+)\s*$""" ,a__ ,flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" ,a__ ,flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Union[str, Any]: __A : List[str] = False __A : Any = [module_file] __A : Any = [] # Let's recurse through all relative imports while not no_change: __A : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __A : Optional[Any] = Path(a__ ).parent __A : Tuple = [str(module_path / m ) for m in new_imports] __A : int = [f for f in new_import_files if f not in all_relative_imports] __A : int = [f"""{f}.py""" for f in new_import_files] __A : Tuple = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Optional[Any]: with open(a__ ,"""r""" ,encoding="""utf-8""" ) as f: __A : Dict = f.read() # Imports of the form `import xxx` __A : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" ,a__ ,flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" ,a__ ,flags=re.MULTILINE ) # Only keep the top-level module __A : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all __A : Any = list(set(a__ ) ) __A : Optional[int] = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f"""{", ".join(a__ )}. Run `pip install {" ".join(a__ )}`""" ) return get_relative_imports(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : str ) -> Optional[int]: __A : Dict = module_path.replace(os.path.sep ,""".""" ) __A : Tuple = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ ,a__ ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> Union[str, Any]: from ..pipelines import DiffusionPipeline __A : Any = dict(inspect.getmembers(a__ ,inspect.isclass ) ) __A : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls ,a__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) __A : Optional[Any] = cls return pipeline_class def __SCREAMING_SNAKE_CASE ( a__ : Union[str, os.PathLike] ,a__ : str ,a__ : Optional[Union[str, os.PathLike]] = None ,a__ : bool = False ,a__ : bool = False ,a__ : Optional[Dict[str, str]] = None ,a__ : Optional[Union[bool, str]] = None ,a__ : Optional[str] = None ,a__ : bool = False ,) -> Union[str, Any]: __A : Any = str(a__ ) __A : Optional[Any] = os.path.join(a__ ,a__ ) if os.path.isfile(a__ ): __A : Any = module_file_or_url __A : int = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: __A : Tuple = get_diffusers_versions() # cut ".dev0" __A : str = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: __A : Optional[Any] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __A : Any = f"""v{revision}""" elif revision == "main": __A : Dict = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub __A : Union[str, Any] = COMMUNITY_PIPELINES_URL.format(revision=a__ ,pipeline=a__ ) try: __A : Optional[Any] = cached_download( a__ ,cache_dir=a__ ,force_download=a__ ,proxies=a__ ,resume_download=a__ ,local_files_only=a__ ,use_auth_token=a__ ,) __A : Dict = """git""" __A : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __A : List[str] = hf_hub_download( a__ ,a__ ,cache_dir=a__ ,force_download=a__ ,proxies=a__ ,resume_download=a__ ,local_files_only=a__ ,use_auth_token=a__ ,) __A : Tuple = os.path.join("""local""" ,"""--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __A : Tuple = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __A : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __A : List[Any] = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ ,submodule_path / module_file ) for module_needed in modules_needed: __A : int = f"""{module_needed}.py""" shutil.copy(os.path.join(a__ ,a__ ) ,submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ ,a__ ): __A : List[Any] = use_auth_token elif use_auth_token is True: __A : Any = HfFolder.get_token() else: __A : Dict = None __A : Union[str, Any] = model_info(a__ ,revision=a__ ,token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __A : Union[str, Any] = submodule_path / commit_hash __A : Union[str, Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ ,submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ ,f"""{module_needed}.py""" ,cache_dir=a__ ,force_download=a__ ,resume_download=a__ ,proxies=a__ ,use_auth_token=a__ ,revision=a__ ,local_files_only=a__ ,) return os.path.join(a__ ,a__ ) def __SCREAMING_SNAKE_CASE ( a__ : Union[str, os.PathLike] ,a__ : str ,a__ : Optional[str] = None ,a__ : Optional[Union[str, os.PathLike]] = None ,a__ : bool = False ,a__ : bool = False ,a__ : Optional[Dict[str, str]] = None ,a__ : Optional[Union[bool, str]] = None ,a__ : Optional[str] = None ,a__ : bool = False ,**a__ : Optional[Any] ,) -> List[Any]: __A : Optional[int] = get_cached_module_file( a__ ,a__ ,cache_dir=a__ ,force_download=a__ ,resume_download=a__ ,proxies=a__ ,use_auth_token=a__ ,revision=a__ ,local_files_only=a__ ,) return get_class_in_module(a__ ,final_module.replace(""".py""" ,"""""" ) )
17
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=2 , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = num_patches + 2 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> Union[str, Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = DeiTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = DeiTForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = DeiTForMaskedImageModeling(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Tuple = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __lowerCamelCase : int = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowerCamelCase : Dict = False __lowerCamelCase : List[Any] = False __lowerCamelCase : Union[str, Any] = False def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DeiTModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _snake_case ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> int: _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self ) -> Tuple: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ).loss loss.backward() def _snake_case ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase = False _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowerCAmelCase = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ).loss loss.backward() def _snake_case ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCAmelCase ), *get_values(_lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): _lowerCAmelCase = problem_type["title"] _lowerCAmelCase = problem_type["num_labels"] _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if problem_type["num_labels"] > 1: _lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) _lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCAmelCase ) as warning_list: _lowerCAmelCase = model(**_lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _snake_case ( self ) -> Any: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DeiTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __a(): '''simple docstring''' _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Any: return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) _lowerCAmelCase = inputs.pixel_values.to(_lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )
18
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _a = None try: import msvcrt except ImportError: _a = None try: import fcntl except ImportError: _a = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _a = OSError # Data # ------------------------------------------------ _a = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _a = """3.0.12""" _a = None def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" global _logger _UpperCamelCase = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = lock_file return None def __str__( self) -> str: '''simple docstring''' _UpperCamelCase = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _UpperCAmelCase: def __init__( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = lock return None def __enter__( self) -> List[Any]: '''simple docstring''' return self.lock def __exit__( self , __a , __a , __a) -> List[str]: '''simple docstring''' self.lock.release() return None class _UpperCAmelCase: def __init__( self , __a , __a=-1 , __a=None) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _UpperCamelCase = self.hash_filename_if_too_long(__a , __a) # The path to the lock file. _UpperCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _UpperCamelCase = None # The default timeout value. _UpperCamelCase = timeout # We use this lock primarily for the lock counter. _UpperCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _UpperCamelCase = 0 return None @property def UpperCAmelCase ( self) -> str: '''simple docstring''' return self._lock_file @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return self._timeout @timeout.setter def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = float(__a) return None def UpperCAmelCase ( self) -> Any: '''simple docstring''' raise NotImplementedError() def UpperCAmelCase ( self) -> int: '''simple docstring''' raise NotImplementedError() @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return self._lock_file_fd is not None def UpperCAmelCase ( self , __a=None , __a=0.05) -> str: '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: _UpperCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _UpperCamelCase = id(self) _UpperCamelCase = self._lock_file _UpperCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''') self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''') raise Timeout(self._lock_file) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''') time.sleep(__a) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _UpperCamelCase = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def UpperCAmelCase ( self , __a=False) -> Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _UpperCamelCase = id(self) _UpperCamelCase = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''') self._release() _UpperCamelCase = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''') return None def __enter__( self) -> Dict: '''simple docstring''' self.acquire() return self def __exit__( self , __a , __a , __a) -> List[str]: '''simple docstring''' self.release() return None def __del__( self) -> str: '''simple docstring''' self.release(force=__a) return None def UpperCAmelCase ( self , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = os.path.basename(__a) if len(__a) > max_length and max_length > 0: _UpperCamelCase = os.path.dirname(__a) _UpperCamelCase = str(hash(__a)) _UpperCamelCase = filename[: max_length - len(__a) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__a , __a) else: return path class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a=-1 , __a=None) -> Union[str, Any]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a) _UpperCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _UpperCamelCase = os.open(self._lock_file , __a) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1) except OSError: os.close(__a) else: _UpperCamelCase = fd return None def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self._lock_file_fd _UpperCamelCase = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1) os.close(__a) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a=-1 , __a=None) -> str: '''simple docstring''' _UpperCamelCase = os.statvfs(os.path.dirname(__a)).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC _UpperCamelCase = os.open(self._lock_file , __a) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(__a) else: _UpperCamelCase = fd return None def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _UpperCamelCase = self._lock_file_fd _UpperCamelCase = None fcntl.flock(__a , fcntl.LOCK_UN) os.close(__a) return None class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _UpperCamelCase = os.open(self._lock_file , __a) except OSError: pass else: _UpperCamelCase = fd return None def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' os.close(self._lock_file_fd) _UpperCamelCase = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None _a = None if msvcrt: _a = WindowsFileLock elif fcntl: _a = UnixFileLock else: _a = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
19
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
def _lowercase( __a : str , __a : str ): assert x is not None assert y is not None a__ =len(__a ) a__ =len(__a ) # declaring the array for storing the dp values a__ =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): a__ =1 if x[i - 1] == y[j - 1] else 0 a__ =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) a__ ='' a__ , a__ =m, n while i > 0 and j > 0: a__ =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: a__ =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowerCAmelCase: List[Any] = 'AGGTAB' _lowerCAmelCase: Optional[int] = 'GXTXAYB' _lowerCAmelCase: Optional[int] = 4 _lowerCAmelCase: List[Any] = 'GTAB' _lowerCAmelCase , _lowerCAmelCase: Tuple = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
20
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : Optional[int] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } UpperCAmelCase_ : Any = "▁" class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = BigBirdTokenizer UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = [] def __init__( self :List[str] , __snake_case :List[Any]=None , __snake_case :Tuple=None , __snake_case :Dict="<unk>" , __snake_case :Union[str, Any]="<s>" , __snake_case :List[Any]="</s>" , __snake_case :List[Any]="<pad>" , __snake_case :Optional[Any]="[SEP]" , __snake_case :Union[str, Any]="[MASK]" , __snake_case :Dict="[CLS]" , **__snake_case :Tuple , ): '''simple docstring''' __magic_name__ : Dict =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token __magic_name__ : Dict =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__ : Optional[Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token __magic_name__ : Optional[Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __magic_name__ : Union[str, Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token __magic_name__ : str =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Union[str, Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) __magic_name__ : List[str] =vocab_file __magic_name__ : List[str] =False if not self.vocab_file else True def A__ ( self :Dict , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Dict =[self.sep_token_id] __magic_name__ : str =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self :int , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def A__ ( self :Tuple , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =[self.sep_token_id] __magic_name__ : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self :Dict , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __magic_name__ : Dict =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
21
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _snake_case : List[Any] = logging.get_logger('transformers.models.speecht5') _snake_case : List[Any] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _snake_case : Union[str, Any] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _snake_case : Tuple = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _snake_case : Optional[int] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _snake_case : List[Any] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _snake_case : List[str] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _snake_case : Tuple = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _snake_case : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _snake_case : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _snake_case : List[str] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case : Optional[int] = [] _snake_case : List[Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _snake_case : List[str] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _snake_case : Tuple = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _snake_case : Dict = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Any ): '''simple docstring''' for attribute in key.split('''.''' ): _a = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: _a = getattr(UpperCamelCase , UpperCamelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase , UpperCamelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(UpperCamelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''' , UpperCamelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : int ): '''simple docstring''' _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Any=None , ): '''simple docstring''' if config_path is not None: _a = SpeechTaConfig.from_pretrained(UpperCamelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(UpperCamelCase ) elif task == "t2s": _a = 1876 _a = 600 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(UpperCamelCase ) elif task == "s2s": _a = 1876 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(UpperCamelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''' , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=UpperCamelCase , feature_extractor=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) _a = torch.load(UpperCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] , UpperCamelCase , UpperCamelCase ) model.save_pretrained(UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(UpperCamelCase ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _snake_case : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
22
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = cva.getAffineTransform(__lowercase , __lowercase) return cva.warpAffine(__lowercase , __lowercase , (rows, cols)) if __name__ == "__main__": # read original image snake_case__ : Optional[int] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value snake_case__ : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : Optional[Any] = gray_img.shape # set different points to rotate image snake_case__ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) snake_case__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) snake_case__ : Optional[int] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) snake_case__ : int = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[int] = plt.figure(1) snake_case__ : int = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
23
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , __SCREAMING_SNAKE_CASE = 101 ) -> List[str]: '''simple docstring''' __snake_case = length def __len__( self ) -> Any: '''simple docstring''' return self.length def __getitem__( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return i class lowerCAmelCase : def __call__( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return {"input_ids": torch.tensor(__SCREAMING_SNAKE_CASE ), "labels": torch.tensor(__SCREAMING_SNAKE_CASE )} class lowerCAmelCase ( nn.Module): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. __snake_case = nn.Linear(120 , 80 ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase ( __lowerCAmelCase): @require_torch_neuroncore def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __snake_case = self.get_auto_remove_tmp_dir() __snake_case = F'''--output_dir {output_dir}'''.split() __snake_case = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase ( __lowerCAmelCase): @require_torch_multi_gpu def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __snake_case = self.get_auto_remove_tmp_dir() __snake_case = F'''--output_dir {output_dir}'''.split() __snake_case = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase_ : Union[str, Any] = HfArgumentParser((TrainingArguments,)) UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: UpperCAmelCase_ : int = DummyDataset(dataset_length) def _UpperCamelCase (_lowerCamelCase : EvalPrediction )-> Dict: '''simple docstring''' __snake_case = list(range(len(_lowerCamelCase ) ) ) __snake_case = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} UpperCAmelCase_ : Union[str, Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase_ : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase_ : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase_ : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase_ : str = None
24
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 # setable values lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None @classmethod def __UpperCamelCase ( cls : Tuple , a : CommonSchedulerState , a : jnp.ndarray , a : jnp.ndarray ) -> Dict: """simple docstring""" return cls(common=a , init_noise_sigma=a , timesteps=a ) @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =[e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ =42 @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return True @register_to_config def __init__( self : str , a : int = 1000 , a : float = 0.0001 , a : float = 0.02 , a : str = "linear" , a : Optional[jnp.ndarray] = None , a : str = "fixed_small" , a : bool = True , a : str = "epsilon" , a : jnp.dtype = jnp.floataa , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dtype def __UpperCamelCase ( self : Any , a : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: SCREAMING_SNAKE_CASE : Optional[int] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : Tuple = jnp.array(1.0 , dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=a , init_noise_sigma=a , timesteps=a , ) def __UpperCamelCase ( self : List[Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def __UpperCamelCase ( self : Optional[int] , a : DDPMSchedulerState , a : int , a : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : Dict = (jnp.arange(0 , a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=a , timesteps=a , ) def __UpperCamelCase ( self : Optional[Any] , a : DDPMSchedulerState , a : List[str] , a : Any=None , a : Dict=None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: SCREAMING_SNAKE_CASE : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": SCREAMING_SNAKE_CASE : str = jnp.clip(a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE : Any = jnp.log(jnp.clip(a , a_min=1e-20 ) ) elif variance_type == "fixed_large": SCREAMING_SNAKE_CASE : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log SCREAMING_SNAKE_CASE : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": SCREAMING_SNAKE_CASE : Any = variance SCREAMING_SNAKE_CASE : int = state.common.betas[t] SCREAMING_SNAKE_CASE : Dict = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE : List[Any] = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Any , a : DDPMSchedulerState , a : jnp.ndarray , a : int , a : jnp.ndarray , a : Optional[jax.random.KeyArray] = None , a : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = timestep if key is None: SCREAMING_SNAKE_CASE : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.split(a , sample.shape[1] , axis=1 ) else: SCREAMING_SNAKE_CASE : int = None # 1. compute alphas, betas SCREAMING_SNAKE_CASE : Tuple = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : Tuple = jnp.clip(a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t SCREAMING_SNAKE_CASE : int = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(a , num=1 ) SCREAMING_SNAKE_CASE : Dict = jax.random.normal(a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(a , a , predicted_variance=a ) ** 0.5) * noise SCREAMING_SNAKE_CASE : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=a , state=a ) def __UpperCamelCase ( self : Union[str, Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , a , a , a ) def __UpperCamelCase ( self : str , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , a , a , a ) def __len__( self : int ) -> Any: """simple docstring""" return self.config.num_train_timesteps
25
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Any = u for i in range(1 , _lowerCamelCase ): __snake_case : Optional[Any] = temp * (u - i) return temp def _a ( ) -> None: """simple docstring""" __snake_case : str = int(input("""enter the numbers of values: """ ) ) __snake_case : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) __snake_case : Any = 0 print("""enter the values of parameters in a list: """ ) __snake_case : Dict = list(map(_lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCamelCase ): __snake_case : Optional[int] = float(input() ) __snake_case : List[str] = int(input("""enter the value to interpolate: """ ) ) __snake_case : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): __snake_case : List[Any] = y[j + 1][i - 1] - y[j][i - 1] __snake_case : Union[str, Any] = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=[] ): lowerCamelCase_ = size[0] - overlap_pixels * 2 lowerCamelCase_ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase_ = np.ones((size_y, size_x) ,dtype=np.uinta ) * 255 lowerCamelCase_ = np.pad(lowerCAmelCase__ ,mode='''linear_ramp''' ,pad_width=lowerCAmelCase__ ,end_values=0 ) if "l" in remove_borders: lowerCamelCase_ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase_ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase_ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase_ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return max(lowerCAmelCase__ ,min(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return ( clamp(rect[0] ,min[0] ,max[0] ), clamp(rect[1] ,min[1] ,max[1] ), clamp(rect[2] ,min[0] ,max[0] ), clamp(rect[3] ,min[1] ,max[1] ), ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = list(lowerCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase_ = clamp_rect(lowerCAmelCase__ ,[0, 0] ,[image_size[0], image_size[1]] ) return rect def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = Image.new('''RGB''' ,(tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) ,Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) ,(0, 0) ,) result.paste(lowerCAmelCase__ ,(original_slice, 0) ) return result def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase_ = tile.crop(lowerCAmelCase__ ) return tile def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = n % d return n - divisor class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 350 , ): super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): torch.manual_seed(0 ) lowerCamelCase_ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase_ = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) lowerCamelCase_ = image.crop(UpperCAmelCase ) lowerCamelCase_ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase_ = translated_slice_x - (original_image_slice / 2) lowerCamelCase_ = max(0 , UpperCAmelCase ) lowerCamelCase_ = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = to_input.size lowerCamelCase_ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase_ = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] lowerCamelCase_ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) lowerCamelCase_ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='''L''' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 75 , UpperCAmelCase = 9.0 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 128 , UpperCAmelCase = 32 , UpperCAmelCase = 32 , ): lowerCamelCase_ = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase_ = math.ceil(image.size[0] / tile_size ) lowerCamelCase_ = math.ceil(image.size[1] / tile_size ) lowerCamelCase_ = tcx * tcy lowerCamelCase_ = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowercase ( ): # Run a demo lowerCamelCase_ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCamelCase_ = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase__ ,revision='''fp16''' ,torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to('''cuda''' ) lowerCamelCase_ = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(lowerCAmelCase__ ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save('''diffusers_library_progress.jpg''' ) lowerCamelCase_ = pipe(image=lowerCAmelCase__ ,prompt='''Black font, white background, vector''' ,noise_level=40 ,callback=lowerCAmelCase__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
29
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
from __future__ import annotations def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return len(set(_lowercase ) ) == len(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CLIPTokenizer lowercase_ = CLIPTokenizerFast lowercase_ = True lowercase_ = {} lowercase_ = False def lowerCAmelCase_ ( self : Optional[Any] ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : str , **_lowerCAmelCase : Optional[Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , **_lowerCAmelCase : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = 'lower newer' SCREAMING_SNAKE_CASE_ = 'lower newer' return input_text, output_text def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE_ = 'lower newer' SCREAMING_SNAKE_CASE_ = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @require_ftfy def lowerCAmelCase_ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE_ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) SCREAMING_SNAKE_CASE_ = F" {text}" SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def lowerCAmelCase_ ( self : Dict ): super().test_tokenization_python_rust_equals() def lowerCAmelCase_ ( self : Any ): # CLIP always lower cases letters pass
31
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase ): _UpperCAmelCase = parent def UpperCamelCase( self ): return {} def A__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' _UpperCAmelCase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase( self ): _UpperCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def UpperCamelCase( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase( self ): # Initialize feature_extractor _UpperCAmelCase = self.feature_extraction_class() # Test not batched input _UpperCAmelCase = get_html_strings()[0] _UpperCAmelCase = feature_extractor(_UpperCamelCase ) # fmt: off _UpperCAmelCase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] _UpperCAmelCase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase ) # Test batched _UpperCAmelCase = get_html_strings() _UpperCAmelCase = feature_extractor(_UpperCamelCase ) # fmt: off _UpperCAmelCase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] _UpperCAmelCase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase )
32
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "" ) -> dict[str, float]: snake_case__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase ).text , '''html.parser''' ) snake_case__ = soup.find_all('''td''' , attrs='''titleColumn''' ) snake_case__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCAmelCase , __lowerCAmelCase ) } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None: snake_case__ = get_imdb_top_aaa_movies() with open(__lowerCAmelCase , '''w''' , newline='''''' ) as out_file: snake_case__ = csv.writer(__lowerCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
33
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = IFPipeline A_ = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self) -> Optional[int]: return self._get_dummy_components() def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Optional[int]: if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self) -> List[Any]: self._test_save_load_local() def UpperCAmelCase__ ( self) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> int: # if UpperCamelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) UpperCamelCase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') UpperCamelCase , UpperCamelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase = None UpperCamelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase = IFImgaImgPipeline(**pipe_a.components) UpperCamelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase = IFInpaintingPipeline(**pipe_a.components) UpperCamelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(lowerCamelCase_) UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def __snake_case ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
34
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import argparse import os import re import packaging.version a_ :int = 'examples/' a_ :Dict = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } a_ :Union[str, Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } a_ :List[str] = 'README.md' def a ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : Any = f.read() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE__ : Tuple = replace.replace('''VERSION''' , A__ ) SCREAMING_SNAKE_CASE__ : int = re_pattern.sub(A__ , A__ ) with open(A__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A__ ) def a ( A__ ) -> List[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(A__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern='''examples''' ) def a ( A__ , A__=False ) -> Union[str, Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A__ , A__ , A__ ) if not patch: update_version_in_examples(A__ ) def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''1. Want to contribute a new model?''' with open(A__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : str = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE__ : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE__ : Any = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A__ ) def a ( ) -> Dict: '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : Tuple = f.read() SCREAMING_SNAKE_CASE__ : int = REPLACE_PATTERNS['''init'''][0].search(A__ ).groups()[0] return packaging.version.parse(A__ ) def a ( A__=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE__ : Dict = default_version.base_version elif patch: SCREAMING_SNAKE_CASE__ : int = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE__ : List[str] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE__ : Union[str, Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A__ ) == 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(A__ , patch=A__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = get_version() SCREAMING_SNAKE_CASE__ : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE__ : List[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE__ : Any = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A__ ) == 0: SCREAMING_SNAKE_CASE__ : List[str] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a_ :Optional[Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') a_ :int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
35
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[Any] = logging.get_logger(__name__) __lowercase : Dict = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : int = '''xlnet''' __lowerCamelCase : Tuple = ['''mems'''] __lowerCamelCase : List[Any] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,SCREAMING_SNAKE_CASE_=32000 ,SCREAMING_SNAKE_CASE_=1024 ,SCREAMING_SNAKE_CASE_=24 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_="bi" ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=-1 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_="last" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_="tanh" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=2 ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Union[str, Any] = vocab_size snake_case : List[str] = d_model snake_case : Optional[int] = n_layer snake_case : List[str] = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) snake_case : Dict = d_model // n_head snake_case : Any = ff_activation snake_case : Optional[int] = d_inner snake_case : Optional[int] = untie_r snake_case : Optional[int] = attn_type snake_case : Any = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : Union[str, Any] = dropout snake_case : int = mem_len snake_case : List[str] = reuse_len snake_case : List[Any] = bi_data snake_case : Dict = clamp_len snake_case : int = same_length snake_case : Any = summary_type snake_case : Union[str, Any] = summary_use_proj snake_case : int = summary_activation snake_case : List[Any] = summary_last_dropout snake_case : List[str] = start_n_top snake_case : Optional[int] = end_n_top snake_case : Union[str, Any] = bos_token_id snake_case : Any = pad_token_id snake_case : str = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" ,SCREAMING_SNAKE_CASE_ ,) snake_case : int = kwargs["""use_cache"""] snake_case : str = use_mems_eval snake_case : Optional[int] = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ): '''simple docstring''' logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
36
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCamelCase : Any = False class A__ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : str ): a__ : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Tuple = "A painting of a squirrel eating a burger " a__ : Any = torch.manual_seed(0 ) a__ : int = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) a__ : int = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[int] = generator.manual_seed(0 ) a__ : Optional[int] = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _UpperCamelCase( self : Tuple ): a__ : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[Any] = "A painting of a squirrel eating a burger " a__ : Dict = torch.manual_seed(0 ) a__ : int = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a__ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a__ : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
37
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = str(id_ ) snake_case__ : Dict = None snake_case__ : List[Any] = None snake_case__ : Optional[int] = [] snake_case__ : Tuple = {} # {vertex:distance} def __lt__( self , __SCREAMING_SNAKE_CASE ): return self.key < other.key def __repr__( self ): return self.id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): self.neighbors.append(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = weight def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict ) -> Union[str, Any]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __magic_name__ ) graph[b - 1].add_edge(graph[a - 1] , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> list: '''simple docstring''' snake_case__ : Optional[int] = [] for u in graph: snake_case__ : str = math.inf snake_case__ : List[Any] = None snake_case__ : Dict = 0 snake_case__ : Tuple = graph[:] while q: snake_case__ : Any = min(__magic_name__ ) q.remove(__magic_name__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : Optional[int] = u snake_case__ : Dict = u.edges[v.id] for i in range(1 , len(__magic_name__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> Iterator[tuple]: '''simple docstring''' for u in graph: snake_case__ : Tuple = math.inf snake_case__ : Tuple = None snake_case__ : Optional[int] = 0 snake_case__ : str = list(__magic_name__ ) hq.heapify(__magic_name__ ) while h: snake_case__ : str = hq.heappop(__magic_name__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : Union[str, Any] = u snake_case__ : Dict = u.edges[v.id] hq.heapify(__magic_name__ ) for i in range(1 , len(__magic_name__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
38
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCAmelCase_ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCAmelCase_ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = ''' Hello world! cécé herlolip''' lowerCAmelCase_ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) snake_case_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = emb.weight.shape snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) snake_case_ = emb.weight.data return lin_layer @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.hub.load('''pytorch/fairseq''' , SCREAMING_SNAKE_CASE__ ).eval() else: snake_case_ = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case_ = checkpoint_path.replace('''.''' , '''-''' ) snake_case_ = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) snake_case_ = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": snake_case_ = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) snake_case_ = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = bart.predict('''mnli''' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) snake_case_ = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about snake_case_ = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) snake_case_ = state_dict['''decoder.embed_tokens.weight'''] snake_case_ = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": snake_case_ = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = model(SCREAMING_SNAKE_CASE__ ).model[0] else: snake_case_ = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , '''lm_head''' ): snake_case_ = make_linear_from_emb(model.model.shared ) snake_case_ = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCAmelCase_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
39
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : str = size # approximate the overall size of segment tree with given value UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] # create array to store lazy update UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] UpperCamelCase : List[str] = [0 for i in range(0, 4 * size )] # flag for lazy update def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 + 1 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if left_element == right_element: UpperCamelCase : Dict = a[left_element - 1] else: UpperCamelCase : str = (left_element + right_element) // 2 self.build(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.build(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: if self.flag[idx] is True: UpperCamelCase : Union[str, Any] = self.lazy[idx] UpperCamelCase : str = False if left_element != right_element: UpperCamelCase : int = self.lazy[idx] UpperCamelCase : Tuple = self.lazy[idx] UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase : List[str] = val if left_element != right_element: UpperCamelCase : Optional[int] = val UpperCamelCase : Union[str, Any] = val UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = True return True UpperCamelCase : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.update(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) return True def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int | float: if self.flag[idx] is True: UpperCamelCase : str = self.lazy[idx] UpperCamelCase : Union[str, Any] = False if left_element != right_element: UpperCamelCase : Optional[Any] = self.lazy[idx] UpperCamelCase : Optional[int] = self.lazy[idx] UpperCamelCase : Union[str, Any] = True UpperCamelCase : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase : Any = (left_element + right_element) // 2 UpperCamelCase : int = self.query(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.query(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return max(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __str__( self ) -> str: return str([self.query(1, 1, self.size, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for i in range(1, self.size + 1 )] ) if __name__ == "__main__": __UpperCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __UpperCAmelCase = 15 __UpperCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
40
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowercase__ = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format lowercase__ = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: Pipeline , UpperCamelCase_: PipelineDataFormat ) -> Tuple: """simple docstring""" lowercase__ = nlp lowercase__ = reader @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> Dict: """simple docstring""" lowercase__ = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=UpperCamelCase_ , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=UpperCamelCase_ , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=UpperCamelCase_ , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=UpperCamelCase_ , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=UpperCamelCase_ , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=UpperCamelCase_ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=UpperCamelCase_ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=UpperCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self._nlp, [] for entry in self._reader: lowercase__ = nlp(**UpperCamelCase_ ) if self._reader.is_multi_columns else nlp(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): outputs.append(UpperCamelCase_ ) else: outputs += output # Saving data if self._nlp.binary_output: lowercase__ = self._reader.save_binary(UpperCamelCase_ ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(UpperCamelCase_ )
43
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : int = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowerCamelCase : Optional[Any] = mam_aaa["model"] remove_ignore_keys_(_lowerCAmelCase ) _lowerCamelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _lowerCamelCase : str = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowerCamelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"] _lowerCamelCase : List[Any] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
44
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = CLIPConfig _snake_case : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self :Union[str, Any] , lowerCamelCase__ :CLIPConfig ): super().__init__(lowerCamelCase__ ) UpperCamelCase__ :List[str] = CLIPVisionModelWithProjection(config.vision_config ) UpperCamelCase__ :Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 ) UpperCamelCase__ :Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __a ( self :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[int]=0.5 , lowerCamelCase__ :Tuple=0.5 ): UpperCamelCase__ :Optional[int] = self.vision_model(lowerCamelCase__ )[0] UpperCamelCase__ :str = self.p_head(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = nsfw_detected.flatten() UpperCamelCase__ :Optional[int] = nsfw_detected > p_threshold UpperCamelCase__ :Dict = nsfw_detected.tolist() if any(lowerCamelCase__ ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(lowerCamelCase__ ): if nsfw_detected_: UpperCamelCase__ :List[str] = np.zeros(images[idx].shape ) UpperCamelCase__ :Optional[Any] = self.w_head(lowerCamelCase__ ) UpperCamelCase__ :Dict = watermark_detected.flatten() UpperCamelCase__ :List[str] = watermark_detected > w_threshold UpperCamelCase__ :str = watermark_detected.tolist() if any(lowerCamelCase__ ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(lowerCamelCase__ ): if watermark_detected_: UpperCamelCase__ :Any = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
45
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
"""simple docstring""" from math import sqrt def lowerCamelCase_( _lowerCamelCase = 1000000 ) -> int: '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
46
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
import socket def UpperCAmelCase__ ( ): __a : int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __a : Optional[Any] = socket.gethostname() __a : int = 1_2_3_1_2 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __a : List[Any] = sock.recv(1_0_2_4 ) if not data: break out_file.write(lowerCamelCase_ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
47
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = 0.9 , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = crop_pct lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[float] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase__ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase__ = int(size["height"] / crop_pct ) else: lowerCAmelCase__ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__magic_name__ ) ) lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) else: if "shortest_edge" in size: lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ ) elif "height" in size and "width" in size: lowerCAmelCase__ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(__magic_name__ ) ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
48
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _lowercase : Union[str, Any] = imread(r'digital_image_processing/image_data/lena_small.jpg') _lowercase : Any = cvtColor(img, COLOR_BGR2GRAY) def lowercase__ ( ): __UpperCAmelCase = cn.convert_to_negative(snake_case_ ) # assert negative_img array for at least one True assert negative_img.any() def lowercase__ ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowercase__ ( ): __UpperCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowercase__ ( ): __UpperCAmelCase = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCAmelCase = canny.canny(snake_case_ ) # assert canny array for at least one True assert canny_array.any() def lowercase__ ( ): assert gg.gaussian_filter(snake_case_ , 5 , sigma=0.9 ).all() def lowercase__ ( ): # laplace diagonals __UpperCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCAmelCase = conv.img_convolve(snake_case_ , snake_case_ ).astype(snake_case_ ) assert res.any() def lowercase__ ( ): assert med.median_filter(snake_case_ , 3 ).any() def lowercase__ ( ): __UpperCAmelCase , __UpperCAmelCase = sob.sobel_filter(snake_case_ ) assert grad.any() and theta.any() def lowercase__ ( ): __UpperCAmelCase = sp.make_sepia(snake_case_ , 20 ) assert sepia.all() def lowercase__ ( snake_case_ :str = "digital_image_processing/image_data/lena_small.jpg" ): __UpperCAmelCase = bs.Burkes(imread(snake_case_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowercase__ ( snake_case_ :str = "digital_image_processing/image_data/lena_small.jpg" , ): __UpperCAmelCase = rs.NearestNeighbour(imread(snake_case_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowercase__ ( ): __UpperCAmelCase = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __UpperCAmelCase = imread(snake_case_ , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = image[x_coordinate][y_coordinate] __UpperCAmelCase = lbp.get_neighbors_pixel( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCAmelCase = lbp.local_binary_value(snake_case_ , snake_case_ , snake_case_ ) assert lbp_image.any()
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : Tuple = 'true' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=82 , __lowerCAmelCase : Tuple=16 ): set_seed(42 ) lowerCamelCase__ = RegressionModel() lowerCamelCase__ = deepcopy(__lowerCAmelCase ) lowerCamelCase__ = RegressionDataset(length=__lowerCAmelCase ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) model.to(accelerator.device ) lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return model, ddp_model, dataloader def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Optional[Any]=False ): lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(__lowerCAmelCase : str ): lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs with accelerator.main_process_first(): lowerCamelCase__ = dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Dict ): if use_longest: return tokenizer.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(__lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase ) lowerCamelCase__ = get_dataloader(__lowerCAmelCase , not dispatch_batches ) lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): lowerCamelCase__ = [] for batch in dataloader: lowerCamelCase__ , lowerCamelCase__ = batch.values() with torch.no_grad(): lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCamelCase__ , lowerCamelCase__ = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCAmelCase ) targs.append(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase ) return logits, targs def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Tuple=82 , __lowerCAmelCase : str=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=16 ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert ( len(__lowerCAmelCase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}''' def A__ ( __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False ): lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) lowerCamelCase__ , lowerCamelCase__ = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase ) # First do baseline lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = setup["""no"""] model.to(__lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(__lowerCAmelCase ) with torch.inference_mode(): lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCAmelCase , references=batch["""labels"""] ) lowerCamelCase__ = metric.compute() # Then do distributed lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ = batch["""labels"""] lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) lowerCamelCase__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def A__ ( ): lowerCamelCase__ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowerCAmelCase , __lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase__ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowerCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) lowerCamelCase__ = Accelerator() test_torch_metrics(__lowerCAmelCase , 512 ) accelerator.state._reset_state() def A__ ( __lowerCAmelCase : List[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
50
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
'''simple docstring''' # using dfs for finding eulerian path traversal def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> List[Any]: """simple docstring""" UpperCAmelCase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCAmelCase, UpperCAmelCase = True, True UpperCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return path def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCAmelCase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCAmelCase, UpperCAmelCase = check_circuit_or_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return UpperCAmelCase = 1 if check == 2: UpperCAmelCase = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) UpperCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCAmelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCAmelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCAmelCase = { 1: [], 2: [] # all degree is zero } UpperCAmelCase = 10 check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
51
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """convnextv2""" def __init__( self : List[str] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Tuple=2_2_4 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = num_stages __lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes __lowerCAmelCase = [3, 3, 9, 3] if depths is None else depths __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_path_rate __lowerCAmelCase = image_size __lowerCAmelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
53
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]: """simple docstring""" __A = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } __A , __A = input_paths_and_base_extractors[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) assert base_extractor.is_extractable(a_ ) __A = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: """simple docstring""" __A = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } __A = input_paths[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) __A = Extractor.infer_extractor_format(a_ ) assert extractor_format is not None __A = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(a_ , a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" import tarfile __A = tmp_path / "data_dot_dot" directory.mkdir() __A = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(a_ , "w" ) as f: f.add(a_ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" import tarfile __A = tmp_path / "data_sym_link" directory.mkdir() __A = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=a_ ) with tarfile.TarFile(a_ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } __A = insecure_tar_files[insecure_tar_file] __A = tmp_path / "extracted" TarExtractor.extract(a_ , a_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 __A = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(a_ ) assert zipfile.is_zipfile(str(a_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(a_ ) # but we're right
55
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
'''simple docstring''' def _a (lowercase__ : int = 3 , lowercase__ : int = 7 , lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" __snake_case = 0 __snake_case = 1 for current_denominator in range(1 , limit + 1 ): __snake_case = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __snake_case = current_numerator __snake_case = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
56
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import tensorflow as tf from ...tf_utils import shape_list class _lowerCAmelCase( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False , **_lowerCamelCase ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Union[str, Any] = d_embed UpperCamelCase_: List[Any] = d_proj UpperCamelCase_: Tuple = cutoffs + [vocab_size] UpperCamelCase_: Any = [0] + self.cutoffs UpperCamelCase_: List[str] = div_val UpperCamelCase_: Optional[int] = self.cutoffs[0] UpperCamelCase_: Tuple = len(self.cutoffs ) - 1 UpperCamelCase_: Optional[Any] = self.shortlist_size + self.n_clusters UpperCamelCase_: int = keep_order UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: int = [] def _a ( self , _lowerCamelCase ): if self.n_clusters > 0: UpperCamelCase_: str = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=_lowerCamelCase , name='cluster_weight' ) UpperCamelCase_: Any = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=_lowerCamelCase , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase_: List[Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(_lowerCamelCase ) else: self.out_projs.append(_lowerCamelCase ) UpperCamelCase_: List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCamelCase_: Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_: Dict = self.d_embed // (self.div_val**i) UpperCamelCase_: Any = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCamelCase_: int = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=_lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(_lowerCamelCase ) @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): UpperCamelCase_: List[str] = x if proj is not None: UpperCamelCase_: Tuple = tf.einsum('ibd,ed->ibe' , _lowerCamelCase , _lowerCamelCase ) return tf.einsum('ibd,nd->ibn' , _lowerCamelCase , _lowerCamelCase ) + b @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = shape_list(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase_: Any = tf.stack([r, target] , 1 ) return tf.gather_nd(_lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=False ): UpperCamelCase_: int = 0 if self.n_clusters == 0: UpperCamelCase_: Union[str, Any] = self._logit(_lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase_: List[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_lowerCamelCase , logits=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tf.nn.log_softmax(_lowerCamelCase , axis=-1 ) else: UpperCamelCase_: Optional[Any] = shape_list(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Optional[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase_: List[Any] = (target >= l_idx) & (target < r_idx) UpperCamelCase_: List[Any] = tf.where(_lowerCamelCase ) UpperCamelCase_: str = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) - l_idx if self.div_val == 1: UpperCamelCase_: Optional[Any] = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase_: List[str] = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase_: Optional[int] = self.out_layers[i][0] UpperCamelCase_: int = self.out_layers[i][1] if i == 0: UpperCamelCase_: str = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase_: Any = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase_: List[Any] = self._logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.out_projs[0] ) UpperCamelCase_: int = tf.nn.log_softmax(_lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase_: Any = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[Any] = self._gather_logprob(_lowerCamelCase , _lowerCamelCase ) else: UpperCamelCase_: str = self._logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.out_projs[i] ) UpperCamelCase_: Optional[Any] = tf.nn.log_softmax(_lowerCamelCase ) UpperCamelCase_: List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase_: Dict = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_lowerCamelCase ) if target is not None: UpperCamelCase_: List[Any] = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = tf.boolean_mask(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: int = self._gather_logprob(_lowerCamelCase , _lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_lowerCamelCase , -cur_logprob , shape_list(_lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = tf.concat(_lowerCamelCase , axis=-1 ) if target is not None: if return_mean: UpperCamelCase_: Any = tf.reduce_mean(_lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_lowerCamelCase , name=self.name , aggregation='mean' if return_mean else '' ) return out
57
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
58
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' with open(UpperCAmelCase_ , encoding="utf-8") as input_file: lowerCamelCase__: int =re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)") lowerCamelCase__: List[str] =input_file.read() lowerCamelCase__: int =regexp.search(UpperCAmelCase_) return match def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' with open(UpperCAmelCase_ , encoding="utf-8") as input_file: lowerCamelCase__: Optional[Any] =re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL) lowerCamelCase__: List[str] =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCamelCase__: Dict =regexp.finditer(UpperCAmelCase_) lowerCamelCase__: Dict =[match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =Path("./datasets") lowerCamelCase__: int =list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_)): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =Path("./datasets") lowerCamelCase__: int =list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_)): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""")
59
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) lowerCAmelCase_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowerCAmelCase_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowerCAmelCase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
60
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def _A ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": lowerCAmelCase__ = 2 # New Code # lowerCAmelCase__ = int(args.gradient_accumulation_steps ) lowerCAmelCase__ = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) set_seed(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() with LocalSGD( accelerator=lowerCAmelCase_ , model=lowerCAmelCase_ , local_sgd_steps=lowerCAmelCase_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase_ ): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = output.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCAmelCase_ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCAmelCase_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=lowerCAmelCase_ , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
61
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
snake_case = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} snake_case = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowercase , lowercase , lowercase ) order.append(lowercase ) return order def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowercase , lowercase , lowercase ) return component def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) * [False] SCREAMING_SNAKE_CASE : dict[int, list[int]] = {vert: [] for vert in range(len(lowercase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, was_visited in enumerate(lowercase ): if not was_visited: order += topology_sort(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) * [False] for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : str = order[len(lowercase ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE : int = find_components(lowercase , lowercase , lowercase ) components_list.append(lowercase ) return components_list
62
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a ( lowercase__ ): """simple docstring""" def __init__( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : List[Any]=13 , __lowercase : List[str]=7 , __lowercase : Any=True , __lowercase : Tuple=True , __lowercase : List[Any]=False , __lowercase : Any=True , __lowercase : List[str]=99 , __lowercase : Any=32 , __lowercase : Optional[Any]=5 , __lowercase : Dict=4 , __lowercase : Optional[Any]=37 , __lowercase : int="gelu" , __lowercase : Optional[int]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Tuple=512 , __lowercase : str=16 , __lowercase : Dict=2 , __lowercase : Any=0.02 , __lowercase : Optional[Any]=3 , __lowercase : Any=4 , __lowercase : Optional[Any]=None , ) -> List[Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Any = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Tuple = scope def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : str = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Any ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self : Any , __lowercase : str , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : str ) -> str: __UpperCAmelCase : Any = DistilBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Any = model(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : Dict ) -> int: __UpperCAmelCase : Union[str, Any] = DistilBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : str , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : int , __lowercase : Tuple , __lowercase : List[str] ) -> Tuple: __UpperCAmelCase : Tuple = DistilBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[Any] = model( __lowercase , attention_mask=__lowercase , start_positions=__lowercase , end_positions=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : Tuple , __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : int ) -> str: __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[str] = DistilBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : str , __lowercase : Any , __lowercase : str ) -> int: __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : Optional[int] = DistilBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : List[str] , __lowercase : int ) -> str: __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : Dict = DistilBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __lowercase , attention_mask=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Any = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : int = config_and_inputs __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a : Union[str, Any] = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) a : Tuple = True a : Tuple = True a : Any = True a : Optional[Any] = True def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : Dict = DistilBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowercase , dim=37 ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Any ) -> Any: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowercase ) def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowercase ) def UpperCAmelCase ( self : int ) -> Any: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowercase ) def UpperCAmelCase ( self : Any ) -> List[Any]: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowercase ) def UpperCAmelCase ( self : Tuple ) -> int: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowercase ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowercase ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = DistilBertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @slow @require_torch_gpu def UpperCAmelCase ( self : List[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCAmelCase : List[str] = True __UpperCAmelCase : Dict = model_class(config=__lowercase ) __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowercase , __lowercase ) __UpperCAmelCase : Dict = torch.jit.trace( __lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowercase , os.path.join(__lowercase , """traced_model.pt""" ) ) __UpperCAmelCase : int = torch.jit.load(os.path.join(__lowercase , """traced_model.pt""" ) , map_location=__lowercase ) loaded(inputs_dict["""input_ids"""].to(__lowercase ) , inputs_dict["""attention_mask"""].to(__lowercase ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __UpperCAmelCase : Tuple = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCAmelCase : Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : List[str] = model(__lowercase , attention_mask=__lowercase )[0] __UpperCAmelCase : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : Dict = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1e-4 ) )
63
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = XLMTokenizer __a = False def UpperCamelCase_ ( self ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__: List[Any]= [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE__: Tuple= dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__: Union[str, Any]= ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE__: List[Any]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__: List[Any]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Optional[Any]= '''lower newer''' SCREAMING_SNAKE_CASE__: Any= '''lower newer''' return input_text, output_text def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Optional[int]= XLMTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__: Tuple= '''lower''' SCREAMING_SNAKE_CASE__: Optional[Any]= ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE__: Any= tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE__: str= [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Optional[int]= XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) SCREAMING_SNAKE_CASE__: Tuple= tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
64
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
"""simple docstring""" from math import factorial def lowerCAmelCase ( __UpperCamelCase = 100 ): '''simple docstring''' return sum(int(__UpperCamelCase ) for x in str(factorial(__UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
65
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["DPTFeatureExtractor"] UpperCamelCase = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : """simple docstring""" def __init__( self : str ,__A : Union[str, Any] ,__A : Any=13 ,__A : Union[str, Any]=7 ,__A : List[Any]=True ,__A : int=True ,__A : Optional[Any]=False ,__A : Union[str, Any]=True ,__A : Union[str, Any]=99 ,__A : Any=32 ,__A : Tuple=5 ,__A : Tuple=4 ,__A : Union[str, Any]=37 ,__A : str="gelu" ,__A : Optional[int]=0.1 ,__A : Dict=0.1 ,__A : Any=512 ,__A : Optional[Any]=16 ,__A : Any=2 ,__A : List[str]=0.02 ,__A : Dict=3 ,__A : Any=4 ,__A : int=None ,) -> Dict: _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_input_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_labels _lowercase = num_choices _lowercase = scope def __UpperCAmelCase ( self : List[Any] ) -> str: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase = None if self.use_input_mask: _lowercase = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase = None if self.use_token_type_ids: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase = None _lowercase = None _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: return BioGptConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : List[Any] ,__A : Optional[int] ,__A : Optional[Any] ,__A : str ,__A : int ,__A : int ,__A : Optional[Any] ) -> int: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ) _lowercase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] ,__A : Optional[Any] ,__A : Dict ,__A : Dict ,__A : Union[str, Any] ,__A : str ,__A : Any ,__A : str ,__A : List[Any] ,__A : List[Any] ,) -> Tuple: _lowercase = BioGptForCausalLM(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] ,__A : str ,__A : int ,__A : int ,__A : int ,__A : List[Any] ,*__A : Union[str, Any] ) -> Tuple: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() # create attention mask _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) _lowercase = self.seq_length // 2 _lowercase = 0 # first forward pass _lowercase , _lowercase = model(__A ,attention_mask=__A ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # change a random masked slice from input_ids _lowercase = ids_tensor((1,) ,__A ).item() + 1 _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ).squeeze(-1 ) _lowercase = random_other_next_tokens # append to next input_ids and attn_mask _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) ,dtype=torch.long ,device=__A )] ,dim=1 ,) # get two different outputs _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,past_key_values=__A ,attention_mask=__A )['last_hidden_state'] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -1, random_slice_idx].detach() _lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Tuple ,__A : List[str] ,__A : Any ,__A : List[Any] ,__A : Dict ,__A : Optional[int] ,*__A : List[Any] ) -> List[str]: _lowercase = BioGptModel(config=__A ).to(__A ).eval() _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) # first forward pass _lowercase = model(__A ,attention_mask=__A ,use_cache=__A ) _lowercase , _lowercase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowercase = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,attention_mask=__A ,past_key_values=__A )[ 'last_hidden_state' ] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Any ,__A : List[str] ,__A : int ,__A : List[str] ,__A : List[str] ,__A : List[Any] ,*__A : Any ,__A : Union[str, Any]=False ) -> Any: _lowercase = BioGptForCausalLM(__A ) model.to(__A ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowercase = model(__A ,labels=__A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCAmelCase ( self : Tuple ,__A : str ,*__A : Tuple ) -> List[str]: _lowercase = BioGptModel(__A ) _lowercase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) ,0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) ,0.01 ) def __UpperCAmelCase ( self : List[Any] ,__A : Union[str, Any] ,__A : Optional[Any] ,__A : Any ,__A : Union[str, Any] ,__A : Dict ,*__A : Any ) -> int: _lowercase = self.num_labels _lowercase = BioGptForTokenClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _lowercase = BioGptModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def __UpperCAmelCase ( self : str ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : str ) -> str: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase = type self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__A ) def __UpperCAmelCase ( self : Any ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__A ,gradient_checkpointing=__A ) def __UpperCAmelCase ( self : Any ) -> Tuple: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__A ) @slow def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = 'left' # Define PAD Token = EOS Token = 50256 _lowercase = tokenizer.eos_token _lowercase = model.config.eos_token_id # use different length sentences to test batching _lowercase = [ 'Hello, my dog is a little', 'Today, I', ] _lowercase = tokenizer(__A ,return_tensors='pt' ,padding=__A ) _lowercase = inputs['input_ids'].to(__A ) _lowercase = model.generate( input_ids=__A ,attention_mask=inputs['attention_mask'].to(__A ) ,) _lowercase = tokenizer(sentences[0] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ) _lowercase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowercase = tokenizer(sentences[1] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ,max_length=model.config.max_length - num_paddings ) _lowercase = tokenizer.batch_decode(__A ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_padded[0] ,skip_special_tokens=__A ) _lowercase = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__A ,__A ) self.assertListEqual(__A ,[non_padded_sentence, padded_sentence] ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = BioGptModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __UpperCAmelCase ( self : int ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Optional[int] ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = 'multi_label_classification' _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _lowercase = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowercase = model(__A )[0] _lowercase = 4_2384 _lowercase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape ,__A ) _lowercase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__A ,atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) torch.manual_seed(0 ) _lowercase = tokenizer('COVID-19 is' ,return_tensors='pt' ).to(__A ) _lowercase = model.generate( **__A ,min_length=100 ,max_length=1024 ,num_beams=5 ,early_stopping=__A ,) _lowercase = tokenizer.decode(output_ids[0] ,skip_special_tokens=__A ) _lowercase = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__A ,__A )
67
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __A = "bert-base-cased" __A = "google/pegasus-xsum" __A = [" Sam ate lunch today.", "Sams lunch ingredients."] __A = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] __A = "patrickvonplaten/t5-tiny-random" __A = "sshleifer/bart-tiny-random" __A = "sshleifer/tiny-mbart" __A = "sshleifer/tiny-marian-en-de" def lowercase__ ( A_: Path , A_: list ) -> Optional[int]: """simple docstring""" __UpperCAmelCase ="""\n""".join(A_ ) Path(A_ ).open("""w""" ).writelines(A_ ) def lowercase__ ( A_: Dict ) -> Tuple: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(A_ , F'''{split}.source''' ) , A_ ) _dump_articles(os.path.join(A_ , F'''{split}.target''' ) , A_ ) return tmp_dir class _A ( UpperCamelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> List[str]: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) __UpperCAmelCase =4 __UpperCAmelCase =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCAmelCase , __UpperCAmelCase ="""ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCAmelCase =shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) __UpperCAmelCase =max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) __UpperCAmelCase =4 __UpperCAmelCase =LegacySeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=20 , max_target_length=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _a ( self : int ) -> str: __UpperCAmelCase =AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) __UpperCAmelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __UpperCAmelCase =tmp_dir.joinpath("""train.source""" ).open().readlines() __UpperCAmelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 128 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={x.name for x in tmp_dir.iterdir()} __UpperCAmelCase ={x.name for x in save_dir.iterdir()} __UpperCAmelCase =save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == 1 assert len(packed_examples[0] ) == sum(len(__SCREAMING_SNAKE_CASE ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _a ( self : str ) -> str: if not FAIRSEQ_AVAILABLE: return __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset(max_len=64 ) __UpperCAmelCase =64 __UpperCAmelCase =ds.make_dynamic_sampler(__SCREAMING_SNAKE_CASE , required_batch_size_multiple=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[len(__SCREAMING_SNAKE_CASE ) for x in batch_sampler] assert len(set(__SCREAMING_SNAKE_CASE ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) # no dropped or added examples __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCAmelCase =[] __UpperCAmelCase =[] for batch in data_loader: __UpperCAmelCase =batch["""input_ids"""].shape __UpperCAmelCase =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCAmelCase =np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__SCREAMING_SNAKE_CASE ) if num_src_tokens > (max_tokens * 1.1): failures.append(__SCREAMING_SNAKE_CASE ) assert num_src_per_batch[0] == max(__SCREAMING_SNAKE_CASE ) if failures: raise AssertionError(f'''too many tokens in {len(__SCREAMING_SNAKE_CASE )} batches''' ) def _a ( self : List[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset(max_len=512 ) __UpperCAmelCase =2 __UpperCAmelCase =ds.make_sortish_sampler(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCAmelCase =DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 , sampler=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer.pad_token_id def count_pad_tokens(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]="input_ids" ): return [batch[k].eq(__SCREAMING_SNAKE_CASE ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k="""labels""" ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k="""labels""" ) ) assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any=1000 , __SCREAMING_SNAKE_CASE : int=128 ) -> List[str]: if os.getenv("""USE_REAL_DATA""" , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase ="""examples/seq2seq/wmt_en_ro""" __UpperCAmelCase =max_len * 2 * 64 if not Path(__SCREAMING_SNAKE_CASE ).joinpath("""train.len""" ).exists(): save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase ="""examples/seq2seq/test_data/wmt_en_ro""" __UpperCAmelCase =max_len * 4 save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , ) return ds, max_tokens, tokenizer def _a ( self : Optional[Any] ) -> str: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_dataset() __UpperCAmelCase =set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=0 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=1 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) assert idsa.intersection(__SCREAMING_SNAKE_CASE ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: __UpperCAmelCase =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) if tok_name == MBART_TINY: __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) __UpperCAmelCase =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCAmelCase =SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) __UpperCAmelCase =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__SCREAMING_SNAKE_CASE ) == 1 if tok_name == BART_TINY else len(__SCREAMING_SNAKE_CASE ) == 0
68
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
69
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase : Any = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *A_ : Tuple , **A_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
70
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['image_processor'] UpperCamelCase__ = 'SamImageProcessor' def __init__( self , snake_case_ ): super().__init__(snake_case_ ) lowercase =self.image_processor lowercase =-10 lowercase =self.image_processor.size['''longest_edge'''] def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_ = None , **snake_case_ , ): lowercase =self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # pop arguments that are not used in the foward but used nevertheless lowercase =encoding_image_processor['''original_sizes'''] if hasattr(snake_case_ , '''numpy''' ): # Checks if Torch or TF tensor lowercase =original_sizes.numpy() lowercase , lowercase , lowercase =self._check_and_preprocess_points( input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , ) lowercase =self._normalize_and_convert( snake_case_ , snake_case_ , input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , return_tensors=snake_case_ , ) return encoding_image_processor def _A( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="pt" , ): if input_points is not None: if len(snake_case_ ) != len(snake_case_ ): lowercase =[ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] ) for point in input_points ] else: lowercase =[ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ ) for point, original_size in zip(snake_case_ , snake_case_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowercase , lowercase =self._pad_points_and_labels(snake_case_ , snake_case_ ) lowercase =np.array(snake_case_ ) if input_labels is not None: lowercase =np.array(snake_case_ ) if input_boxes is not None: if len(snake_case_ ) != len(snake_case_ ): lowercase =[ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] , is_bounding_box=snake_case_ ) for box in input_boxes ] else: lowercase =[ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ , is_bounding_box=snake_case_ ) for box, original_size in zip(snake_case_ , snake_case_ ) ] lowercase =np.array(snake_case_ ) if input_boxes is not None: if return_tensors == "pt": lowercase =torch.from_numpy(snake_case_ ) # boxes batch size of 1 by default lowercase =input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowercase =tf.convert_to_tensor(snake_case_ ) # boxes batch size of 1 by default lowercase =tf.expand_dims(snake_case_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowercase =torch.from_numpy(snake_case_ ) # point batch size of 1 by default lowercase =input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowercase =tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default lowercase =tf.expand_dims(snake_case_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": lowercase =torch.from_numpy(snake_case_ ) # point batch size of 1 by default lowercase =input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowercase =tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default lowercase =tf.expand_dims(snake_case_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _A( self , snake_case_ , snake_case_ ): lowercase =max([point.shape[0] for point in input_points] ) lowercase =[] for i, point in enumerate(snake_case_ ): if point.shape[0] != expected_nb_points: lowercase =np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowercase =np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case_ ) lowercase =processed_input_points return input_points, input_labels def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ): lowercase , lowercase =original_size lowercase , lowercase =self.image_processor._get_preprocess_shape(snake_case_ , longest_edge=snake_case_ ) lowercase =deepcopy(snake_case_ ).astype(snake_case_ ) if is_bounding_box: lowercase =coords.reshape(-1 , 2 , 2 ) lowercase =coords[..., 0] * (new_w / old_w) lowercase =coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase =coords.reshape(-1 , 4 ) return coords def _A( self , snake_case_=None , snake_case_=None , snake_case_=None , ): if input_points is not None: if hasattr(snake_case_ , '''numpy''' ): # Checks for TF or Torch tensor lowercase =input_points.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_points[0] , snake_case_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) lowercase =[np.array(snake_case_ ) for input_point in input_points] else: lowercase =None if input_labels is not None: if hasattr(snake_case_ , '''numpy''' ): lowercase =input_labels.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_labels[0] , snake_case_ ): raise ValueError('''Input labels must be a list of list integers.''' ) lowercase =[np.array(snake_case_ ) for label in input_labels] else: lowercase =None if input_boxes is not None: if hasattr(snake_case_ , '''numpy''' ): lowercase =input_boxes.numpy().tolist() if ( not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_boxes[0] , snake_case_ ) or not isinstance(input_boxes[0][0] , snake_case_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) lowercase =[np.array(snake_case_ ).astype(np.floataa ) for box in input_boxes] else: lowercase =None return input_points, input_labels, input_boxes @property def _A( self ): lowercase =self.image_processor.model_input_names return list(dict.fromkeys(snake_case_ ) ) def _A( self , *snake_case_ , **snake_case_ ): return self.image_processor.post_process_masks(*snake_case_ , **snake_case_ )
72
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw).convert('RGB') return image def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding')) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding')) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight')) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias')) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight')) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias')) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',)) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''')) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight')) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias')) # fmt: on return rename_keys def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = val def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''') SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''') # next, set bias in the state dict SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase), v_bias)) SCREAMING_SNAKE_CASE = qkv_bias def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 364 if 'coco' in model_name else 224 SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=_UpperCAmelCase).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1).to_dict() SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase) return config, image_size @torch.no_grad() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b') if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl') ) SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=_UpperCAmelCase).input_ids[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase) SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(_UpperCAmelCase).eval() SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...') SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase) original_model.eval() print('Done!') # update state dict keys SCREAMING_SNAKE_CASE = original_model.state_dict() SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) if key.startswith('Qformer.bert'): SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer') if "attention.self" in key: SCREAMING_SNAKE_CASE = key.replace('self' , 'attention') if "opt_proj" in key: SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection') if "t5_proj" in key: SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection') if key.startswith('opt'): SCREAMING_SNAKE_CASE = key.replace('opt' , 'language') if key.startswith('t5'): SCREAMING_SNAKE_CASE = key.replace('t5' , 'language') SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase) assert len(_UpperCAmelCase) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE = load_demo_image() SCREAMING_SNAKE_CASE = vis_processors['eval'](_UpperCAmelCase).unsqueeze(0).to(_UpperCAmelCase) SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt').input_ids.to(_UpperCAmelCase) # create processor SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase) SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase) SCREAMING_SNAKE_CASE = processor(images=_UpperCAmelCase , return_tensors='pt').pixel_values.to(_UpperCAmelCase) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase) original_model.to(_UpperCAmelCase) hf_model.to(_UpperCAmelCase) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']}).logits SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase).logits else: SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']}).logits SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100) SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3]) print('First values of HF logits:' , logits[0, :3, :3]) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_UpperCAmelCase) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_UpperCAmelCase) else: # cast to same type SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase) , _UpperCAmelCase , atol=1e-2) print('Looks ok!') print('Generating a caption...') SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids.to(_UpperCAmelCase) SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values}) SCREAMING_SNAKE_CASE = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = input_ids.shape[1] SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase) SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase) hf_model.save_pretrained(_UpperCAmelCase) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''') hf_model.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": a_ : str = argparse.ArgumentParser() a_ : Optional[int] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
73
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = DebertaVaTokenizer lowerCAmelCase_ = DebertaVaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : str = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''this is a test''' __SCREAMING_SNAKE_CASE : Dict = '''this is a test''' return input_text, output_text def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''<pad>''' __SCREAMING_SNAKE_CASE : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ''' \tHeLLo!how \n Are yoU? ''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __SCREAMING_SNAKE_CASE : List[str] = DebertaVaTokenizer(_A , do_lower_case=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizerFast(_A , do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Optional[int] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __SCREAMING_SNAKE_CASE : Any = DebertaVaTokenizer(_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizerFast(_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Optional[Any] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __SCREAMING_SNAKE_CASE : List[str] = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : str = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Optional[int] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ''' \tHeLLo!how \n Are yoU? ''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Dict = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''This is a test''' __SCREAMING_SNAKE_CASE : str = [13, 1, 4398, 25, 21, 1289] __SCREAMING_SNAKE_CASE : Any = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __SCREAMING_SNAKE_CASE : Optional[Any] = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __SCREAMING_SNAKE_CASE : List[str] = DebertaVaTokenizer(_A , keep_accents=_A ) __SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizerFast(_A , keep_accents=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off __SCREAMING_SNAKE_CASE : int = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __SCREAMING_SNAKE_CASE : str = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __SCREAMING_SNAKE_CASE : Tuple = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizer(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('''sequence builders''' ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode('''multi-sequence build''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.build_inputs_with_special_tokens(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
74
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def a__ ( lowerCAmelCase__ = "isbn/0140328726" ) -> dict: UpperCAmelCase__ : str = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase__ : int = F"""{olid} is not a valid Open Library olid""" raise ValueError(lowerCAmelCase__ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def a__ ( lowerCAmelCase__ ) -> dict: UpperCAmelCase__ : Tuple = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase__ : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase__ : Any = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase__ : Dict = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = ''', '''.join(lowerCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCamelCase__ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: UpperCamelCase__ = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
75
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[int] = len(__UpperCamelCase ) __lowercase : Dict = len(__UpperCamelCase ) __lowercase : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Dict = True for i in range(__UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Union[str, Any] = True if a[i].islower(): __lowercase : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
76
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
'''simple docstring''' from PIL import Image def lowerCAmelCase_ ( snake_case_ : Image ) -> Image: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = image.size UpperCAmelCase_ = 0 UpperCAmelCase_ = image.load() for i in range(snake_case_ ): for j in range(snake_case_ ): UpperCAmelCase_ = pixels[j, i] mean += pixel mean //= width * height for j in range(snake_case_ ): for i in range(snake_case_ ): UpperCAmelCase_ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
78
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = None if token is not None: UpperCAmelCase__ : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} UpperCAmelCase__ : Dict = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase__ : List[str] = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() UpperCAmelCase__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) UpperCAmelCase__ : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = requests.get(url + F"&page={i + 2}" , headers=__lowerCamelCase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = None if token is not None: UpperCAmelCase__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} UpperCAmelCase__ : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" UpperCAmelCase__ : Optional[Any] = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() UpperCAmelCase__ : Optional[Any] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) UpperCAmelCase__ : str = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): UpperCAmelCase__ : str = requests.get(url + F"&page={i + 2}" , headers=__lowerCamelCase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Dict = None if token is not None: UpperCAmelCase__ : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} UpperCAmelCase__ : str = requests.get(__lowerCamelCase , headers=__lowerCamelCase , allow_redirects=__lowerCamelCase ) UpperCAmelCase__ : Dict = result.headers["""Location"""] UpperCAmelCase__ : List[str] = requests.get(__lowerCamelCase , allow_redirects=__lowerCamelCase ) UpperCAmelCase__ : Optional[int] = os.path.join(__lowerCamelCase , F"{artifact_name}.zip" ) with open(__lowerCamelCase , """wb""" ) as fp: fp.write(response.content ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Dict = None with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCamelCase ) as f: for line in f: UpperCAmelCase__ : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase__ : List[str] = line[: line.index(""": """ )] UpperCAmelCase__ : List[str] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed UpperCAmelCase__ : str = line[len("""FAILED """ ) :] failed_tests.append(__lowerCamelCase ) elif filename == "job_name.txt": UpperCAmelCase__ : Union[str, Any] = line if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCamelCase )} for `errors` " F"and {len(__lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) UpperCAmelCase__ : Union[str, Any] = None if job_name and job_links: UpperCAmelCase__ : Optional[Any] = job_links.get(__lowerCamelCase , __lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase__ : List[str] = [x + [y] + [job_link] for x, y in zip(__lowerCamelCase , __lowerCamelCase )] return result def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Any = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCamelCase , job_links=__lowerCamelCase ) ) return errors def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase__ : Optional[Any] = counter.most_common() UpperCAmelCase__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase__ : Any = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase__ : str = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def _lowerCamelCase ( __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): UpperCAmelCase__ : Optional[Any] = test.split("""/""" )[2] else: UpperCAmelCase__ : List[Any] = None return test def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase__ : List[Any] = [x for x in logs if x[2] is not None] UpperCAmelCase__ : int = {x[2] for x in logs} UpperCAmelCase__ : str = {} for test in tests: UpperCAmelCase__ : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase__ : Optional[Any] = counter.most_common() UpperCAmelCase__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase__ : str = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase__ : Tuple = {"""count""": n_errors, """errors""": error_counts} UpperCAmelCase__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def _lowerCamelCase ( __lowerCamelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Any = """| no. | error | status |""" UpperCAmelCase__ : Union[str, Any] = """|-:|:-|:-|""" UpperCAmelCase__ : int = [header, sep] for error in reduced_by_error: UpperCAmelCase__ : Union[str, Any] = reduced_by_error[error]["""count"""] UpperCAmelCase__ : Any = F"| {count} | {error[:100]} | |" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[int] = """| model | no. of errors | major error | count |""" UpperCAmelCase__ : List[str] = """|-:|-:|-:|-:|""" UpperCAmelCase__ : Union[str, Any] = [header, sep] for model in reduced_by_model: UpperCAmelCase__ : Union[str, Any] = reduced_by_model[model]["""count"""] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] UpperCAmelCase__ : str = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) SCREAMING_SNAKE_CASE__ : List[str] = get_job_links(args.workflow_run_id, token=args.token) SCREAMING_SNAKE_CASE__ : Optional[int] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: SCREAMING_SNAKE_CASE__ : Tuple = k.find(""" / """) SCREAMING_SNAKE_CASE__ : Optional[int] = k[index + len(""" / """) :] SCREAMING_SNAKE_CASE__ : Any = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) SCREAMING_SNAKE_CASE__ : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) SCREAMING_SNAKE_CASE__ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error SCREAMING_SNAKE_CASE__ : int = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors SCREAMING_SNAKE_CASE__ : int = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) SCREAMING_SNAKE_CASE__ : Union[str, Any] = reduce_by_error(errors) SCREAMING_SNAKE_CASE__ : Dict = reduce_by_model(errors) SCREAMING_SNAKE_CASE__ : int = make_github_table(reduced_by_error) SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
79
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Dict = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Optional[Any] = 'maskformer-swin' __snake_case :Dict = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=96 , _lowerCAmelCase : List[str]=[2, 2, 6, 2] , _lowerCAmelCase : List[str]=[3, 6, 12, 24] , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Optional[int]=4.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : str=1e-5 , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : List[str] , ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(_lowerCAmelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) __lowercase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
80
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , ) -> Tuple: __snake_case : Union[str, Any] = parent __snake_case : Dict = 13 __snake_case : Tuple = 7 __snake_case : Dict = 30 __snake_case : Any = self.seq_length + self.mem_len __snake_case : int = 15 __snake_case : Union[str, Any] = True __snake_case : List[Any] = True __snake_case : List[Any] = 99 __snake_case : Optional[int] = [10, 50, 80] __snake_case : List[str] = 32 __snake_case : List[Any] = 32 __snake_case : int = 4 __snake_case : Optional[Any] = 8 __snake_case : Union[str, Any] = 128 __snake_case : Optional[Any] = 2 __snake_case : Any = 2 __snake_case : str = None __snake_case : Optional[int] = 1 __snake_case : str = 0 __snake_case : Union[str, Any] = 3 __snake_case : Tuple = self.vocab_size - 1 __snake_case : List[str] = 0.01 def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __snake_case ( self : Any ) -> Union[str, Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Optional[Any]: __snake_case : List[str] = TFTransfoXLModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Optional[Any] = {"input_ids": input_ids_a, "mems": mems_a} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int ) -> Dict: __snake_case : int = TFTransfoXLLMHeadModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Tuple = {"input_ids": input_ids_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() __snake_case , __snake_case : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() __snake_case : List[str] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Optional[int] ) -> List[str]: __snake_case : str = TFTransfoXLForSequenceClassification(lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Tuple = config_and_inputs __snake_case : Dict = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : List[Any] = () if is_tf_available() else () __UpperCAmelCase : Dict = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : int = False def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __snake_case ( self : int ) -> int: __snake_case : List[Any] = TFTransfoXLModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=lowerCamelCase , d_embed=37 ) def __snake_case ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ) -> Dict: self.model_tester.set_seed() __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: self.model_tester.set_seed() __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Tuple: __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case : str = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __snake_case : int = model.get_output_embeddings() assert isinstance(lowerCamelCase , tf.keras.layers.Layer ) __snake_case : Optional[Any] = model.get_bias() assert name is None else: __snake_case : Optional[int] = model.get_output_embeddings() assert x is None __snake_case : Tuple = model.get_bias() assert name is None def __snake_case ( self : List[Any] ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __snake_case ( self : Optional[int] ) -> Dict: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = TFTransfoXLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def __snake_case ( self : str ) -> Optional[int]: pass @require_tf class a (unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def __snake_case ( self : List[Any] ) -> Tuple: __snake_case : Dict = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __snake_case : Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case : Optional[int] = model.generate(lowerCamelCase , max_length=200 , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase )
81
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } lowerCamelCase = { """google/pegasus-xsum""": 512, } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PegasusTokenizer UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Tuple="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : int="<mask_1>" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Any]=103 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is""" F""" {type(_UpperCAmelCase )}""" ) UpperCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase_ = additional_special_tokens_extended else: UpperCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : List[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
82
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class __snake_case : def __init__( self : Union[str, Any] , __lowerCAmelCase : list[tuple[float, float]] ): """simple docstring""" _lowerCamelCase : Any = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCamelCase : Any = len(__lowerCAmelCase ) - 1 def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCAmelCase ) , 5 ) == 1 return output_values def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCamelCase : Optional[int] = self.basis_function(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 0.0 _lowerCamelCase : Any = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : float = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore _lowerCamelCase : list[float] = [] # x coordinates of points to plot _lowerCamelCase : list[float] = [] # y coordinates of points to plot _lowerCamelCase : List[Any] = 0.0 while t <= 1: _lowerCamelCase : List[Any] = self.bezier_curve_function(__lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] _lowerCamelCase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( __lowerCAmelCase , __lowerCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__lowerCAmelCase , __lowerCAmelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
83
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
from __future__ import annotations UpperCAmelCase = 8.988e9 # units = N * m^s * C^-2 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowercase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase = (COULOMBS_CONSTANT * charge_product / abs(__SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
84
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case ( UpperCamelCase_ ): lowercase_ = 'levit' def __init__( self : str , a_ : Optional[Any]=224 , a_ : List[str]=3 , a_ : Any=3 , a_ : Any=2 , a_ : Tuple=1 , a_ : int=16 , a_ : Optional[int]=[128, 256, 384] , a_ : Dict=[4, 8, 12] , a_ : List[str]=[4, 4, 4] , a_ : Any=[16, 16, 16] , a_ : Dict=0 , a_ : Tuple=[2, 2, 2] , a_ : Union[str, Any]=[2, 2, 2] , a_ : Optional[Any]=0.02 , **a_ : str , )-> Any: """simple docstring""" super().__init__(**a_ ) SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Any = kernel_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = stride SCREAMING_SNAKE_CASE__ : Any = padding SCREAMING_SNAKE_CASE__ : Any = hidden_sizes SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = depths SCREAMING_SNAKE_CASE__ : List[str] = key_dim SCREAMING_SNAKE_CASE__ : int = drop_path_rate SCREAMING_SNAKE_CASE__ : List[str] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = attention_ratio SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case ( UpperCamelCase_ ): lowercase_ = version.parse('1.11' ) @property def __lowercase( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase( self : Any )-> float: """simple docstring""" return 1e-4
85
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __a :Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = 'ernie_m' _lowerCamelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , UpperCAmelCase : int = 250002 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 3072 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 514 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : int = 1 , UpperCAmelCase : float = 1E-05 , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Any=0.0 , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = classifier_dropout A_ = is_decoder A_ = act_dropout
86
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Optional[int]: """simple docstring""" A__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ = '''''' else: A__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = dct.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False ) -> List[Any]: """simple docstring""" A__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=lowercase_ , ) A__ = ViTHybridConfig(backbone_config=lowercase_ , image_size=384 , num_labels=1_000 ) A__ = False # load original model from timm A__ = timm.create_model(lowercase_ , pretrained=lowercase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(lowercase_ ) A__ = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ , lowercase_ ) A__ = '''huggingface/label-files''' A__ = '''imagenet-1k-id2label.json''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(lowercase_ ).eval() else: A__ = ViTHybridForImageClassification(lowercase_ ).eval() model.load_state_dict(lowercase_ ) # create image processor A__ = create_transform(**resolve_data_config({} , model=lowercase_ ) ) A__ = transform.transforms A__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=lowercase_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowercase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(lowercase_ ).unsqueeze(0 ) A__ = processor(lowercase_ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowercase_ , lowercase_ ) # verify logits with torch.no_grad(): A__ = model(lowercase_ ) A__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(lowercase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase_ , outputs.pooler_output , atol=1E-3 ) else: A__ = timm_model(lowercase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase_ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) _lowerCamelCase : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
87
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = KandinskyVaaControlnetImgaImgPipeline __UpperCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __UpperCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __UpperCAmelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCAmelCase = False @property def UpperCamelCase_ ( self) -> Optional[Any]: return 32 @property def UpperCamelCase_ ( self) -> str: return 32 @property def UpperCamelCase_ ( self) -> str: return self.time_input_dim @property def UpperCamelCase_ ( self) -> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCamelCase_ ( self) -> str: return 100 @property def UpperCamelCase_ ( self) -> Optional[int]: torch.manual_seed(0) _lowerCamelCase : str = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCamelCase : Dict = UNetaDConditionModel(**SCREAMING_SNAKE_CASE) return model @property def UpperCamelCase_ ( self) -> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self) -> str: torch.manual_seed(0) _lowerCamelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : int = self.dummy_unet _lowerCamelCase : Optional[Any] = self.dummy_movq _lowerCamelCase : Any = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCamelCase : List[Any] = DDIMScheduler(**SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> str: _lowerCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( SCREAMING_SNAKE_CASE) # create init_image _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1)[0] _lowerCamelCase : Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE)).convert("""RGB""").resize((256, 256)) # create hint _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) if str(SCREAMING_SNAKE_CASE).startswith("""mps"""): _lowerCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _lowerCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _lowerCamelCase : Dict = output.images _lowerCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] _lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""") _lowerCamelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") _lowerCamelCase : Dict = init_image.resize((512, 512)) _lowerCamelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""") _lowerCamelCase : str = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE)).float() / 2_55.0 _lowerCamelCase : Tuple = hint.permute(2 , 0 , 1).unsqueeze(0) _lowerCamelCase : Optional[int] = """A robot, 4k photo""" _lowerCamelCase : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa) _lowerCamelCase : Dict = pipeline.to(SCREAMING_SNAKE_CASE) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase , _lowerCamelCase : List[Any] = pipe_prior( SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.85 , generator=SCREAMING_SNAKE_CASE , negative_prompt="""""" , ).to_tuple() _lowerCamelCase : List[str] = pipeline( image=SCREAMING_SNAKE_CASE , image_embeds=SCREAMING_SNAKE_CASE , negative_image_embeds=SCREAMING_SNAKE_CASE , hint=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
88
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _lowerCamelCase: def __init__( self, lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = parent _lowercase : Union[str, Any] = 13 _lowercase : Optional[Any] = 7 _lowercase : Optional[Any] = True _lowercase : int = True _lowercase : List[Any] = True _lowercase : int = 99 _lowercase : List[Any] = 32 _lowercase : Optional[int] = 2 _lowercase : Tuple = 4 _lowercase : Any = 37 _lowercase : List[str] = 'gelu' _lowercase : List[str] = 0.1 _lowercase : int = 0.1 _lowercase : Union[str, Any] = 5_12 _lowercase : Any = 16 _lowercase : Any = 2 _lowercase : List[Any] = 0.0_2 _lowercase : List[Any] = 3 _lowercase : Optional[int] = 4 _lowercase : Union[str, Any] = None def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : List[Any] = None if self.use_input_mask: _lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : str = None _lowercase : Dict = None _lowercase : List[str] = None if self.use_labels: _lowercase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Tuple = ids_tensor([self.batch_size], self.num_choices) _lowercase : Tuple = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Any: """simple docstring""" ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() _lowercase : Optional[Any] = True _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowercase : str = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = TFEsmModel(config=lowerCamelCase) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} _lowercase : Tuple = model(lowerCamelCase) _lowercase : List[Any] = [input_ids, input_mask] _lowercase : Any = model(lowerCamelCase) _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> str: """simple docstring""" _lowercase : Optional[int] = True _lowercase : int = TFEsmModel(config=lowerCamelCase) _lowercase : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _lowercase : Optional[int] = model(lowerCamelCase) _lowercase : Union[str, Any] = [input_ids, input_mask] _lowercase : Any = model(lowerCamelCase, encoder_hidden_states=lowerCamelCase) # Also check the case where encoder outputs are not passed _lowercase : Optional[int] = model(lowerCamelCase, attention_mask=lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Tuple = TFEsmForMaskedLM(config=lowerCamelCase) _lowercase : Union[str, Any] = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = self.num_labels _lowercase : Tuple = TFEsmForTokenClassification(config=lowerCamelCase) _lowercase : str = {'input_ids': input_ids, 'attention_mask': input_mask} _lowercase : Union[str, Any] = model(lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase_ : Any = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase_ : Any = False lowercase_ : Optional[int] = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = TFEsmModelTester(self) _lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = TFEsmModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @unittest.skip('Protein models do not support embedding resizing.') def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.') def UpperCamelCase ( self) -> List[str]: """simple docstring""" pass def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(lowerCamelCase) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowercase : str = model.get_bias() assert isinstance(lowerCamelCase, lowerCamelCase) for k, v in name.items(): assert isinstance(lowerCamelCase, tf.Variable) else: _lowercase : List[str] = model.get_output_embeddings() assert x is None _lowercase : List[str] = model.get_bias() assert name is None @require_tf class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D') _lowercase : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowercase : List[Any] = model(lowerCamelCase)[0] _lowercase : Dict = [1, 6, 33] self.assertEqual(list(output.numpy().shape), lowerCamelCase) # compare the actual values for a slice. _lowercase : Any = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D') _lowercase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _lowercase : Optional[int] = model(lowerCamelCase)[0] # compare the actual values for a slice. _lowercase : int = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4))
89
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a__ ( a__ ): '''simple docstring''' def __lt__( self , lowerCamelCase_ ) -> List[Any]: return self[-1] < other[-1] def __eq__( self , lowerCamelCase_ ) -> str: return self[-1] == other[-1] def _snake_case ( A ) -> list: lowerCAmelCase__ = [] # sort into stacks for element in collection: lowerCAmelCase__ = Stack([element] ) lowerCAmelCase__ = bisect_left(A , A ) if i != len(A ): stacks[i].append(A ) else: stacks.append(A ) # use a heap-based merge to merge stack efficiently lowerCAmelCase__ = merge(*(reversed(A ) for stack in stacks) ) return collection if __name__ == "__main__": __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCAmelCase = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
90
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase_ = logging.get_logger(__name__) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = UNetaDModel lowerCamelCase_ = 'sample' @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Optional[int] =4 lowercase : Tuple =3 lowercase : List[str] =(32, 32) lowercase : Dict =floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) lowercase : Any =torch.tensor([10] ).to(UpperCAmelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Dict ={ '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowercase : int =self.dummy_input return init_dict, inputs_dict class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = UNetaDModel lowerCamelCase_ = 'sample' @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] =4 lowercase : Any =4 lowercase : Any =(32, 32) lowercase : List[Any] =floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) lowercase : Union[str, Any] =torch.tensor([10] ).to(UpperCAmelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return (4, 32, 32) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return (4, 32, 32) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any ={ '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowercase : str =self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase , lowercase : Dict =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCAmelCase__ ) lowercase : Union[str, Any] =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase , lowercase : List[Any] =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) lowercase : Union[str, Any] =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowercase , lowercase : Tuple =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCAmelCase__ ) model_accelerate.to(UpperCAmelCase__ ) model_accelerate.eval() lowercase : int =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase : Tuple =noise.to(UpperCAmelCase__ ) lowercase : Optional[Any] =torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase__ ) lowercase : Dict =model_accelerate(UpperCAmelCase__ , UpperCAmelCase__ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowercase , lowercase : Optional[Any] =UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCAmelCase__ , low_cpu_mem_usage=UpperCAmelCase__ ) model_normal_load.to(UpperCAmelCase__ ) model_normal_load.eval() lowercase : List[str] =model_normal_load(UpperCAmelCase__ , UpperCAmelCase__ )['''sample'''] assert torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-3 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(UpperCAmelCase__ ) lowercase : Dict =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase : List[Any] =noise.to(UpperCAmelCase__ ) lowercase : Dict =torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase__ ) with torch.no_grad(): lowercase : Optional[int] =model(UpperCAmelCase__ , UpperCAmelCase__ ).sample lowercase : List[str] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase : Tuple =torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-3 ) ) class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = UNetaDModel lowerCamelCase_ = 'sample' @property def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=(32, 32) ): '''simple docstring''' lowercase : Optional[int] =4 lowercase : Dict =3 lowercase : Optional[Any] =floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) lowercase : Dict =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Dict ={ '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowercase : Union[str, Any] =self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase , lowercase : Dict =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCAmelCase__ ) lowercase : int =self.dummy_input lowercase : Tuple =floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase__ ) lowercase : Optional[int] =noise lowercase : List[str] =model(**UpperCAmelCase__ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : str =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(UpperCAmelCase__ ) lowercase : Union[str, Any] =4 lowercase : Tuple =3 lowercase : int =(256, 256) lowercase : Optional[int] =torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) lowercase : Optional[Any] =torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase__ ) with torch.no_grad(): lowercase : Dict =model(UpperCAmelCase__ , UpperCAmelCase__ ).sample lowercase : Optional[Any] =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase : int =torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-2 ) ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Dict =UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(UpperCAmelCase__ ) lowercase : List[Any] =4 lowercase : List[str] =3 lowercase : Optional[Any] =(32, 32) lowercase : Dict =torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase__ ) lowercase : Optional[Any] =torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase__ ) with torch.no_grad(): lowercase : int =model(UpperCAmelCase__ , UpperCAmelCase__ ).sample lowercase : List[Any] =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase : str =torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-2 ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' # not required for this model pass
92
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A = datasets.load_iris() __A = np.array(data["""data"""]) __A = np.array(data["""target"""]) __A = data["""target_names"""] __A , __A , __A , __A = train_test_split(X, y) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :str = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified lowerCAmelCase__ :Optional[Any] = [] for data_point in data: lowerCAmelCase__ :Tuple = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase__ :str = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase__ :Optional[int] = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
93
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Any , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : int , **UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : int , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''flax'''] def __init__( self : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] )
94
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase_ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def snake_case ( A__ ,A__ ,A__ ,A__=None ): # Initialise PyTorch model UpperCAmelCase_ : List[Any] = XLNetConfig.from_json_file(A__ ) UpperCAmelCase_ : str = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase_ : List[Any] = finetuning_task UpperCAmelCase_ : Tuple = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ : List[Any] = XLNetForSequenceClassification(A__ ) elif "squad" in finetuning_task: UpperCAmelCase_ : List[str] = finetuning_task UpperCAmelCase_ : int = XLNetForQuestionAnswering(A__ ) else: UpperCAmelCase_ : Union[str, Any] = XLNetLMHeadModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(A__ ,A__ ,A__ ) # Save pytorch-model UpperCAmelCase_ : Dict = os.path.join(A__ ,A__ ) UpperCAmelCase_ : int = os.path.join(A__ ,A__ ) print(F"""Save PyTorch model to {os.path.abspath(A__ )}""" ) torch.save(model.state_dict() ,A__ ) print(F"""Save configuration file to {os.path.abspath(A__ )}""" ) with open(A__ ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCamelCase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
95
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def a ( __UpperCAmelCase : Dict ) -> Dict: __magic_name__: List[Any] = torch.load(__UpperCAmelCase , map_location="""cpu""" ) if "model" in sd.keys(): __magic_name__: str = torch.load(__UpperCAmelCase , map_location="""cpu""" )["""model"""] # pop unnecessary weights __magic_name__: Any = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCAmelCase ) __magic_name__: List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __magic_name__: Tuple = sd.pop(__UpperCAmelCase ) __magic_name__: str = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __magic_name__: List[str] = sd[key] # We split QKV in separate Q,K,V __magic_name__: Union[str, Any] = key.replace(""".qkv_proj.""" , """.q_proj.""" ) __magic_name__: int = key.replace(""".qkv_proj.""" , """.k_proj.""" ) __magic_name__: List[str] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) __magic_name__: str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __magic_name__, __magic_name__, __magic_name__: int = torch.split(__UpperCAmelCase , depth // 3 , dim=0 ) __magic_name__: int = q __magic_name__: Optional[Any] = k __magic_name__: str = v del sd[key] return sd @torch.no_grad() def a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int=None ) -> Any: __magic_name__: str = load_checkpoint(__UpperCAmelCase ) if config is not None: __magic_name__: Tuple = OPTConfig.from_pretrained(__UpperCAmelCase ) else: __magic_name__: List[Any] = OPTConfig() __magic_name__: Tuple = OPTModel(__UpperCAmelCase ).half().eval() model.load_state_dict(__UpperCAmelCase ) # Check results Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __lowerCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
96
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def a ( snake_case__: bytes ): '''simple docstring''' # Make sure the supplied data is a bytes-like object if not isinstance(snake_case__ , snake_case__ ): lowercase_ = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(snake_case__ ) lowercase_ = ''''''.join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) lowercase_ = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ = B'''=''' * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: lowercase_ = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case__ ) , 6 ) ).encode() + padding ) def a ( snake_case__: str ): '''simple docstring''' # Make sure encoded_data is either a string or a bytes-like object if not isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): lowercase_ = ( '''argument should be a bytes-like object or ASCII string, ''' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ , snake_case__ ): try: lowercase_ = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowercase_ = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ = encoded_data[:-padding] lowercase_ = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case__ ) , 8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
97
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : List[str]=30 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Any=0.6 , lowerCAmelCase__ : Optional[Any]=None , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = mask_ratio _UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEModel(config=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected sequence length = num_patches _UpperCamelCase = (self.image_size // self.patch_size) ** 2 _UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) _UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _snake_case : int = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _snake_case : Any = False _snake_case : Dict = False _snake_case : Any = False _snake_case : List[Any] = False def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Layer ) ) def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = outputs_dict[0].numpy() _UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCAmelCase__ : Optional[Any] ): _UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCAmelCase__ ): _UpperCamelCase = v.numpy() else: _UpperCamelCase = np.array(lowerCAmelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = prepare_numpy_arrays(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.constant(lowerCAmelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCAmelCase__ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCAmelCase__ , lowerCAmelCase__ ),) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCAmelCase__ , '''_keras_serializable''' , lowerCAmelCase__ ) } _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.convert_to_tensor(lowerCAmelCase__ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: _UpperCamelCase = main_layer_class(lowerCAmelCase__ ) _UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _UpperCamelCase = tf.keras.Model(lowerCAmelCase__ , outputs=main_layer(lowerCAmelCase__ ) ) _UpperCamelCase = model(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''keras_model.h5''' ) model.save(lowerCAmelCase__ ) _UpperCamelCase = tf.keras.models.load_model( lowerCAmelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCAmelCase__ , tf.keras.Model ) _UpperCamelCase = model(lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = outputs.last_hidden_state.numpy() _UpperCamelCase = 0 else: _UpperCamelCase = outputs.logits.numpy() _UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ , saved_model=lowerCAmelCase__ ) _UpperCamelCase = model_class.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = after_outputs['''last_hidden_state'''].numpy() _UpperCamelCase = 0 else: _UpperCamelCase = after_outputs['''logits'''].numpy() _UpperCamelCase = 0 _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCAmelCase__ ) _UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _UpperCamelCase = model_class.from_config(model.config ) _UpperCamelCase = new_model(lowerCAmelCase__ ) # Build model new_model.set_weights(model.get_weights() ) _UpperCamelCase = new_model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @slow def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : int ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _UpperCamelCase = ViTMAEConfig() _UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) # verify the logits _UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
98
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = None def a (lowerCAmelCase__ , lowerCAmelCase__=0.9_9_9 , lowerCAmelCase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __UpperCAmelCase ( __A , __A ): """simple docstring""" _lowerCamelCase = 1 @register_to_config def __init__( self , __A = 1000 , __A = 0.0001 , __A = 0.02 , __A = "linear" , __A = None , __A = True , __A = True , __A = 0 , __A = "epsilon" , __A = 1.0 , **__A , ): if kwargs.get("""set_alpha_to_one""" , __A ) is not None: __a = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , __A , standard_warn=__A ) __a = kwargs["""set_alpha_to_one"""] if trained_betas is not None: __a = torch.tensor(__A , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(__A , __A , __A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(__A ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __a = 1.0 # setable values __a = None __a = torch.from_numpy(np.arange(0 , __A ).copy().astype(np.intaa ) ) def snake_case_ ( self , __A , __A = None ): return sample def snake_case_ ( self , __A , __A = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __a = num_inference_steps __a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , __A ) * step_ratio).round().copy().astype(np.intaa ) __a = torch.from_numpy(__A ).to(__A ) self.timesteps += self.config.steps_offset def snake_case_ ( self , __A , __A , __A , __A = 0.0 , __A = False , __A = None , __A = True , ): # 1. get previous step value (=t+1) __a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __a = self.alphas_cumprod[timestep] __a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __a = model_output elif self.config.prediction_type == "sample": __a = model_output __a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) def __len__( self ): return self.config.num_train_timesteps
99
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _A : str = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _A : List[Any] = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _A : Optional[int] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _A : List[Any] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _A : List[str] = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _A : Union[str, Any] = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _A : List[str] = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def __snake_case ( ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = randrange(len(lowerCAmelCase_ ) ), randrange(len(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __snake_case ( lowerCAmelCase_ = 1_0_0 ) -> List[Any]: return (generate_random_hand() for _ in range(lowerCAmelCase_ )) @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: assert PokerHand(lowerCAmelCase_ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: assert PokerHand(lowerCAmelCase_ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = PokerHand(lowerCAmelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: assert PokerHand(lowerCAmelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: assert PokerHand(lowerCAmelCase_ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: assert PokerHand(lowerCAmelCase_ ).compare_with(PokerHand(lowerCAmelCase_ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: assert PokerHand(lowerCAmelCase_ ).compare_with(PokerHand(lowerCAmelCase_ ) ) == expected def __snake_case ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [PokerHand(lowerCAmelCase_ ) for hand in SORTED_HANDS] SCREAMING_SNAKE_CASE__ = poker_hands.copy() shuffle(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = chain(sorted(lowerCAmelCase_ ) ) for index, hand in enumerate(lowerCAmelCase_ ): assert hand == poker_hands[index] def __snake_case ( ) -> Tuple: # Test that five high straights are compared correctly. SCREAMING_SNAKE_CASE__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowerCAmelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __snake_case ( ) -> Tuple: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. SCREAMING_SNAKE_CASE__ = PokerHand('''2C 4S AS 3D 5C''' ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __snake_case ( ) -> str: # Problem number 54 from Project Euler # Testing from poker_hands.txt file SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = os.path.join(lowerCAmelCase_ , '''poker_hands.txt''' ) with open(lowerCAmelCase_ ) as file_hand: for line in file_hand: SCREAMING_SNAKE_CASE__ = line[:1_4].strip() SCREAMING_SNAKE_CASE__ = line[1_5:].strip() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PokerHand(lowerCAmelCase_ ), PokerHand(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = player.compare_with(lowerCAmelCase_ ) if output == "Win": answer += 1 assert answer == 3_7_6
100
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0