code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ={ 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """vit_msn""" def __init__( self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-06 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE_ : Any = num_channels SCREAMING_SNAKE_CASE_ : int = qkv_bias
101
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __magic_name__ : List[str] = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE ) , version.parse(SCREAMING_SNAKE_CASE ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): UpperCamelCase : str = f"""\n{hint}""" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , SCREAMING_SNAKE_CASE ): UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = requirement, None, None else: UpperCamelCase : str = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f""" got {requirement}""" ) UpperCamelCase , UpperCamelCase : Dict = match[0] UpperCamelCase : List[str] = want_full.split(""",""" ) # there could be multiple requirements UpperCamelCase : List[Any] = {} for w in want_range: UpperCamelCase : Dict = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f""" but got {requirement}""" ) UpperCamelCase , UpperCamelCase : List[Any] = match[0] UpperCamelCase : Any = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCamelCase : Optional[Any] = """.""".join([str(SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return # check if any version is installed try: UpperCamelCase : Tuple = importlib.metadata.version(SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
102
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : List[Any] = PhobertTokenizer A__ : Optional[Any] = False def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] _snake_case = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _snake_case = ['''#version: 0.2''', '''l à</w>'''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def __UpperCAmelCase ( self : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = '''Tôi là VinAI Research''' _snake_case = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = '''Tôi là VinAI Research''' _snake_case = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() _snake_case = tokenizer.tokenize(__lowerCamelCase ) print(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
103
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : List[Any], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" for attribute in key.split("." ): A__ = getattr(UpperCAmelCase_, UpperCAmelCase_ ) if weight_type is not None: A__ = getattr(UpperCAmelCase_, UpperCAmelCase_ ).shape else: A__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : int, UpperCAmelCase_ : Union[str, Any] ) -> str: """simple docstring""" A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, hf_model.config.feat_extract_norm == "group", ) A__ = True else: for key, mapped_key in MAPPING.items(): A__ = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): A__ = True if "*" in mapped_key: A__ = name.split(UpperCAmelCase_ )[0].split("." )[-2] A__ = mapped_key.replace("*", UpperCAmelCase_ ) if "weight_g" in name: A__ = "weight_g" elif "weight_v" in name: A__ = "weight_v" elif "weight" in name: A__ = "weight" elif "bias" in name: A__ = "bias" else: A__ = None set_recursively(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _lowerCamelCase ( UpperCAmelCase_ : Dict, UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" A__ = full_name.split("conv_layers." )[-1] A__ = name.split("." ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Any=None, UpperCAmelCase_ : List[str]=None, UpperCAmelCase_ : Tuple=True ) -> Optional[int]: """simple docstring""" if config_path is not None: A__ = HubertConfig.from_pretrained(UpperCAmelCase_ ) else: A__ = HubertConfig() if is_finetuned: if dict_path: A__ = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(UpperCAmelCase_, "vocab.json" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) with open(UpperCAmelCase_, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, UpperCAmelCase_ ) A__ = WavaVecaCTCTokenizer( UpperCAmelCase_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=UpperCAmelCase_, ) A__ = True if config.feat_extract_norm == "layer" else False A__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=UpperCAmelCase_, return_attention_mask=UpperCAmelCase_, ) A__ = WavaVecaProcessor(feature_extractor=UpperCAmelCase_, tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) A__ = HubertForCTC(UpperCAmelCase_ ) else: A__ = HubertModel(UpperCAmelCase_ ) if is_finetuned: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A__ = model[0].eval() recursively_load_weights(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
104
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase_ : def __init__( self ,snake_case__ ): if isinstance(snake_case__ ,snake_case__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE_ : Any = deepcopy(snake_case__ ) elif os.path.exists(snake_case__ ): with io.open(snake_case__ ,'r' ,encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(snake_case__ ) else: try: SCREAMING_SNAKE_CASE_ : Dict = baseaa.urlsafe_baadecode(snake_case__ ).decode('utf-8' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(snake_case__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) SCREAMING_SNAKE_CASE_ : List[Any] = config self.set_stage_and_offload() def snake_case ( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. SCREAMING_SNAKE_CASE_ : List[str] = self.get_value('zero_optimization.stage' ,-1 ) # offload SCREAMING_SNAKE_CASE_ : int = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = set(['cpu', 'nvme'] ) SCREAMING_SNAKE_CASE_ : List[Any] = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE_ : int = True def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ : Dict = ds_key_long.split('.' ) SCREAMING_SNAKE_CASE_ : Dict = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE_ : Optional[int] = config.get(snake_case__ ) if config is None: return None, ds_key return config, ds_key def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.find_config_node(snake_case__ ) if config is None: return default return config.get(snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : str = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ : int = ds_key_long.split('.' ) for node in nodes: SCREAMING_SNAKE_CASE_ : Any = config SCREAMING_SNAKE_CASE_ : str = config.get(snake_case__ ) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.get_value(snake_case__ ) return False if value is None else bool(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = self.get_value(snake_case__ ) return False if value is None else not bool(snake_case__ ) def snake_case ( self ): return self._stage == 2 def snake_case ( self ): return self._stage == 3 def snake_case ( self ): return self._offload class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = engine def snake_case ( self ,snake_case__ ,**snake_case__ ): # runs backpropagation and handles mixed precision self.engine.backward(snake_case__ ,**snake_case__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ): super().__init__(snake_case__ ,device_placement=snake_case__ ,scaler=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = hasattr(self.optimizer ,'overflow' ) def snake_case ( self ,snake_case__=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case ( self ): if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ): super().__init__(snake_case__ ,snake_case__ ) def snake_case ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=0.001 ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = params SCREAMING_SNAKE_CASE_ : Dict = lr SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight_decay SCREAMING_SNAKE_CASE_ : Dict = kwargs class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=None ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = optimizer SCREAMING_SNAKE_CASE_ : List[Any] = total_num_steps SCREAMING_SNAKE_CASE_ : Dict = warmup_num_steps SCREAMING_SNAKE_CASE_ : str = kwargs
105
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : List[Any] = BarthezTokenizer A_ : List[str] = BarthezTokenizerFast A_ : Any = True A_ : Any = True def __UpperCamelCase ( self : int ) -> Tuple: super().setUp() A = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__UpperCamelCase ) A = tokenizer def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: A = '<pad>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__UpperCamelCase ) , 101_122 ) def __UpperCamelCase ( self : Any ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> str: A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] A = [0, 57, 3_018, 70_307, 91, 2] A = self.tokenizer( __UpperCamelCase , max_length=len(__UpperCamelCase ) , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) A = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'I was born in 92000, and this is falsé.' A = tokenizer.tokenize(__UpperCamelCase ) A = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) A = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) A = self.get_rust_tokenizer() A = tokenizer.encode(__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: # fmt: off A = {'input_ids': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. A = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=__UpperCamelCase , )
106
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' import functools def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] , __snake_case : list[int] ): # Validation if not isinstance(__snake_case , __snake_case ) or not all(isinstance(__snake_case , __snake_case ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__snake_case ) != 3 or not all(isinstance(__snake_case , __snake_case ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__snake_case ) == 0: return 0 if min(__snake_case ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__snake_case ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _A = set(__snake_case ) @functools.cache def dynamic_programming(__snake_case : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
107
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: if not isinstance(__snake_case , __snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
108
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __a ( _snake_case, _snake_case ): @register_to_config def __init__( self : Optional[Any] ,lowerCamelCase : int = 768 ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 ,lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(1 ,lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Union[str, torch.device]] = None ,lowerCamelCase : Optional[torch.dtype] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds * self.std) + self.mean return embeds
109
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0.0 , UpperCamelCase_ = None , UpperCamelCase_ = "geglu" , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = "layer_norm" , UpperCamelCase_ = False , ): super().__init__() UpperCAmelCase__ : int = only_cross_attention UpperCAmelCase__ : List[str] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' UpperCAmelCase__ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase__ : Any = AdaLayerNorm(UpperCamelCase_ , UpperCamelCase_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase__ : Optional[Any] = AdaLayerNormZero(UpperCamelCase_ , UpperCamelCase_ ) else: UpperCAmelCase__ : List[str] = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) UpperCAmelCase__ : Any = Attention( query_dim=UpperCamelCase_ , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , dropout=UpperCamelCase_ , bias=UpperCamelCase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase__ : Tuple = ( AdaLayerNorm(UpperCamelCase_ , UpperCamelCase_ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) ) UpperCAmelCase__ : Any = Attention( query_dim=UpperCamelCase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , dropout=UpperCamelCase_ , bias=UpperCamelCase_ , upcast_attention=UpperCamelCase_ , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[str] = None # 3. Feed-forward UpperCAmelCase__ : List[str] = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) UpperCAmelCase__ : Any = FeedForward(UpperCamelCase_ , dropout=UpperCamelCase_ , activation_fn=UpperCamelCase_ , final_dropout=UpperCamelCase_ ) # let chunk size default to None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : int = 0 def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): # Sets chunk feed-forward UpperCAmelCase__ : Optional[Any] = chunk_size UpperCAmelCase__ : Dict = dim def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCAmelCase__ : int = self.norma(UpperCamelCase_ , UpperCamelCase_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.norma( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hidden_dtype=hidden_states.dtype ) else: UpperCAmelCase__ : Optional[Any] = self.norma(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase__ : int = self.attna( UpperCamelCase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : List[str] = gate_msa.unsqueeze(1 ) * attn_output UpperCAmelCase__ : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase__ : Union[str, Any] = ( self.norma(UpperCamelCase_ , UpperCamelCase_ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase_ ) ) UpperCAmelCase__ : int = self.attna( UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCAmelCase__ : str = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase__ : Optional[int] = self.norma(UpperCamelCase_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) UpperCAmelCase__ : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase__ : int = torch.cat( [self.ff(UpperCamelCase_ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCAmelCase__ : Dict = self.ff(UpperCamelCase_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : Tuple = gate_mlp.unsqueeze(1 ) * ff_output UpperCAmelCase__ : List[Any] = ff_output + hidden_states return hidden_states class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 4 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = "geglu" , UpperCamelCase_ = False , ): super().__init__() UpperCAmelCase__ : List[Any] = int(dim * mult ) UpperCAmelCase__ : int = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase__ : List[Any] = GELU(UpperCamelCase_ , UpperCamelCase_ ) if activation_fn == "gelu-approximate": UpperCAmelCase__ : List[str] = GELU(UpperCamelCase_ , UpperCamelCase_ , approximate='tanh' ) elif activation_fn == "geglu": UpperCAmelCase__ : Dict = GEGLU(UpperCamelCase_ , UpperCamelCase_ ) elif activation_fn == "geglu-approximate": UpperCAmelCase__ : List[Any] = ApproximateGELU(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Any = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase_ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase_ ) ) # project out self.net.append(nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase_ ) ) def __snake_case ( self , UpperCamelCase_ ): for module in self.net: UpperCAmelCase__ : Tuple = module(UpperCamelCase_ ) return hidden_states class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = "none" ): super().__init__() UpperCAmelCase__ : str = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = approximate def __snake_case ( self , UpperCamelCase_ ): if gate.device.type != "mps": return F.gelu(UpperCamelCase_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : int = self.proj(UpperCamelCase_ ) UpperCAmelCase__ : str = self.gelu(UpperCamelCase_ ) return hidden_states class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__() UpperCAmelCase__ : Tuple = nn.Linear(UpperCamelCase_ , dim_out * 2 ) def __snake_case ( self , UpperCamelCase_ ): if gate.device.type != "mps": return F.gelu(UpperCamelCase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.proj(UpperCamelCase_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase_ ) class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__() UpperCAmelCase__ : Dict = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = self.proj(UpperCamelCase_ ) return x * torch.sigmoid(1.702 * x ) class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__() UpperCAmelCase__ : str = nn.Embedding(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = nn.SiLU() UpperCAmelCase__ : List[Any] = nn.Linear(UpperCamelCase_ , embedding_dim * 2 ) UpperCAmelCase__ : List[Any] = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = self.linear(self.silu(self.emb(UpperCamelCase_ ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = torch.chunk(UpperCamelCase_ , 2 ) UpperCAmelCase__ : Tuple = self.norm(UpperCamelCase_ ) * (1 + scale) + shift return x class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__() UpperCAmelCase__ : int = CombinedTimestepLabelEmbeddings(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Tuple = nn.SiLU() UpperCAmelCase__ : Dict = nn.Linear(UpperCamelCase_ , 6 * embedding_dim , bias=UpperCamelCase_ ) UpperCAmelCase__ : str = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ , eps=1E-6 ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): UpperCAmelCase__ : Optional[Any] = self.linear(self.silu(self.emb(UpperCamelCase_ , UpperCamelCase_ , hidden_dtype=UpperCamelCase_ ) ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = emb.chunk(6 , dim=1 ) UpperCAmelCase__ : Optional[Any] = self.norm(UpperCamelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a ( nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 1E-5 ): super().__init__() UpperCAmelCase__ : Union[str, Any] = num_groups UpperCAmelCase__ : int = eps if act_fn is None: UpperCAmelCase__ : List[str] = None else: UpperCAmelCase__ : Union[str, Any] = get_activation(UpperCamelCase_ ) UpperCAmelCase__ : Dict = nn.Linear(UpperCamelCase_ , out_dim * 2 ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if self.act: UpperCAmelCase__ : List[Any] = self.act(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.linear(UpperCamelCase_ ) UpperCAmelCase__ : str = emb[:, :, None, None] UpperCAmelCase__ , UpperCAmelCase__ : int = emb.chunk(2 , dim=1 ) UpperCAmelCase__ : Optional[int] = F.group_norm(UpperCamelCase_ , self.num_groups , eps=self.eps ) UpperCAmelCase__ : Any = x * (1 + scale) + shift return x
110
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCAmelCase__ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) UpperCAmelCase__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) UpperCAmelCase__ = BeautifulSoup(res.text, 'html.parser') UpperCAmelCase__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"https://google.com{link.get('href')}")
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
def lowerCamelCase__ ( _a , _a): if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def A ( self : Union[str, Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _SCREAMING_SNAKE_CASE ='xvjiarui/stable-diffusion-2-inpainting' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =FlaxStableDiffusionInpaintPipeline.from_pretrained(snake_case_ , safety_checker=snake_case_ ) _SCREAMING_SNAKE_CASE ='Face of a yellow cat, high resolution, sitting on a park bench' _SCREAMING_SNAKE_CASE =jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE =50 _SCREAMING_SNAKE_CASE =jax.device_count() _SCREAMING_SNAKE_CASE =num_samples * [prompt] _SCREAMING_SNAKE_CASE =num_samples * [init_image] _SCREAMING_SNAKE_CASE =num_samples * [mask_image] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipeline.prepare_inputs(snake_case_ , snake_case_ , snake_case_ ) # shard inputs and rng _SCREAMING_SNAKE_CASE =replicate(snake_case_ ) _SCREAMING_SNAKE_CASE =jax.random.split(snake_case_ , jax.device_count() ) _SCREAMING_SNAKE_CASE =shard(snake_case_ ) _SCREAMING_SNAKE_CASE =shard(snake_case_ ) _SCREAMING_SNAKE_CASE =shard(snake_case_ ) _SCREAMING_SNAKE_CASE =pipeline( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , jit=snake_case_ ) _SCREAMING_SNAKE_CASE =output.images.reshape(snake_case_ , 512 , 512 , 3 ) _SCREAMING_SNAKE_CASE =images[0, 253:256, 253:256, -1] _SCREAMING_SNAKE_CASE =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE =jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
405
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : Tuple ): # noqa: E741 '''simple docstring''' _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph _SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
18
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
import os from collections.abc import Iterator def lowerCAmelCase ( UpperCamelCase__ : Optional[int] = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE: List[str] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip('''./''' ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return F"""{i * " "}*""" if i else "\n##" def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def lowerCAmelCase ( UpperCamelCase__ : int = "." ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = '''''' for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: __SCREAMING_SNAKE_CASE: Dict = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE: Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 __SCREAMING_SNAKE_CASE: Optional[int] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) __SCREAMING_SNAKE_CASE: int = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from __future__ import annotations import math def A_ ( SCREAMING_SNAKE_CASE_ ) ->list[int]: if num <= 0: lowercase_ = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_SCREAMING_SNAKE_CASE ) lowercase_ = [True] * (num + 1) lowercase_ = [] lowercase_ = 2 lowercase_ = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: lowercase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
451
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __a ( a ): """simple docstring""" return TrainCommand(_SCREAMING_SNAKE_CASE ) class __snake_case ( __snake_case ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ :Tuple ): _a = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=snake_case_ , required=snake_case_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=snake_case_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=snake_case_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=snake_case_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=snake_case_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=snake_case_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=snake_case_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=snake_case_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=snake_case_ , default="bert-base-uncased" , help="Model\'s name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=snake_case_ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=snake_case_ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=snake_case_ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=snake_case_ , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=snake_case_ ) def __init__( self :List[str] , UpperCamelCase__ :Union[str, Any] ): _a = logging.get_logger("transformers-cli/training" ) _a = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=snake_case_ ) _a = args.output _a = args.column_label _a = args.column_text _a = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": _a = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) _a = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _a = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) _a = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _a = args.validation_split _a = args.train_batch_size _a = args.valid_batch_size _a = args.learning_rate _a = args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self :int ): raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
388
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _UpperCamelCase = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "num_train_timesteps": 40, "sigma_min": 0.0_02, "sigma_max": 80.0, } _UpperCamelCase = { "num_train_timesteps": 201, "sigma_min": 0.0_02, "sigma_max": 80.0, } _UpperCamelCase = { "num_train_timesteps": 151, "sigma_min": 0.0_02, "sigma_max": 80.0, } def _lowercase ( lowercase__ ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): __lowerCAmelCase : Tuple = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] __lowerCAmelCase : Tuple = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] __lowerCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] __lowerCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] __lowerCAmelCase : str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] __lowerCAmelCase : int = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] __lowerCAmelCase : Optional[Any] = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] __lowerCAmelCase : Optional[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] __lowerCAmelCase : int = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] __lowerCAmelCase : str = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: __lowerCAmelCase : str = checkpoint[f"""{old_prefix}.skip_connection.weight"""] __lowerCAmelCase : Tuple = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) __lowerCAmelCase : Optional[Any] = checkpoint[f"""{old_prefix}.norm.weight"""] __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.norm.bias"""] __lowerCAmelCase : Any = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Tuple = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : int = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Dict = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : int = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Union[str, Any] = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __lowerCAmelCase : Optional[int] = {} __lowerCAmelCase : Any = checkpoint['''time_embed.0.weight'''] __lowerCAmelCase : Optional[Any] = checkpoint['''time_embed.0.bias'''] __lowerCAmelCase : Dict = checkpoint['''time_embed.2.weight'''] __lowerCAmelCase : Dict = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: __lowerCAmelCase : Dict = checkpoint['''label_emb.weight'''] __lowerCAmelCase : List[str] = checkpoint['''input_blocks.0.0.weight'''] __lowerCAmelCase : int = checkpoint['''input_blocks.0.0.bias'''] __lowerCAmelCase : Dict = unet_config['''down_block_types'''] __lowerCAmelCase : List[Any] = unet_config['''layers_per_block'''] __lowerCAmelCase : List[Any] = unet_config['''attention_head_dim'''] __lowerCAmelCase : List[str] = unet_config['''block_out_channels'''] __lowerCAmelCase : Any = 1 __lowerCAmelCase : Any = channels_list[0] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = channels_list[i] __lowerCAmelCase : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = f"""down_blocks.{i}.resnets.{j}""" __lowerCAmelCase : Tuple = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : Optional[Any] = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase : int = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = f"""down_blocks.{i}.resnets.{j}""" __lowerCAmelCase : Optional[Any] = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : int = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase : Union[str, Any] = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = f"""down_blocks.{i}.attentions.{j}""" __lowerCAmelCase : Optional[int] = f"""input_blocks.{current_layer}.1""" __lowerCAmelCase : List[Any] = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : List[str] = f"""down_blocks.{i}.downsamplers.0""" __lowerCAmelCase : str = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : Dict = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 __lowerCAmelCase : Optional[int] = current_channels # hardcoded the mid-block for now __lowerCAmelCase : Dict = '''mid_block.resnets.0''' __lowerCAmelCase : List[Any] = '''middle_block.0''' __lowerCAmelCase : Optional[int] = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = '''mid_block.attentions.0''' __lowerCAmelCase : Optional[int] = '''middle_block.1''' __lowerCAmelCase : List[Any] = convert_attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = '''mid_block.resnets.1''' __lowerCAmelCase : Any = '''middle_block.2''' __lowerCAmelCase : str = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = unet_config['''up_block_types'''] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase : List[Any] = f"""up_blocks.{i}.resnets.{j}""" __lowerCAmelCase : int = f"""output_blocks.{current_layer}.0""" __lowerCAmelCase : Dict = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Union[str, Any] = f"""up_blocks.{i}.upsamplers.0""" __lowerCAmelCase : List[str] = f"""output_blocks.{current_layer-1}.1""" __lowerCAmelCase : Any = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase : str = f"""up_blocks.{i}.resnets.{j}""" __lowerCAmelCase : str = f"""output_blocks.{current_layer}.0""" __lowerCAmelCase : List[str] = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = f"""up_blocks.{i}.attentions.{j}""" __lowerCAmelCase : Optional[Any] = f"""output_blocks.{current_layer}.1""" __lowerCAmelCase : int = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Optional[Any] = f"""up_blocks.{i}.upsamplers.0""" __lowerCAmelCase : Dict = f"""output_blocks.{current_layer-1}.2""" __lowerCAmelCase : Optional[int] = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = checkpoint['''out.0.weight'''] __lowerCAmelCase : List[str] = checkpoint['''out.0.bias'''] __lowerCAmelCase : str = checkpoint['''out.2.weight'''] __lowerCAmelCase : List[Any] = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _UpperCamelCase = parser.parse_args() _UpperCamelCase = strabool(args.class_cond) _UpperCamelCase = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: _UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: _UpperCamelCase = None _UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) _UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") _UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) _UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
492
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( __snake_case ): _a : Optional[Any]= 42 class __snake_case ( __snake_case , __snake_case ): @register_to_config def __init__( self ,snake_case = 65536 ,snake_case = None ,snake_case = 2 ,snake_case = 2 ,snake_case = 0 ,snake_case = "fourier" ,snake_case = True ,snake_case = False ,snake_case = 0.0 ,snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,snake_case = "UNetMidBlock1D" ,snake_case = None ,snake_case = (32, 32, 64) ,snake_case = None ,snake_case = 8 ,snake_case = 1 ,snake_case = False ,): '''simple docstring''' super().__init__() lowercase : List[str] = sample_size # time if time_embedding_type == "fourier": lowercase : Optional[int] = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=snake_case_ ,log=snake_case_ ,flip_sin_to_cos=snake_case_ ) lowercase : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase : Union[str, Any] = Timesteps( block_out_channels[0] ,flip_sin_to_cos=snake_case_ ,downscale_freq_shift=snake_case_ ) lowercase : Tuple = block_out_channels[0] if use_timestep_embedding: lowercase : List[Any] = block_out_channels[0] * 4 lowercase : Optional[Any] = TimestepEmbedding( in_channels=snake_case_ ,time_embed_dim=snake_case_ ,act_fn=snake_case_ ,out_dim=block_out_channels[0] ,) lowercase : int = nn.ModuleList([] ) lowercase : Union[str, Any] = None lowercase : str = nn.ModuleList([] ) lowercase : Tuple = None # down lowercase : Dict = in_channels for i, down_block_type in enumerate(snake_case_ ): lowercase : Dict = output_channel lowercase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase : int = i == len(snake_case_ ) - 1 lowercase : int = get_down_block( snake_case_ ,num_layers=snake_case_ ,in_channels=snake_case_ ,out_channels=snake_case_ ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(snake_case_ ) # mid lowercase : Union[str, Any] = get_mid_block( snake_case_ ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=snake_case_ ,add_downsample=snake_case_ ,) # up lowercase : str = list(reversed(snake_case_ ) ) lowercase : Any = reversed_block_out_channels[0] if out_block_type is None: lowercase : Optional[int] = out_channels else: lowercase : Any = block_out_channels[0] for i, up_block_type in enumerate(snake_case_ ): lowercase : List[Any] = output_channel lowercase : Tuple = ( reversed_block_out_channels[i + 1] if i < len(snake_case_ ) - 1 else final_upsample_channels ) lowercase : Dict = i == len(snake_case_ ) - 1 lowercase : Any = get_up_block( snake_case_ ,num_layers=snake_case_ ,in_channels=snake_case_ ,out_channels=snake_case_ ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(snake_case_ ) lowercase : List[str] = output_channel # out lowercase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) lowercase : Optional[int] = get_out_block( out_block_type=snake_case_ ,num_groups_out=snake_case_ ,embed_dim=block_out_channels[0] ,out_channels=snake_case_ ,act_fn=snake_case_ ,fc_dim=block_out_channels[-1] // 4 ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : str = timestep if not torch.is_tensor(snake_case_ ): lowercase : List[Any] = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: lowercase : Optional[int] = timesteps[None].to(sample.device ) lowercase : List[str] = self.time_proj(snake_case_ ) if self.config.use_timestep_embedding: lowercase : Optional[int] = self.time_mlp(snake_case_ ) else: lowercase : Optional[int] = timestep_embed[..., None] lowercase : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase : Optional[Any] = () for downsample_block in self.down_blocks: lowercase , lowercase : Union[str, Any] = downsample_block(hidden_states=snake_case_ ,temb=snake_case_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase : List[str] = self.mid_block(snake_case_ ,snake_case_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase : Tuple = down_block_res_samples[-1:] lowercase : List[str] = down_block_res_samples[:-1] lowercase : Dict = upsample_block(snake_case_ ,res_hidden_states_tuple=snake_case_ ,temb=snake_case_ ) # 5. post-process if self.out_block: lowercase : str = self.out_block(snake_case_ ,snake_case_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case_ )
336
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(_SCREAMING_SNAKE_CASE, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a = (sidea + sidea + sidea) / 2 a = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print("""\nSurface Areas of various geometric shapes: \n""") print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
387
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int )->Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler('''sample_euler''' ) _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=snake_case_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler('''sample_euler''' ) _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=snake_case_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe( [prompt] , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='''np''' , use_karras_sigmas=snake_case_ , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
602
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : int ) -> Union[str, Any]: _snake_case = R'''\w+[.]\d+''' _snake_case = re.findall(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for pat in pats: _snake_case = key.replace(_SCREAMING_SNAKE_CASE , '''_'''.join(pat.split('''.''' ) ) ) return key def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : int ) -> List[str]: _snake_case = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _snake_case = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _snake_case = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _snake_case = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _snake_case = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _snake_case = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _snake_case = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _snake_case = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=42 ) -> Union[str, Any]: _snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _snake_case = flax_model.init_weights(PRNGKey(_SCREAMING_SNAKE_CASE ) ) _snake_case = flatten_dict(_SCREAMING_SNAKE_CASE ) _snake_case = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case = rename_key(_SCREAMING_SNAKE_CASE ) _snake_case = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _snake_case , _snake_case = rename_key_and_reshape_tensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _snake_case = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE )
224
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = filter(lambda _a: p.requires_grad , model.parameters()) SCREAMING_SNAKE_CASE : Dict = sum([np.prod(p.size()) for p in model_parameters]) return params a_ = logging.getLogger(__name__) def lowerCamelCase__ ( _a , _a): if metric == "rouge2": SCREAMING_SNAKE_CASE : Dict = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": SCREAMING_SNAKE_CASE : Dict = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": SCREAMING_SNAKE_CASE : Any = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" " function.") SCREAMING_SNAKE_CASE : Optional[int] = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f"val_{metric}" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( _a , _a): return EarlyStopping( monitor=f"val_{metric}" , mode="min" if "loss" in metric else "max" , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( pl.Callback ): '''simple docstring''' def __UpperCamelCase ( self : Dict , a : Optional[int] , a : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = {F"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def __UpperCamelCase ( self : Optional[int] , a : List[str] , a : Any , a : int , a : List[str]=True ) -> int: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / "test_results.txt" SCREAMING_SNAKE_CASE : Dict = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : List[str] = od / F"{type_path}_results/{trainer.global_step:05d}.txt" SCREAMING_SNAKE_CASE : Any = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , "a+" ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Optional[int] = metrics[key] if isinstance(snake_case_ , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Any = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Tuple = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(snake_case_ ) @rank_zero_only def __UpperCamelCase ( self : List[str] , a : Any , a : Union[str, Any] ) -> Tuple: """simple docstring""" try: SCREAMING_SNAKE_CASE : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : List[str] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : Union[str, Any] = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def __UpperCamelCase ( self : Any , a : Optional[Any] , a : int ) -> Any: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , "test" ) @rank_zero_only def __UpperCamelCase ( self : Dict , a : List[str] , a : Dict ) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
25
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[str] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["ConditionalDetrFeatureExtractor"] lowerCamelCase : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
405
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( __snake_case ,__snake_case ,unittest.TestCase ): __lowerCamelCase : int = IFInpaintingPipeline __lowerCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> Any: return self._get_dummy_components() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _snake_case ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ) -> List[str]: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
18
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ : Tuple = None def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : int , ) -> Tuple: """simple docstring""" import pyspark def generate_fn(): __SCREAMING_SNAKE_CASE: Optional[Any] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: __SCREAMING_SNAKE_CASE: Optional[int] = df_with_partition_id.select('''*''' ).where(F"""part_id = {partition_id}""" ).drop('''part_id''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = partition_df.collect() __SCREAMING_SNAKE_CASE: List[str] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a ( _BaseExamplesIterable ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = df __SCREAMING_SNAKE_CASE: List[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) __SCREAMING_SNAKE_CASE: str = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): """simple docstring""" yield from self.generate_examples_fn() def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.split_shard_indices_by_worker(snake_case_ , snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) @property def snake_case_ ( self ): """simple docstring""" return len(self.partition_order ) class a ( datasets.DatasetBuilder ): SCREAMING_SNAKE_CASE__ : Tuple = SparkConfig def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" import pyspark __SCREAMING_SNAKE_CASE: Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() __SCREAMING_SNAKE_CASE: Optional[Any] = df __SCREAMING_SNAKE_CASE: Optional[Any] = working_dir super().__init__( cache_dir=snake_case_ , config_name=str(self.df.semanticHash() ) , **snake_case_ , ) def snake_case_ ( self ): """simple docstring""" def create_cache_and_write_probe(_lowerCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case_ ) __SCREAMING_SNAKE_CASE: Optional[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case_ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __SCREAMING_SNAKE_CASE: int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def snake_case_ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" import pyspark def get_arrow_batch_size(_lowerCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __SCREAMING_SNAKE_CASE: Optional[int] = self.df.count() __SCREAMING_SNAKE_CASE: Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __SCREAMING_SNAKE_CASE: Tuple = ( self.df.limit(snake_case_ ) .repartition(1 ) .mapInArrow(snake_case_ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __SCREAMING_SNAKE_CASE: Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __SCREAMING_SNAKE_CASE: List[str] = min(snake_case_ , int(approx_total_size / max_shard_size ) ) __SCREAMING_SNAKE_CASE: Dict = self.df.repartition(snake_case_ ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" import pyspark __SCREAMING_SNAKE_CASE: List[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter __SCREAMING_SNAKE_CASE: List[str] = os.path.join(self._working_dir , os.path.basename(snake_case_ ) ) if self._working_dir else fpath __SCREAMING_SNAKE_CASE: Union[str, Any] = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __SCREAMING_SNAKE_CASE: List[Any] = self.config.features __SCREAMING_SNAKE_CASE: Dict = self._writer_batch_size __SCREAMING_SNAKE_CASE: int = self._fs.storage_options def write_arrow(_lowerCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __SCREAMING_SNAKE_CASE: Optional[Any] = pyspark.TaskContext().taskAttemptId() __SCREAMING_SNAKE_CASE: str = next(snake_case_ , snake_case_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __SCREAMING_SNAKE_CASE: int = 0 __SCREAMING_SNAKE_CASE: int = writer_class( features=snake_case_ , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) __SCREAMING_SNAKE_CASE: Dict = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __SCREAMING_SNAKE_CASE: Any = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) __SCREAMING_SNAKE_CASE: List[str] = pa.Table.from_batches([batch] ) writer.write_table(snake_case_ ) if writer._num_bytes > 0: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Union[str, Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case_ ) ): __SCREAMING_SNAKE_CASE: List[Any] = os.path.join(os.path.dirname(snake_case_ ) , os.path.basename(snake_case_ ) ) shutil.move(snake_case_ , snake_case_ ) __SCREAMING_SNAKE_CASE: Dict = ( self.df.mapInArrow(snake_case_ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = "arrow" , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" self._validate_cache_dir() __SCREAMING_SNAKE_CASE: int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case_ ) __SCREAMING_SNAKE_CASE: Any = not is_remote_filesystem(self._fs ) __SCREAMING_SNAKE_CASE: int = os.path.join if is_local else posixpath.join __SCREAMING_SNAKE_CASE: Any = '''-TTTTT-SSSSS-of-NNNNN''' __SCREAMING_SNAKE_CASE: int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __SCREAMING_SNAKE_CASE: Dict = path_join(self._output_dir , snake_case_ ) __SCREAMING_SNAKE_CASE: str = 0 __SCREAMING_SNAKE_CASE: List[Any] = 0 __SCREAMING_SNAKE_CASE: List[Any] = 0 __SCREAMING_SNAKE_CASE: Tuple = [] __SCREAMING_SNAKE_CASE: Tuple = [] for task_id, content in self._prepare_split_single(snake_case_ , snake_case_ , snake_case_ ): ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ): Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case_ ) __SCREAMING_SNAKE_CASE: Optional[Any] = total_num_examples __SCREAMING_SNAKE_CASE: Any = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: __SCREAMING_SNAKE_CASE: Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __SCREAMING_SNAKE_CASE: List[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): rename( snake_case_ , fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , f"""{global_shard_id:05d}""" ).replace('''NNNNN''' , f"""{total_shards:05d}""" ) , ) __SCREAMING_SNAKE_CASE: Tuple = [] __SCREAMING_SNAKE_CASE: str = 0 for i in range(len(snake_case_ ) ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = task_id_and_num_shards[i] for shard_id in range(snake_case_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case_ , len(snake_case_ ) ).map(lambda _lowerCAmelCase : _rename_shard(*snake_case_ ) ).collect() else: # don't use any pattern __SCREAMING_SNAKE_CASE: Optional[int] = 0 __SCREAMING_SNAKE_CASE: List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace(snake_case_ , '''''' ) , ) def snake_case_ ( self , _lowerCAmelCase , ): """simple docstring""" return SparkExamplesIterable(self.df )
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( __snake_case ): """simple docstring""" A_ = '''char''' A_ = '''bpe''' A_ = '''wp''' __snake_case = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( __snake_case ): """simple docstring""" A_ = ['''image_processor''', '''char_tokenizer'''] A_ = '''ViTImageProcessor''' A_ = '''MgpstrTokenizer''' def __init__( self : Optional[int] , lowercase_ : Tuple=None , lowercase_ : Dict=None , **lowercase_ : Optional[int] ): '''simple docstring''' lowercase_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) lowercase_ = kwargs.pop("""feature_extractor""" ) lowercase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) lowercase_ = tokenizer lowercase_ = AutoTokenizer.from_pretrained("""gpt2""" ) lowercase_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : List[str] , lowercase_ : Dict=None , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=None , **lowercase_ : List[str] ): '''simple docstring''' if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowercase_ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None: lowercase_ = self.char_tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is None: return inputs elif images is None: return encodings else: lowercase_ = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Tuple , lowercase_ : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ = sequences lowercase_ = char_preds.size(0 ) lowercase_ , lowercase_ = self._decode_helper(snake_case_ , """char""" ) lowercase_ , lowercase_ = self._decode_helper(snake_case_ , """bpe""" ) lowercase_ , lowercase_ = self._decode_helper(snake_case_ , """wp""" ) lowercase_ = [] lowercase_ = [] for i in range(snake_case_ ): lowercase_ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowercase_ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowercase_ = scores.index(max(snake_case_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowercase_ = {} lowercase_ = final_strs lowercase_ = final_scores lowercase_ = char_strs lowercase_ = bpe_strs lowercase_ = wp_strs return out def lowerCamelCase__ ( self : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: lowercase_ = self.char_decode lowercase_ = 1 lowercase_ = """[s]""" elif format == DecodeType.BPE: lowercase_ = self.bpe_decode lowercase_ = 2 lowercase_ = """#""" elif format == DecodeType.WORDPIECE: lowercase_ = self.wp_decode lowercase_ = 102 lowercase_ = """[SEP]""" else: raise ValueError(F"""Format {format} is not supported.""" ) lowercase_ , lowercase_ = [], [] lowercase_ = pred_logits.size(0 ) lowercase_ = pred_logits.size(1 ) lowercase_ , lowercase_ = pred_logits.topk(1 , dim=-1 , largest=snake_case_ , sorted=snake_case_ ) lowercase_ = preds_index.view(-1 , snake_case_ )[:, 1:] lowercase_ = decoder(snake_case_ ) lowercase_ , lowercase_ = torch.nn.functional.softmax(snake_case_ , dim=2 ).max(dim=2 ) lowercase_ = preds_max_prob[:, 1:] for index in range(snake_case_ ): lowercase_ = preds_str[index].find(snake_case_ ) lowercase_ = preds_str[index][:pred_eos] lowercase_ = preds_index[index].cpu().tolist() lowercase_ = pred_index.index(snake_case_ ) if eos_token in pred_index else -1 lowercase_ = preds_max_prob[index][: pred_eos_index + 1] lowercase_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(snake_case_ ) conf_scores.append(snake_case_ ) return dec_strs, conf_scores def lowerCamelCase__ ( self : List[Any] , lowercase_ : Tuple ): '''simple docstring''' lowercase_ = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(snake_case_ )] return decode_strs def lowerCamelCase__ ( self : int , lowercase_ : List[Any] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(snake_case_ ) def lowerCamelCase__ ( self : Tuple , lowercase_ : Dict ): '''simple docstring''' lowercase_ = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(snake_case_ )] return decode_strs
451
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __snake_case : """simple docstring""" def __init__( self :List[str] , UpperCamelCase__ :List[str] , ): _a = parent _a = 13 _a = 7 _a = True _a = True _a = True _a = 99 _a = 32 _a = 2 _a = 4 _a = 37 _a = "gelu" _a = 0.1 _a = 0.1 _a = 512 _a = 16 _a = 2 _a = 0.02 _a = 3 _a = 4 _a = None def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self :int ): ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :Any , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[str] , UpperCamelCase__ :str , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Tuple ): _a = TFEsmModel(config=snake_case_ ) _a = {"input_ids": input_ids, "attention_mask": input_mask} _a = model(snake_case_ ) _a = [input_ids, input_mask] _a = model(snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Tuple , UpperCamelCase__ :int , ): _a = True _a = TFEsmModel(config=snake_case_ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } _a = model(snake_case_ ) _a = [input_ids, input_mask] _a = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _a = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Any ): _a = TFEsmForMaskedLM(config=snake_case_ ) _a = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :List[str] , UpperCamelCase__ :Any , UpperCamelCase__ :Dict , UpperCamelCase__ :Dict , UpperCamelCase__ :List[str] ): _a = self.num_labels _a = TFEsmForTokenClassification(config=snake_case_ ) _a = {"input_ids": input_ids, "attention_mask": input_mask} _a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __snake_case ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = False def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = TFEsmModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :str ): _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE_ ( self :str ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_ ( self :Any ): pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_ ( self :Any ): pass def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _a = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _a = model.get_output_embeddings() assert x is None _a = model.get_bias() assert name is None @require_tf class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _a = tf.constant([[0, 1, 2, 3, 4, 5]] ) _a = model(snake_case_ )[0] _a = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _a = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _a = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _a = model(snake_case_ )[0] # compare the actual values for a slice. _a = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
388
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _lowercase ( ): __lowerCAmelCase : Dict = 1_0 __lowerCAmelCase : Optional[int] = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) __lowerCAmelCase : Optional[int] = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(_SCREAMING_SNAKE_CASE ) ), } , features=_SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files _UpperCamelCase = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' __lowerCAmelCase : Dict = FILE_CONTENT with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): import bza __lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' __lowerCAmelCase : List[str] = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with bza.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): import gzip __lowerCAmelCase : Any = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) __lowerCAmelCase : int = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with gzip.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): if datasets.config.LZ4_AVAILABLE: import lza.frame __lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' __lowerCAmelCase : Union[str, Any] = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with lza.frame.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowerCAmelCase : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as archive: archive.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): import tarfile __lowerCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): import lzma __lowerCAmelCase : int = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' __lowerCAmelCase : Optional[Any] = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with lzma.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): import zipfile __lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' __lowerCAmelCase : Optional[int] = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with zstd.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' __lowerCAmelCase : List[str] = textwrap.dedent( '''\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename _UpperCamelCase = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _UpperCamelCase = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _UpperCamelCase = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _UpperCamelCase = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _UpperCamelCase = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def _lowercase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : int = datasets.Dataset.from_dict(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: __lowerCAmelCase : Dict = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as f: __lowerCAmelCase : List[Any] = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as f: __lowerCAmelCase : Optional[int] = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): import bza __lowerCAmelCase : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: __lowerCAmelCase : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) __lowerCAmelCase : List[str] = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: __lowerCAmelCase : Optional[Any] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=_SCREAMING_SNAKE_CASE ) writer.write_table(_SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowerCAmelCase : Union[str, Any] = {'''data''': DATA} with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowerCAmelCase : Union[str, Any] = {'''data''': DATA_DICT_OF_LISTS} with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): import gzip __lowerCAmelCase : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): import gzip __lowerCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''nested''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : int = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''nested''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : List[str] = ['''0''', '''1''', '''2''', '''3'''] __lowerCAmelCase : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : List[Any] = ['''0''', '''1''', '''2''', '''3'''] __lowerCAmelCase : str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = ['''0''', '''1''', '''2''', '''3'''] __lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''main_dir''' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : List[Any] = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) __lowerCAmelCase : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _lowercase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
492
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
from __future__ import annotations import math def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[int]: lowercase : str = str(_SCREAMING_SNAKE_CASE ) lowercase : str = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def _snake_case( SCREAMING_SNAKE_CASE__ = 11 ) -> list[int]: lowercase : Union[str, Any] = [] lowercase : int = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): lowercase : str = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def _snake_case( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
336
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase__ : List[Any] = "." if __name__ == "__main__": UpperCamelCase__ : Tuple = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[int] = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase__ : Dict = line.strip() UpperCamelCase__ : int = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase__ : List[Any] = "\n".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
387
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" from collections import defaultdict class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) ) ] _UpperCAmelCase = defaultdict(snake_case_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _UpperCAmelCase = (1 << len(snake_case_ )) - 1 def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple )->int: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _UpperCAmelCase = self.count_ways_until(snake_case_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] )->Optional[int]: # Store the list of persons for each task for i in range(len(snake_case_ ) ): for j in task_performed[i]: self.task[j].append(snake_case_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __A : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
602
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase__ = "#" class lowerCAmelCase__ : def __init__( self : Optional[int] ): _snake_case = {} def lowercase ( self : Dict , _lowerCamelCase : Optional[int] ): _snake_case = self._trie for char in text: if char not in trie: _snake_case = {} _snake_case = trie[char] _snake_case = True def lowercase ( self : str , _lowerCamelCase : Optional[Any] ): _snake_case = self._trie for char in prefix: if char in trie: _snake_case = trie[char] else: return [] return self._elements(snake_case_ ) def lowercase ( self : str , _lowerCamelCase : Optional[Any] ): _snake_case = [] for c, v in d.items(): _snake_case = [''' '''] if c == END else [(c + s) for s in self._elements(snake_case_ )] result.extend(snake_case_ ) return tuple(snake_case_ ) UpperCAmelCase__ = Trie() UpperCAmelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def _UpperCAmelCase ( __lowerCamelCase : int ) -> tuple: _snake_case = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def _UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
import datasets from .evaluate import evaluate a_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" a_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" a_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __UpperCamelCase ( self : Any , a : Dict , a : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} SCREAMING_SNAKE_CASE : Dict = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Any = evaluate(dataset=snake_case_ , predictions=snake_case_ ) return score
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' import os import pytest from attr import dataclass lowerCamelCase : int = "us-east-1" # defaults region @dataclass class A__ : A__ = 42 A__ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A__ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } A__ = {**hyperparameters, 'max_steps': 10_00} @property def A ( self : int ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def A ( self : Optional[Any] ) -> int: '''simple docstring''' return f"{self.framework}-transfromers-test" @property def A ( self : Optional[Any] ) -> int: '''simple docstring''' return f"./tests/sagemaker/scripts/{self.framework}" @property def A ( self : List[Any] ) -> int: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =SageMakerTestEnvironment(framework=request.cls.framework )
405
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( __snake_case ): __lowerCamelCase : int = ["image_processor", "tokenizer"] __lowerCamelCase : int = "FlavaImageProcessor" __lowerCamelCase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) _lowerCAmelCase = kwargs.pop("feature_extractor" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) _lowerCAmelCase = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Union[str, Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _lowerCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if images is not None: _lowerCAmelCase = self.image_processor( snake_case_ , return_image_mask=snake_case_ , return_codebook_pixels=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if text is not None and images is not None: encoding.update(snake_case_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> Optional[int]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case_ , ) return self.image_processor_class @property def _snake_case ( self ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case_ , ) return self.image_processor
18
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Any = '''''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) SCREAMING_SNAKE_CASE__ : int = None # compression type in fsspec. ex: "gzip" SCREAMING_SNAKE_CASE__ : Optional[Any] = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCAmelCase = "" , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase ): """simple docstring""" super().__init__(self , **snake_case_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __SCREAMING_SNAKE_CASE: str = fsspec.open( snake_case_ , mode='''rb''' , protocol=snake_case_ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __SCREAMING_SNAKE_CASE: Optional[Any] = os.path.basename(self.file.path.split('''::''' )[0] ) __SCREAMING_SNAKE_CASE: int = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __SCREAMING_SNAKE_CASE: Any = None @classmethod def snake_case_ ( cls , _lowerCAmelCase ): """simple docstring""" return super()._strip_protocol(snake_case_ ).lstrip('''/''' ) def snake_case_ ( self ): """simple docstring""" if self.dir_cache is None: __SCREAMING_SNAKE_CASE: int = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __SCREAMING_SNAKE_CASE: int = {f['''name''']: f} def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" return self.file.open().read() def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = "rb" , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self._strip_protocol(snake_case_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Any = '''bz2''' SCREAMING_SNAKE_CASE__ : str = '''bz2''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''.bz2''' class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = '''gzip''' SCREAMING_SNAKE_CASE__ : List[Any] = '''gzip''' SCREAMING_SNAKE_CASE__ : str = '''.gz''' class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''lz4''' SCREAMING_SNAKE_CASE__ : List[str] = '''lz4''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''.lz4''' class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : int = '''xz''' SCREAMING_SNAKE_CASE__ : Any = '''xz''' SCREAMING_SNAKE_CASE__ : List[str] = '''.xz''' class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Dict = '''zstd''' SCREAMING_SNAKE_CASE__ : Dict = '''zstd''' SCREAMING_SNAKE_CASE__ : int = '''.zst''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "rb" , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = DEFAULT_BLOCK_SIZE , **_lowerCAmelCase , ): """simple docstring""" super().__init__( fo=snake_case_ , mode=snake_case_ , target_protocol=snake_case_ , target_options=snake_case_ , block_size=snake_case_ , **snake_case_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __SCREAMING_SNAKE_CASE: str = self.file.__enter__ class a : def __init__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = file_ def __enter__( self ): """simple docstring""" self._file.__enter__() return self def __exit__( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" self._file.__exit__(*snake_case_ , **snake_case_ ) def __iter__( self ): """simple docstring""" return iter(self._file ) def snake_case_ ( self ): """simple docstring""" return next(self._file ) def __getattr__( self , _lowerCAmelCase ): """simple docstring""" return getattr(self._file , snake_case_ ) def fixed_enter(*_lowerCAmelCase , **_lowerCAmelCase ): return WrappedFile(_enter(*snake_case_ , **snake_case_ ) ) __SCREAMING_SNAKE_CASE: str = fixed_enter
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->list: lowercase_ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ = True for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ = False for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") __snake_case = [int(x) for x in input().split()] # inputing elements of the list in one line __snake_case = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
451
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : """simple docstring""" def __init__( self :List[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :Optional[int]=2 , UpperCamelCase__ :Tuple=8 , UpperCamelCase__ :int=True , UpperCamelCase__ :Dict=True , UpperCamelCase__ :Dict=True , UpperCamelCase__ :Optional[Any]=True , UpperCamelCase__ :str=99 , UpperCamelCase__ :Any=16 , UpperCamelCase__ :Any=5 , UpperCamelCase__ :List[Any]=2 , UpperCamelCase__ :int=36 , UpperCamelCase__ :List[Any]="gelu" , UpperCamelCase__ :List[str]=0.0 , UpperCamelCase__ :str=0.0 , UpperCamelCase__ :Any=512 , UpperCamelCase__ :int=16 , UpperCamelCase__ :Tuple=2 , UpperCamelCase__ :int=0.02 , UpperCamelCase__ :Dict=3 , UpperCamelCase__ :Union[str, Any]=4 , UpperCamelCase__ :Optional[int]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = self.get_config() _a = 300 return config def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :List[str] , UpperCamelCase__ :int , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Any , UpperCamelCase__ :Dict , UpperCamelCase__ :int ): _a = MraModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _a = model(snake_case_ , token_type_ids=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :Dict , UpperCamelCase__ :Dict , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :int , UpperCamelCase__ :int , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Union[str, Any] , ): _a = True _a = MraModel(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , ) _a = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Dict , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :int , UpperCamelCase__ :str ): _a = MraForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :str , UpperCamelCase__ :int , UpperCamelCase__ :Tuple , UpperCamelCase__ :int , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple ): _a = MraForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :str , UpperCamelCase__ :Any , UpperCamelCase__ :str , UpperCamelCase__ :List[str] ): _a = self.num_labels _a = MraForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :List[str] ): _a = self.num_labels _a = MraForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :int , UpperCamelCase__ :List[str] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Dict , UpperCamelCase__ :Dict ): _a = self.num_choices _a = MraForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __snake_case ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[int] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Optional[int] = () def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = MraModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MraModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="MRA does not output attentions" ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _a = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _a = model(snake_case_ )[0] _a = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _a = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _a = model(snake_case_ )[0] _a = 50_265 _a = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _a = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _a = model(snake_case_ )[0] _a = 50_265 _a = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
388
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCamelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _UpperCamelCase = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowercase ( ): __lowerCAmelCase : List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowerCAmelCase : Optional[Any] = bs[:] __lowerCAmelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowerCAmelCase : Tuple = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _lowercase ( lowercase__ ): __lowerCAmelCase : int = set() __lowerCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase : List[str] = char return pairs class __lowercase (__snake_case ): _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token __lowerCAmelCase : Optional[int] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token __lowerCAmelCase : Optional[int] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token __lowerCAmelCase : Any = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token __lowerCAmelCase : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token __lowerCAmelCase : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: __lowerCAmelCase : List[Any] = json.load(snake_case_ ) __lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __lowerCAmelCase : int = errors # how to handle errors in decoding __lowerCAmelCase : Optional[int] = bytes_to_unicode() __lowerCAmelCase : Any = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: __lowerCAmelCase : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] __lowerCAmelCase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase : int = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowerCAmelCase : str = {} __lowerCAmelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase : List[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCAmelCase : Optional[int] = tuple(snake_case_ ) __lowerCAmelCase : List[Any] = get_pairs(snake_case_ ) if not pairs: return token while True: __lowerCAmelCase : Dict = min(snake_case_ , key=lambda A_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase, __lowerCAmelCase : Optional[int] = bigram __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : str = 0 while i < len(snake_case_ ): try: __lowerCAmelCase : Tuple = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase : Tuple = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase : Optional[int] = tuple(snake_case_ ) __lowerCAmelCase : Optional[Any] = new_word if len(snake_case_ ) == 1: break else: __lowerCAmelCase : int = get_pairs(snake_case_ ) __lowerCAmelCase : Tuple = ''' '''.join(snake_case_ ) __lowerCAmelCase : Union[str, Any] = word return word def UpperCamelCase__ ( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Any = [] for token in re.findall(self.pat , snake_case_ ): __lowerCAmelCase : List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def UpperCamelCase__ ( self , A_ ) ->List[Any]: '''simple docstring''' return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' return self.decoder.get(snake_case_ ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = ''''''.join(snake_case_ ) __lowerCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCamelCase__ ( self , A_ , A_ = None ) ->Dict: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Optional[Any] = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase : Dict = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) __lowerCAmelCase : int = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCAmelCase : Union[str, Any] = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , A_ , A_ = None , A_ = False ) ->int: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] __lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , A_ , A_=False , **A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): __lowerCAmelCase : Optional[int] = ''' ''' + text return (text, kwargs) def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case_ ) __lowerCAmelCase : Any = ''' '''.join(snake_case_ ) __lowerCAmelCase : int = self.encode(snake_case_ ) if len(snake_case_ ) > self.model_max_length: __lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
492
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase : Any = 0 lowercase : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase : int = tuple[int, int] class __snake_case : def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = pos_x lowercase : Tuple = pos_y lowercase : Dict = (pos_y, pos_x) lowercase : Optional[Any] = goal_x lowercase : Tuple = goal_y lowercase : Optional[int] = g_cost lowercase : Dict = parent lowercase : Union[str, Any] = self.calculate_heuristic() lowercase : str = self.g_cost + self.h_cost def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.pos_x - self.goal_x lowercase : Optional[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self ,snake_case ): '''simple docstring''' return self.f_cost < other.f_cost class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,snake_case_ ) lowercase : Optional[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,snake_case_ ) lowercase : Tuple = [self.start] lowercase : Tuple = [] lowercase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) lowercase : List[str] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path lowercase : Optional[int] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = [] for action in delta: lowercase : Optional[Any] = parent.pos_x + action[1] lowercase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ ,snake_case_ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,snake_case_ ,) ) return successors def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = node lowercase : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : int = current_node.parent path.reverse() return path class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = AStar(snake_case_ ,snake_case_ ) lowercase : Optional[Any] = AStar(snake_case_ ,snake_case_ ) lowercase : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase : Optional[int] = self.fwd_astar.open_nodes.pop(0 ) lowercase : Optional[int] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ ,snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) lowercase : Dict = current_bwd_node lowercase : Union[str, Any] = current_fwd_node lowercase : Tuple = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path lowercase : Dict = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = self.fwd_astar.retrace_path(snake_case_ ) lowercase : Dict = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() lowercase : List[str] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase : str = (0, 0) lowercase : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase : Union[str, Any] = time.time() lowercase : Any = AStar(init, goal) lowercase : Optional[Any] = a_star.search() lowercase : Dict = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') lowercase : Tuple = time.time() lowercase : str = BidirectionalAStar(init, goal) lowercase : Union[str, Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
336
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> np.ndarray: """simple docstring""" a = XGBRegressor(verbosity=0, random_state=4_2 ) xgb.fit(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) # Predict target for test data a = xgb.predict(_SCREAMING_SNAKE_CASE ) a = predictions.reshape(len(_SCREAMING_SNAKE_CASE ), 1 ) return predictions def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = fetch_california_housing() a , a = data_handling(_SCREAMING_SNAKE_CASE ) a , a , a , a = train_test_split( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, test_size=0.25, random_state=1 ) a = xgboost(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )}""" ) print(f"""Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
387
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple=1_3 , __UpperCamelCase : str=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : int=True , __UpperCamelCase : str=True , __UpperCamelCase : Any=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Optional[int]=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Union[str, Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : List[str]=1_6 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Union[str, Any]=None , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : Dict )->Tuple: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int )->List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] )->Optional[Any]: _UpperCAmelCase = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str )->Optional[int]: _UpperCAmelCase = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : int )->int: _UpperCAmelCase = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple )->Union[str, Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str )->List[str]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = self.num_choices _UpperCAmelCase = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] )->List[str]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __snake_case , __snake_case , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : int )->Tuple: _UpperCAmelCase = NystromformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->Dict: self.config_tester.run_common_tests() def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase__ ( self : List[Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case_ ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowercase__ ( self : int )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowercase__ ( self : Any )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowercase__ ( self : int )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowercase__ ( self : int )->Optional[Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Union[str, Any]: _UpperCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCAmelCase = model(snake_case_ )[0] _UpperCAmelCase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def lowercase__ ( self : Tuple )->Tuple: _UpperCAmelCase = '''the [MASK] of Belgium is Brussels''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = tokenizer(snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase = model(encoding.input_ids ).logits _UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , '''capital''' )
602
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCAmelCase__ : __a = 42 __a = None __a = None def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> bool: def is_valid_tree(__lowerCamelCase : Any ) -> bool: if node is None: return True if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _SCREAMING_SNAKE_CASE , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _SCREAMING_SNAKE_CASE ) ) return is_binary_search_tree_recursive_check(_SCREAMING_SNAKE_CASE , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
224
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , a : Any , a : List[str]=13 , a : List[str]=30 , a : int=2 , a : str=3 , a : Optional[Any]=True , a : Optional[Any]=True , a : Any=32 , a : int=5 , a : Optional[int]=4 , a : int=37 , a : Tuple="gelu" , a : Any=0.1 , a : Any=0.1 , a : List[str]=10 , a : List[str]=0.02 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Tuple = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values def __UpperCamelCase ( self : int , a : Dict , a : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = FlaxViTModel(config=snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = model(snake_case_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : int = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE : int = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __UpperCamelCase ( self : List[Any] , a : str , a : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = FlaxViTForImageClassification(config=snake_case_ ) SCREAMING_SNAKE_CASE : str = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Tuple = FlaxViTForImageClassification(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCamelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(snake_case_ ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : str = self._prepare_for_class(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : str = model_class(snake_case_ ) @jax.jit def model_jitted(a : Tuple , **a : Optional[Any] ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE : List[str] = model_jitted(**snake_case_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : List[Any] = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ )
25
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Any = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Union[str, Any] = { "squeezebert/squeezebert-uncased": 5_1_2, "squeezebert/squeezebert-mnli": 5_1_2, "squeezebert/squeezebert-mnli-headless": 5_1_2, } lowerCamelCase : List[str] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A__ ( __snake_case ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = SqueezeBertTokenizer def __init__( self : str , _a : Tuple=None , _a : Tuple=None , _a : str=True , _a : List[str]="[UNK]" , _a : int="[SEP]" , _a : int="[PAD]" , _a : int="[CLS]" , _a : Union[str, Any]="[MASK]" , _a : Any=True , _a : List[str]=None , **_a : Any , ) -> str: '''simple docstring''' super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _SCREAMING_SNAKE_CASE =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): _SCREAMING_SNAKE_CASE =getattr(snake_case_ , normalizer_state.pop('type' ) ) _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =strip_accents _SCREAMING_SNAKE_CASE =tokenize_chinese_chars _SCREAMING_SNAKE_CASE =normalizer_class(**snake_case_ ) _SCREAMING_SNAKE_CASE =do_lower_case def A ( self : Optional[Any] , _a : Optional[Any] , _a : Tuple=None ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Any , _a : Optional[int] , _a : List[Any] = None ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Tuple , _a : List[str] , _a : str = None ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
405
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
from math import ceil, sqrt def lowerCAmelCase ( UpperCamelCase__ : str = 1_000_000 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __SCREAMING_SNAKE_CASE: Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __SCREAMING_SNAKE_CASE: Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from __future__ import annotations def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: lowercase_ = len(_SCREAMING_SNAKE_CASE ) // 2 # choose the middle 3 elements lowercase_ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
451
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self :Optional[Any] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Dict=13 , UpperCamelCase__ :Union[str, Any]=30 , UpperCamelCase__ :str=2 , UpperCamelCase__ :Optional[int]=3 , UpperCamelCase__ :List[Any]=True , UpperCamelCase__ :List[Any]=True , UpperCamelCase__ :Optional[Any]=32 , UpperCamelCase__ :Union[str, Any]=5 , UpperCamelCase__ :Optional[int]=4 , UpperCamelCase__ :Optional[Any]=37 , UpperCamelCase__ :Union[str, Any]="gelu" , UpperCamelCase__ :List[Any]=0.1 , UpperCamelCase__ :Union[str, Any]=0.1 , UpperCamelCase__ :List[Any]=10 , UpperCamelCase__ :Tuple=0.02 , UpperCamelCase__ :Optional[Any]=3 , UpperCamelCase__ :List[str]=0.6 , UpperCamelCase__ :Tuple=None , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self :int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Dict ): _a = ViTMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Tuple ): _a = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = (self.image_size // self.patch_size) ** 2 _a = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _a = 1 _a = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(snake_case_ ) _a = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase_ : Any = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = False def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = ViTMAEModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self :int ): pass def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[int] ): # make masks reproducible np.random.seed(2 ) _a = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a = torch.from_numpy(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _a = pt_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = outputs[0].cpu().numpy() _a = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _a = model_class.from_pretrained(snake_case_ ) model.to(snake_case_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) # Make sure we don't have nans _a = after_outputs[0].cpu().numpy() _a = 0 _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE_ ( self :str ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE_ ( self :str ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE_ ( self :str ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self :str ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ViTMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __a ( ): """simple docstring""" _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self :str ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self :int ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _a = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(snake_case_ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _a = ViTMAEConfig() _a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _a = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _a = model(**snake_case_ , noise=torch.from_numpy(snake_case_ ).to(device=snake_case_ ) ) # verify the logits _a = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _a = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case_ ) , atol=1E-4 ) )
388
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase (__snake_case ): _UpperCamelCase = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , ) ->List[str]: '''simple docstring''' super().__init__(**snake_case_ ) __lowerCAmelCase : Optional[int] = size if size is not None else {'''shortest_edge''': 224} __lowerCAmelCase : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCAmelCase : List[str] = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='''crop_size''' ) __lowerCAmelCase : Union[str, Any] = do_resize __lowerCAmelCase : Dict = size __lowerCAmelCase : int = resample __lowerCAmelCase : List[str] = do_center_crop __lowerCAmelCase : List[Any] = crop_size __lowerCAmelCase : Dict = do_rescale __lowerCAmelCase : Tuple = rescale_factor __lowerCAmelCase : Optional[int] = do_normalize __lowerCAmelCase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCAmelCase : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCAmelCase : Optional[int] = do_convert_rgb def UpperCamelCase__ ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCAmelCase : str = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None , **A_ , ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None , **A_ , ) ->List[str]: '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ = None , **A_ , ) ->Dict: '''simple docstring''' return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Tuple = size if size is not None else self.size __lowerCAmelCase : List[str] = get_size_dict(snake_case_ , param_name='''size''' , default_to_square=snake_case_ ) __lowerCAmelCase : List[str] = resample if resample is not None else self.resample __lowerCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : Any = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : str = get_size_dict(snake_case_ , param_name='''crop_size''' , default_to_square=snake_case_ ) __lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std __lowerCAmelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCAmelCase : List[Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCAmelCase : str = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. __lowerCAmelCase : List[str] = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __lowerCAmelCase : List[Any] = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __lowerCAmelCase : Optional[Any] = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __lowerCAmelCase : str = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __lowerCAmelCase : Any = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __lowerCAmelCase : Tuple = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __lowerCAmelCase : Any = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
492
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("""Input value must be a \'int\' type""" ) return bin(_SCREAMING_SNAKE_CASE ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
336
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
387
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : str = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["MobileViTFeatureExtractor"] __A : List[Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str=8 ) -> List[str]: _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( __snake_case ): def __init__( self : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , ): super().__init__() self.register_modules( unet=snake_case_ , scheduler=snake_case_ , movq=snake_case_ , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Any ): if latents is None: _snake_case = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _snake_case = latents.to(snake_case_ ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowercase ( self : List[Any] , _lowerCamelCase : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) def lowercase ( self : Tuple , _lowerCamelCase : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=snake_case_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case = cpu_offload_with_hook(snake_case_ , snake_case_ , prev_module_hook=snake_case_ ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self : Dict ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : str = 512 , _lowerCamelCase : Tuple = 512 , _lowerCamelCase : Optional[int] = 100 , _lowerCamelCase : List[Any] = 4.0 , _lowerCamelCase : int = 1 , _lowerCamelCase : Any = None , _lowerCamelCase : List[Any] = None , _lowerCamelCase : List[Any] = "pil" , _lowerCamelCase : str = True , ): _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(snake_case_ , snake_case_ ): _snake_case = torch.cat(snake_case_ , dim=0 ) _snake_case = image_embeds.shape[0] * num_images_per_prompt if isinstance(snake_case_ , snake_case_ ): _snake_case = torch.cat(snake_case_ , dim=0 ) if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(snake_case_ , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(snake_case_ , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case_ ) self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) _snake_case = self.scheduler.timesteps _snake_case = self.unet.config.in_channels _snake_case , _snake_case = downscale_height_and_width(snake_case_ , snake_case_ , self.movq_scale_factor ) # create initial latent _snake_case = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {'''image_embeds''': image_embeds} _snake_case = self.unet( sample=snake_case_ , timestep=snake_case_ , encoder_hidden_states=snake_case_ , added_cond_kwargs=snake_case_ , return_dict=snake_case_ , )[0] if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case , _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ , )[0] # post-processing _snake_case = self.movq.decode(snake_case_ , force_not_quantize=snake_case_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = int(_SCREAMING_SNAKE_CASE) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = divmod(_SCREAMING_SNAKE_CASE , 2) return binary_recursive(_SCREAMING_SNAKE_CASE) + str(_SCREAMING_SNAKE_CASE) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Tuple = str(_SCREAMING_SNAKE_CASE).strip() if not number: raise ValueError("No input value was provided") SCREAMING_SNAKE_CASE : Optional[Any] = "-" if number.startswith("-") else "" SCREAMING_SNAKE_CASE : Union[str, Any] = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE))}" if __name__ == "__main__": from doctest import testmod testmod()
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( __snake_case , unittest.TestCase ): A__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def A ( self : List[str] , _a : Union[str, Any]=0 ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.random.RandomState(snake_case_ ) _SCREAMING_SNAKE_CASE ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs['prompt']] # forward _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs.pop('prompt' )] _SCREAMING_SNAKE_CASE =pipe.tokenizer( snake_case_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case_ , return_tensors='np' , ) _SCREAMING_SNAKE_CASE =text_inputs['input_ids'] _SCREAMING_SNAKE_CASE =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _SCREAMING_SNAKE_CASE =prompt_embeds # forward _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def A ( self : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * ['this is a negative prompt'] _SCREAMING_SNAKE_CASE =negative_prompt _SCREAMING_SNAKE_CASE =3 * [inputs['prompt']] # forward _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs.pop('prompt' )] _SCREAMING_SNAKE_CASE =[] for p in [prompt, negative_prompt]: _SCREAMING_SNAKE_CASE =pipe.tokenizer( snake_case_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case_ , return_tensors='np' , ) _SCREAMING_SNAKE_CASE =text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =embeds # forward _SCREAMING_SNAKE_CASE =pipe(**snake_case_ ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def A ( self : Tuple ) -> Tuple: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : List[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =ort.SessionOptions() _SCREAMING_SNAKE_CASE =False return options def A ( self : List[str] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' np.random.seed(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE ='open neural network exchange' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : int ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE ='open neural network exchange' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Any ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 def test_callback_fn(_a : List[str] , _a : Any , _a : Tuple ) -> None: _SCREAMING_SNAKE_CASE =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) _SCREAMING_SNAKE_CASE ='Andromeda galaxy in a bottle' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) pipe( prompt=snake_case_ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case_ , callback=snake_case_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case_ , snake_case_ ) assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case_ ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(snake_case_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
405
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] = 16 , SCREAMING_SNAKE_CASE_ : Optional[Any] = "bert-base-cased" ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : Any ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' model.eval() _lowerCAmelCase = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = metric.compute() return eval_metric["accuracy"] def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config["lr"] _lowerCAmelCase = int(config["num_epochs"] ) _lowerCAmelCase = int(config["seed"] ) _lowerCAmelCase = int(config["batch_size"] ) _lowerCAmelCase = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer _lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _lowerCAmelCase = 1 _lowerCAmelCase = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: _lowerCAmelCase = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase = 0 _lowerCAmelCase = evaluate.load("glue" , "mrpc" ) _lowerCAmelCase = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase = args.resume_from_checkpoint.split("epoch_" )[1] _lowerCAmelCase = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) + 1 _lowerCAmelCase = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint performance:" , _SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint\'s scheduler\'s lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers\'s lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , "r" ) as f: _lowerCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.loss _lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase = F'''epoch_{epoch}''' _lowerCAmelCase = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = accuracy _lowerCAmelCase = lr_scheduler.get_lr()[0] _lowerCAmelCase = optimizer.param_groups[0]["lr"] _lowerCAmelCase = epoch _lowerCAmelCase = overall_step accelerator.print(F'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __a(): '''simple docstring''' _lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_SCREAMING_SNAKE_CASE , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( "--output_dir" , type=_SCREAMING_SNAKE_CASE , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_SCREAMING_SNAKE_CASE , default=2 , help="Number of train epochs." , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
18
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowerCAmelCase : List[Any] = logging.getLogger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : int=3 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : Union[str, Any] = 10 , UpperCamelCase__ : Dict = 2 ) -> List[Any]: """simple docstring""" def get_dataset(UpperCamelCase__ : Tuple ): __SCREAMING_SNAKE_CASE: Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_SCREAMING_SNAKE_CASE , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __SCREAMING_SNAKE_CASE: Tuple = get_dataset(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE: Dict = get_dataset(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE: Any = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) __SCREAMING_SNAKE_CASE: Optional[Any] = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str=None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = [] for epoch in range(_SCREAMING_SNAKE_CASE ): # Train quickly model.train() for batch in dataloader: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = batch __SCREAMING_SNAKE_CASE: Dict = model(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE: Any = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a ( nn.Module ): def __init__( self ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE: Any = nn.Parameter(torch.randn(1 ) ) __SCREAMING_SNAKE_CASE: Dict = nn.Parameter(torch.randn(1 ) ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" return x * self.a + self.b class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE: Tuple = DummyModel() __SCREAMING_SNAKE_CASE: Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Any = dummy_dataloaders() __SCREAMING_SNAKE_CASE: Optional[Any] = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ ) # Train baseline __SCREAMING_SNAKE_CASE: Any = Accelerator(project_config=snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = DummyModel() __SCREAMING_SNAKE_CASE: Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = dummy_dataloaders() # Train baseline __SCREAMING_SNAKE_CASE: Tuple = Accelerator() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Any = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial __SCREAMING_SNAKE_CASE: Union[str, Any] = os.path.join(snake_case_ , '''initial''' ) accelerator.save_state(snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): List[Any] = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: Union[str, Any] = optimizer.state_dict() __SCREAMING_SNAKE_CASE: Any = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): int = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) __SCREAMING_SNAKE_CASE: str = DummyModel() __SCREAMING_SNAKE_CASE: List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Union[str, Any] = dummy_dataloaders() __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): Optional[Any] = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: int = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) __SCREAMING_SNAKE_CASE: Dict = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything __SCREAMING_SNAKE_CASE: List[Any] = os.path.join(snake_case_ , '''checkpoint''' ) accelerator.save_state(snake_case_ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case_ ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): Optional[Any] = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: Union[str, Any] = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE: str = DummyModel() __SCREAMING_SNAKE_CASE: Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = dummy_dataloaders() __SCREAMING_SNAKE_CASE: List[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): str = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: Any = optimizer.state_dict() __SCREAMING_SNAKE_CASE: Tuple = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): Any = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: int = optimizer.state_dict() # Train partially set_seed(42 ) __SCREAMING_SNAKE_CASE: int = DummyModel() __SCREAMING_SNAKE_CASE: List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = dummy_dataloaders() __SCREAMING_SNAKE_CASE: Optional[int] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ ) __SCREAMING_SNAKE_CASE: List[str] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): Optional[int] = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: List[Any] = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) __SCREAMING_SNAKE_CASE: List[str] = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)): Optional[Any] = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE: Any = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = torch.tensor([1, 2, 3] ) __SCREAMING_SNAKE_CASE: str = torch.tensor([2, 3, 4] ) __SCREAMING_SNAKE_CASE: List[Any] = DummyModel() __SCREAMING_SNAKE_CASE: Tuple = torch.optim.Adam(net.parameters() ) __SCREAMING_SNAKE_CASE: Any = Accelerator() with self.assertRaises(snake_case_ ) as ve: accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __SCREAMING_SNAKE_CASE: List[str] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE: List[str] = DummyModel() __SCREAMING_SNAKE_CASE: Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __SCREAMING_SNAKE_CASE: Tuple = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.99 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Any = dummy_dataloaders() __SCREAMING_SNAKE_CASE: List[str] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: str = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() __SCREAMING_SNAKE_CASE: List[Any] = scheduler.state_dict() train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(snake_case_ , scheduler.state_dict() ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = DummyModel() __SCREAMING_SNAKE_CASE: List[str] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 ) # Train baseline __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) __SCREAMING_SNAKE_CASE: Tuple = accelerator.prepare(snake_case_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = "/tmp/accelerate/state_checkpointing" lowerCAmelCase : List[str] = DummyModel() lowerCAmelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowerCAmelCase : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) lowerCAmelCase : Dict = dummy_dataloaders() lowerCAmelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowerCAmelCase : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowerCAmelCase : int = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowerCAmelCase : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowerCAmelCase : Optional[int] = group["params"][0].device break assert param_device.type == accelerator.device.type lowerCAmelCase : str = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: lowerCAmelCase : int = group["params"][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: lowerCAmelCase : Tuple = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __snake_case = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) ->Union[str, Any]: require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
451
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __snake_case ( __snake_case ): """simple docstring""" def __init__( self :str , *UpperCamelCase__ :Any , **UpperCamelCase__ :Any ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
388
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (__snake_case ): _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """Pix2StructImageProcessor""" _UpperCamelCase = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = False super().__init__(snake_case_ , snake_case_ ) def __call__( self , A_=None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 2048 , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) ->List[str]: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __lowerCAmelCase : Union[str, Any] = self.tokenizer __lowerCAmelCase : Any = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCAmelCase : List[str] = self.image_processor( snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , **snake_case_ ) else: # add pixel_values and bbox __lowerCAmelCase : Tuple = self.image_processor( snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , header_text=snake_case_ , **snake_case_ ) if text is not None and not self.image_processor.is_vqa: __lowerCAmelCase : Dict = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if "attention_mask" in text_encoding: __lowerCAmelCase : Union[str, Any] = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __lowerCAmelCase : Any = text_encoding.pop('''input_ids''' ) else: __lowerCAmelCase : str = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = self.tokenizer.model_input_names __lowerCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
492
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __snake_case ( __snake_case ): _a : Union[str, Any]= "Wav2Vec2FeatureExtractor" _a : Any= "AutoTokenizer" def __init__( self ,snake_case ,snake_case ): '''simple docstring''' super().__init__(snake_case_ ,snake_case_ ) lowercase : Dict = self.feature_extractor lowercase : str = False @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' try: return super().from_pretrained(snake_case_ ,**snake_case_ ) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,snake_case_ ,) lowercase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case_ ,**snake_case_ ) lowercase : Any = WavaVecaCTCTokenizer.from_pretrained(snake_case_ ,**snake_case_ ) return cls(feature_extractor=snake_case_ ,tokenizer=snake_case_ ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case_ ,**snake_case_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowercase : str = kwargs.pop("""raw_speech""" ) else: lowercase : str = kwargs.pop("""audio""" ,snake_case_ ) lowercase : int = kwargs.pop("""sampling_rate""" ,snake_case_ ) lowercase : str = kwargs.pop("""text""" ,snake_case_ ) if len(snake_case_ ) > 0: lowercase : List[Any] = args[0] lowercase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowercase : str = self.feature_extractor(snake_case_ ,*snake_case_ ,sampling_rate=snake_case_ ,**snake_case_ ) if text is not None: lowercase : Dict = self.tokenizer(snake_case_ ,**snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: lowercase : Dict = encodings["""input_ids"""] return inputs def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ ,**snake_case_ ) lowercase : Tuple = kwargs.pop("""input_features""" ,snake_case_ ) lowercase : Union[str, Any] = kwargs.pop("""labels""" ,snake_case_ ) if len(snake_case_ ) > 0: lowercase : Optional[Any] = args[0] lowercase : Dict = args[1:] if input_features is not None: lowercase : str = self.feature_extractor.pad(snake_case_ ,*snake_case_ ,**snake_case_ ) if labels is not None: lowercase : Optional[Any] = self.tokenizer.pad(snake_case_ ,**snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: lowercase : Any = labels["""input_ids"""] return input_features def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ ,**snake_case_ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowercase : Tuple = True lowercase : str = self.tokenizer yield lowercase : Dict = self.feature_extractor lowercase : List[Any] = False
336
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" a , a = image.size a , a = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 a = image.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) a = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 a = image[None].transpose(0, 3, 1, 2 ) a = torch.from_numpy(_SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class lowerCamelCase_ ( __snake_case ): def __init__( self : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,): '''simple docstring''' super().__init__() self.register_modules(vqvae=snake_case_ ,unet=snake_case_ ,scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Optional[int] ,__lowerCamelCase : Any = None ,__lowerCamelCase : Any = 1 ,__lowerCamelCase : Any = 1_00 ,__lowerCamelCase : Tuple = 0.0 ,__lowerCamelCase : List[Any] = None ,__lowerCamelCase : Dict = "pil" ,__lowerCamelCase : int = True ,): '''simple docstring''' if isinstance(snake_case_ ,PIL.Image.Image ): a = 1 elif isinstance(snake_case_ ,torch.Tensor ): a = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}""" ) if isinstance(snake_case_ ,PIL.Image.Image ): a = preprocess(snake_case_ ) a , a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a = (batch_size, self.unet.config.in_channels // 2, height, width) a = next(self.unet.parameters() ).dtype a = randn_tensor(snake_case_ ,generator=snake_case_ ,device=self.device ,dtype=snake_case_ ) a = image.to(device=self.device ,dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ ,device=self.device ) a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a = {} if accepts_eta: a = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. a = torch.cat([latents, image] ,dim=1 ) a = self.scheduler.scale_model_input(snake_case_ ,snake_case_ ) # predict the noise residual a = self.unet(snake_case_ ,snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 a = self.scheduler.step(snake_case_ ,snake_case_ ,snake_case_ ,**snake_case_ ).prev_sample # decode the image latents with the VQVAE a = self.vqvae.decode(snake_case_ ).sample a = torch.clamp(snake_case_ ,-1.0 ,1.0 ) a = image / 2 + 0.5 a = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": a = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
387
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : Any ) -> list[list[int]]: _snake_case = [] if len(_SCREAMING_SNAKE_CASE ) == 1: return [nums.copy()] for _ in range(len(_SCREAMING_SNAKE_CASE ) ): _snake_case = nums.pop(0 ) _snake_case = permute(_SCREAMING_SNAKE_CASE ) for perm in permutations: perm.append(_SCREAMING_SNAKE_CASE ) result.extend(_SCREAMING_SNAKE_CASE ) nums.append(_SCREAMING_SNAKE_CASE ) return result def _UpperCAmelCase ( __lowerCamelCase : int ) -> Optional[Any]: def backtrack(__lowerCamelCase : Dict ): if start == len(_SCREAMING_SNAKE_CASE ) - 1: output.append(nums[:] ) else: for i in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _snake_case , _snake_case = nums[i], nums[start] backtrack(start + 1 ) _snake_case , _snake_case = nums[i], nums[start] # backtrack _snake_case = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase__ = permutea([1, 2, 3]) print(res) doctest.testmod()
224
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : str = len(_SCREAMING_SNAKE_CASE) SCREAMING_SNAKE_CASE : Dict = [[0 for _ in range(size + 1)] for _ in range(_SCREAMING_SNAKE_CASE)] SCREAMING_SNAKE_CASE : Tuple = 42 SCREAMING_SNAKE_CASE : List[str] = 42 SCREAMING_SNAKE_CASE : List[Any] = 42 SCREAMING_SNAKE_CASE : List[str] = 42 SCREAMING_SNAKE_CASE : Union[str, Any] = 42 SCREAMING_SNAKE_CASE : Any = 42 for row in range(_SCREAMING_SNAKE_CASE): for col in range(_SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE : Dict = matrix[row][col] SCREAMING_SNAKE_CASE : Optional[Any] = vector[row][0] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE : Optional[int] = max((abs(augmented[rowa][col]), rowa) for rowa in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE : Tuple = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE : List[Any] = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _SCREAMING_SNAKE_CASE): for row in range(_SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE : str = augmented[row][col] / augmented[col][col] for cola in range(_SCREAMING_SNAKE_CASE , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(_SCREAMING_SNAKE_CASE) ] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = len(_SCREAMING_SNAKE_CASE) SCREAMING_SNAKE_CASE : str = [[0 for _ in range(_SCREAMING_SNAKE_CASE)] for _ in range(_SCREAMING_SNAKE_CASE)] SCREAMING_SNAKE_CASE : Dict = [[0] for _ in range(_SCREAMING_SNAKE_CASE)] SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = 42 SCREAMING_SNAKE_CASE : Dict = 42 SCREAMING_SNAKE_CASE : List[str] = 42 for x_val, y_val in enumerate(_SCREAMING_SNAKE_CASE): for col in range(_SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE : List[str] = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE : List[str] = y_val SCREAMING_SNAKE_CASE : Optional[int] = solve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def interpolated_func(_a) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(_SCREAMING_SNAKE_CASE)) return interpolated_func def lowerCamelCase__ ( _a): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _a = question_function , _a = 10): SCREAMING_SNAKE_CASE : Dict = [func(_SCREAMING_SNAKE_CASE) for x_val in range(1 , order + 1)] SCREAMING_SNAKE_CASE : int = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = 42 SCREAMING_SNAKE_CASE : Dict = 42 for poly in polynomials: SCREAMING_SNAKE_CASE : str = 1 while func(_SCREAMING_SNAKE_CASE) == poly(_SCREAMING_SNAKE_CASE): x_val += 1 ret += poly(_SCREAMING_SNAKE_CASE) return ret if __name__ == "__main__": print(F'''{solution() = }''')
25
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( __snake_case ): def __init__( self : Optional[int] , *_a : int , _a : Optional[Any]=None , _a : List[str]=None , **_a : str ) -> Optional[int]: '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) _SCREAMING_SNAKE_CASE =eval_examples _SCREAMING_SNAKE_CASE =post_process_function def A ( self : str , _a : List[Any]=None , _a : str=None , _a : str=None , _a : Any = "eval" ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE =self.get_eval_dataloader(snake_case_ ) _SCREAMING_SNAKE_CASE =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE =self.compute_metrics _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _SCREAMING_SNAKE_CASE =time.time() try: _SCREAMING_SNAKE_CASE =eval_loop( snake_case_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case_ , metric_key_prefix=snake_case_ , ) finally: _SCREAMING_SNAKE_CASE =compute_metrics _SCREAMING_SNAKE_CASE =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case_ , snake_case_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _SCREAMING_SNAKE_CASE =self.post_process_function(snake_case_ , snake_case_ , output.predictions ) _SCREAMING_SNAKE_CASE =self.compute_metrics(snake_case_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE =metrics.pop(snake_case_ ) metrics.update(output.metrics ) else: _SCREAMING_SNAKE_CASE =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE =self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case_ ) return metrics def A ( self : Union[str, Any] , _a : Tuple , _a : List[str] , _a : Optional[int]=None , _a : List[str] = "test" ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_test_dataloader(snake_case_ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE =self.compute_metrics _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _SCREAMING_SNAKE_CASE =time.time() try: _SCREAMING_SNAKE_CASE =eval_loop( snake_case_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case_ , metric_key_prefix=snake_case_ , ) finally: _SCREAMING_SNAKE_CASE =compute_metrics _SCREAMING_SNAKE_CASE =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case_ , snake_case_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE =self.post_process_function(snake_case_ , snake_case_ , output.predictions , 'predict' ) _SCREAMING_SNAKE_CASE =self.compute_metrics(snake_case_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE =metrics.pop(snake_case_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case_ )
405
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) // 2 _lowerCAmelCase = arr[0:mid] _lowerCAmelCase = arr[mid:] _lowerCAmelCase , _lowerCAmelCase = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = _count_cross_inversions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 while i < len(_SCREAMING_SNAKE_CASE ) and j < len(_SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __a(): '''simple docstring''' _lowerCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , _SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions _lowerCAmelCase = [] _lowerCAmelCase = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
18
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = [1] for i in range(2 , _SCREAMING_SNAKE_CASE ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[Any] = list(range(_SCREAMING_SNAKE_CASE ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE: List[Any] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[str] = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __snake_case = trt.Logger(trt.Logger.WARNING) __snake_case = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __snake_case = logging.getLogger(__name__) __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) __snake_case = parser.parse_args() if args.tokenizer_name: __snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) __snake_case = args.per_device_eval_batch_size __snake_case = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __snake_case = True __snake_case = "temp_engine/bert-fp32.engine" if args.fpaa: __snake_case = "temp_engine/bert-fp16.engine" if args.inta: __snake_case = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") __snake_case = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __snake_case = [network.get_input(i) for i in range(network.num_inputs)] __snake_case = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __snake_case = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __snake_case = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __snake_case = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]: lowercase_ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase_ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase_ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _SCREAMING_SNAKE_CASE ) # start time lowercase_ = time.time() # Run inference context.execute_async( bindings=[int(_SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(_SCREAMING_SNAKE_CASE ), int(_SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time lowercase_ = time.time() lowercase_ = end_time - start_time lowercase_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __snake_case = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __snake_case = raw_datasets["validation"].column_names __snake_case = "question" if "question" in column_names else column_names[0] __snake_case = "context" if "context" in column_names else column_names[1] __snake_case = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __snake_case = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __snake_case = min(args.max_seq_length, tokenizer.model_max_length) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Tuple: lowercase_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=_SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase_ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase_ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase_ = tokenized_examples.sequence_ids(_SCREAMING_SNAKE_CASE ) lowercase_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase_ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __snake_case = raw_datasets["validation"] # Validation Feature Creation __snake_case = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) __snake_case = default_data_collator __snake_case = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) __snake_case = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) ->Optional[Any]: lowercase_ = postprocess_qa_predictions( examples=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase_ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase_ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase_ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_SCREAMING_SNAKE_CASE , label_ids=_SCREAMING_SNAKE_CASE ) __snake_case = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A_ ( SCREAMING_SNAKE_CASE_ ) ->Tuple: return trt.volume(engine.get_binding_shape(_SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(_SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. __snake_case = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __snake_case = cuda.mem_alloc(h_outputa.nbytes) __snake_case = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __snake_case = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __snake_case = 0.0 __snake_case = 0 __snake_case = timeit.default_timer() __snake_case = None for step, batch in enumerate(eval_dataloader): __snake_case = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __snake_case = outputs __snake_case = torch.tensor(start_logits) __snake_case = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __snake_case = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __snake_case = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __snake_case = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __snake_case = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __snake_case = nested_truncate(all_preds, len(eval_dataset)) __snake_case = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) __snake_case = post_processing_function(eval_examples, eval_dataset, all_preds) __snake_case = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
451
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
388
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__snake_case ): _UpperCamelCase = ["""note_seq"""] def __init__( self , *A_ , **A_ ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''note_seq'''] ) @classmethod def UpperCamelCase__ ( cls , *A_ , **A_ ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['''note_seq'''] ) @classmethod def UpperCamelCase__ ( cls , *A_ , **A_ ) ->List[str]: '''simple docstring''' requires_backends(cls , ['''note_seq'''] )
492
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Union[str, Any] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class __snake_case ( __snake_case ): _a : Optional[int]= "openai-gpt" _a : int= { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,snake_case=40478 ,snake_case=512 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case="cls_index" ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=0.1 ,**snake_case ,): '''simple docstring''' lowercase : Optional[int] = vocab_size lowercase : List[str] = n_positions lowercase : Union[str, Any] = n_embd lowercase : Tuple = n_layer lowercase : Tuple = n_head lowercase : Any = afn lowercase : Any = resid_pdrop lowercase : Union[str, Any] = embd_pdrop lowercase : int = attn_pdrop lowercase : Tuple = layer_norm_epsilon lowercase : Union[str, Any] = initializer_range lowercase : str = summary_type lowercase : Tuple = summary_use_proj lowercase : str = summary_activation lowercase : int = summary_first_dropout lowercase : str = summary_proj_to_labels super().__init__(**snake_case_ )
336
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_, snake_case_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a = sum( count_of_possible_combinations_with_dp_array(target - item, _SCREAMING_SNAKE_CASE ) for item in array ) a = answer return answer a = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = [0] * (target + 1) a = 1 for i in range(1, target + 1 ): for j in range(_SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : str = 3 UpperCamelCase__ : Tuple = 5 UpperCamelCase__ : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
387
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , a : Dict , a : Any=13 , a : Optional[Any]=7 , a : Union[str, Any]=True , a : List[Any]=True , a : Optional[int]=True , a : Dict=True , a : Union[str, Any]=99 , a : Any=32 , a : Optional[Any]=5 , a : Tuple=4 , a : Optional[int]=37 , a : Union[str, Any]="gelu" , a : str=0.1 , a : Optional[Any]=0.1 , a : Dict=512 , a : List[Any]=16 , a : Union[str, Any]=2 , a : Optional[int]=0.02 , a : Optional[int]=4 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Tuple = use_attention_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[Any] = num_choices def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCamelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True lowerCamelCase__ =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = FlaxRoFormerModelTester(self ) @slow def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=snake_case_ ) SCREAMING_SNAKE_CASE : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : int = model(snake_case_ )[0] SCREAMING_SNAKE_CASE : Optional[int] = 5_0000 SCREAMING_SNAKE_CASE : Optional[int] = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4 ) )
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> list: """simple docstring""" def merge(_UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_SCREAMING_SNAKE_CASE ) <= 1: return collection _SCREAMING_SNAKE_CASE =len(_SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
405
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = [x.strip() for x in open(_SCREAMING_SNAKE_CASE ).readlines()] _lowerCAmelCase = [x.strip() for x in open(_SCREAMING_SNAKE_CASE ).readlines()][: len(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if save_path is not None: save_json(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
18
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''owlvit_text_model''' def __init__( self , _lowerCAmelCase=49408 , _lowerCAmelCase=512 , _lowerCAmelCase=2048 , _lowerCAmelCase=12 , _lowerCAmelCase=8 , _lowerCAmelCase=16 , _lowerCAmelCase="quick_gelu" , _lowerCAmelCase=1e-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , _lowerCAmelCase=0 , _lowerCAmelCase=49406 , _lowerCAmelCase=49407 , **_lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __SCREAMING_SNAKE_CASE: Any = vocab_size __SCREAMING_SNAKE_CASE: List[Any] = hidden_size __SCREAMING_SNAKE_CASE: Any = intermediate_size __SCREAMING_SNAKE_CASE: Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: Any = num_attention_heads __SCREAMING_SNAKE_CASE: Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE: int = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[Any] = attention_dropout __SCREAMING_SNAKE_CASE: Tuple = initializer_range __SCREAMING_SNAKE_CASE: Optional[int] = initializer_factor @classmethod def snake_case_ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __SCREAMING_SNAKE_CASE: Any = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case_ , **snake_case_ ) class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = '''owlvit_vision_model''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=3072 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3 , _lowerCAmelCase=768 , _lowerCAmelCase=32 , _lowerCAmelCase="quick_gelu" , _lowerCAmelCase=1e-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**snake_case_ ) __SCREAMING_SNAKE_CASE: int = hidden_size __SCREAMING_SNAKE_CASE: Any = intermediate_size __SCREAMING_SNAKE_CASE: Any = num_hidden_layers __SCREAMING_SNAKE_CASE: Tuple = num_attention_heads __SCREAMING_SNAKE_CASE: Tuple = num_channels __SCREAMING_SNAKE_CASE: Any = image_size __SCREAMING_SNAKE_CASE: List[str] = patch_size __SCREAMING_SNAKE_CASE: str = hidden_act __SCREAMING_SNAKE_CASE: List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE: str = attention_dropout __SCREAMING_SNAKE_CASE: Dict = initializer_range __SCREAMING_SNAKE_CASE: str = initializer_factor @classmethod def snake_case_ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __SCREAMING_SNAKE_CASE: int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case_ , **snake_case_ ) class a ( __snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''owlvit''' SCREAMING_SNAKE_CASE__ : Any = True def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=512 , _lowerCAmelCase=2.6592 , _lowerCAmelCase=True , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**snake_case_ ) if text_config is None: __SCREAMING_SNAKE_CASE: Dict = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __SCREAMING_SNAKE_CASE: int = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = OwlViTTextConfig(**snake_case_ ) __SCREAMING_SNAKE_CASE: Optional[int] = OwlViTVisionConfig(**snake_case_ ) __SCREAMING_SNAKE_CASE: Any = projection_dim __SCREAMING_SNAKE_CASE: Tuple = logit_scale_init_value __SCREAMING_SNAKE_CASE: List[Any] = return_dict __SCREAMING_SNAKE_CASE: Dict = 1.0 @classmethod def snake_case_ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = cls.get_config_dict(snake_case_ , **snake_case_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case_ , **snake_case_ ) @classmethod def snake_case_ ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = {} __SCREAMING_SNAKE_CASE: int = text_config __SCREAMING_SNAKE_CASE: Dict = vision_config return cls.from_dict(snake_case_ , **snake_case_ ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE: Dict = self.text_config.to_dict() __SCREAMING_SNAKE_CASE: int = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE: Union[str, Any] = self.__class__.model_type return output class a ( __snake_case ): @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def snake_case_ ( self ): """simple docstring""" return 1e-4 def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=snake_case_ , seq_length=snake_case_ , framework=snake_case_ ) __SCREAMING_SNAKE_CASE: Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=snake_case_ , framework=snake_case_ ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self ): """simple docstring""" return 14
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->bool: lowercase_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
451
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" from itertools import permutations def __a ( a ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _a = [7, 1_1, 1_3, 1_7] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def __a ( a = 1_0 ): """simple docstring""" return sum( int("".join(map(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'{solution() = }')
388
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
27
0
def _lowercase ( lowercase__ ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __lowerCAmelCase : List[str] = str(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = ''''''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _lowercase ( lowercase__ = 9_9 ): if not 0 < percent < 1_0_0: raise ValueError('''solution() only accepts values from 0 to 100''' ) __lowerCAmelCase : int = 0 __lowerCAmelCase : Union[str, Any] = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(99)}")
492
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
0
import math lowercase : List[str] = 10 lowercase : Any = 7 lowercase : str = BALLS_PER_COLOUR * NUM_COLOURS def _snake_case( SCREAMING_SNAKE_CASE__ = 20 ) -> str: lowercase : Tuple = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase : str = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE ) lowercase : int = NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
336
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : Any = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
387
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=1_3 , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=9_9 , __UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : List[str]=1_6 , __UpperCamelCase : str=2 , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : Dict=3 , __UpperCamelCase : str=4 , __UpperCamelCase : List[str]=None , )->List[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = self.vocab_size - 1 def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , *__UpperCamelCase : Dict )->Optional[Any]: _UpperCAmelCase = OpenAIGPTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Tuple , *__UpperCamelCase : List[str] )->Union[str, Any]: _UpperCAmelCase = OpenAIGPTLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , *__UpperCamelCase : List[str] )->Optional[Any]: _UpperCAmelCase = OpenAIGPTDoubleHeadsModel(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : str , *__UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = OpenAIGPTForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[Any] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( __snake_case , __snake_case , __snake_case , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase__ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict )->Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=False )->List[Any]: _UpperCAmelCase = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ , ) _UpperCAmelCase = inputs_dict['''labels'''] _UpperCAmelCase = inputs_dict['''labels'''] _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case_ , ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = OpenAIGPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , n_embd=3_7 ) def lowercase__ ( self : Optional[int] )->int: self.config_tester.run_common_tests() def lowercase__ ( self : int )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case_ ) def lowercase__ ( self : Dict )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) def lowercase__ ( self : Tuple )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case_ ) def lowercase__ ( self : Dict )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case_ ) @slow def lowercase__ ( self : int )->Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = OpenAIGPTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(snake_case_ ) _UpperCAmelCase = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=snake_case_ ) # the president is _UpperCAmelCase = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCAmelCase = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
602
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) -> list[int]: _snake_case = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _snake_case = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase__ = [] UpperCAmelCase__ = "0" if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase__ = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F"Denomination {i}: ").strip())) UpperCAmelCase__ = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase__ = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F"Following is minimal change for {value}: ") UpperCAmelCase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
224
from ... import PretrainedConfig __A : Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = 'nezha' def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
27
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _UpperCamelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['input_features', 'is_longer'] def __init__( self : Union[str, Any] , a : Any=64 , a : Optional[int]=4_8000 , a : Optional[int]=480 , a : Union[str, Any]=10 , a : Any=1024 , a : Tuple=0.0 , a : List[Any]=False , a : List[Any] = 0 , a : Any = 1_4000 , a : List[str] = None , a : Tuple = "fusion" , a : List[Any] = "repeatpad" , **a : Any , ) -> Union[str, Any]: """simple docstring""" super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = top_db SCREAMING_SNAKE_CASE : str = truncation SCREAMING_SNAKE_CASE : int = padding SCREAMING_SNAKE_CASE : str = fft_window_size SCREAMING_SNAKE_CASE : str = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = hop_length SCREAMING_SNAKE_CASE : Tuple = max_length_s SCREAMING_SNAKE_CASE : Optional[Any] = max_length_s * sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = frequency_min SCREAMING_SNAKE_CASE : Optional[Any] = frequency_max SCREAMING_SNAKE_CASE : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale="htk" , ) SCREAMING_SNAKE_CASE : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm="slaney" , mel_scale="slaney" , ) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase ( self : List[str] , a : List[Any] , a : List[Any] = None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = spectrogram( snake_case_ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel="dB" , ) return log_mel_spectrogram.T def __UpperCamelCase ( self : Dict , a : Dict , a : str , a : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE : Dict = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE : Dict = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE : List[str] = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE : Any = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE : Tuple = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=snake_case_ ) SCREAMING_SNAKE_CASE : Any = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCamelCase ( self : List[Any] , a : Tuple , a : List[str] , a : Union[str, Any] , a : Dict ) -> Dict: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE : Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE : List[str] = len(snake_case_ ) - max_length SCREAMING_SNAKE_CASE : int = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE : Tuple = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE : str = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE : int = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) SCREAMING_SNAKE_CASE : int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE : List[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE : Tuple = False else: SCREAMING_SNAKE_CASE : List[Any] = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : int = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: SCREAMING_SNAKE_CASE : int = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE : Dict = int(max_length / len(snake_case_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE : Union[str, Any] = int(max_length / len(snake_case_ ) ) SCREAMING_SNAKE_CASE : List[Any] = np.stack(np.tile(snake_case_ , snake_case_ ) ) SCREAMING_SNAKE_CASE : List[str] = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE : Any = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) SCREAMING_SNAKE_CASE : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE : str = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[Any] , a : Optional[Any] , a : List[Any] = None , a : List[Any] = None , a : List[Any] = None , a : Any = None , a : Tuple = None , **a : Union[str, Any] , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE : Tuple = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE : int = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : List[str] = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): SCREAMING_SNAKE_CASE : List[str] = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Optional[Any] = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE : Union[str, Any] = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE : List[str] = np.random.randint(0 , len(snake_case_ ) ) SCREAMING_SNAKE_CASE : str = True if isinstance(input_mel[0] , snake_case_ ): SCREAMING_SNAKE_CASE : Tuple = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE : Tuple = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE : Tuple = {"input_features": input_mel, "is_longer": is_longer} SCREAMING_SNAKE_CASE : List[Any] = BatchFeature(snake_case_ ) if return_tensors is not None: SCREAMING_SNAKE_CASE : List[Any] = input_features.convert_to_tensors(snake_case_ ) return input_features
25
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=__snake_case ): A__ = ['onnx'] def __init__( self : Union[str, Any] , *_a : Tuple , **_a : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def A ( cls : Dict , *_a : Optional[int] , **_a : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def A ( cls : Optional[Any] , *_a : int , **_a : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['onnx'] )
405
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( __snake_case ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = KandinskyVaaControlnetPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] SCREAMING_SNAKE_CASE__ : str = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] SCREAMING_SNAKE_CASE__ : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE__ : Dict = False @property def snake_case_ ( self ): """simple docstring""" return 32 @property def snake_case_ ( self ): """simple docstring""" return 32 @property def snake_case_ ( self ): """simple docstring""" return self.time_input_dim @property def snake_case_ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def snake_case_ ( self ): """simple docstring""" return 100 @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: List[Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE: Any = UNetaDConditionModel(**snake_case_ ) return model @property def snake_case_ ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: List[str] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = self.dummy_unet __SCREAMING_SNAKE_CASE: Union[str, Any] = self.dummy_movq __SCREAMING_SNAKE_CASE: List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case_ , ) __SCREAMING_SNAKE_CASE: Any = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __SCREAMING_SNAKE_CASE: str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case_ ) # create hint __SCREAMING_SNAKE_CASE: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if str(snake_case_ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE: Tuple = torch.manual_seed(snake_case_ ) else: __SCREAMING_SNAKE_CASE: int = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __SCREAMING_SNAKE_CASE: Optional[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = '''cpu''' __SCREAMING_SNAKE_CASE: int = self.get_dummy_components() __SCREAMING_SNAKE_CASE: Dict = self.pipeline_class(**snake_case_ ) __SCREAMING_SNAKE_CASE: List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __SCREAMING_SNAKE_CASE: Tuple = pipe(**self.get_dummy_inputs(snake_case_ ) ) __SCREAMING_SNAKE_CASE: str = output.images __SCREAMING_SNAKE_CASE: Optional[Any] = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] __SCREAMING_SNAKE_CASE: Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE: Optional[int] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) __SCREAMING_SNAKE_CASE: int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __SCREAMING_SNAKE_CASE: Optional[Any] = torch.from_numpy(np.array(snake_case_ ) ).float() / 255.0 __SCREAMING_SNAKE_CASE: Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE: int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) __SCREAMING_SNAKE_CASE: int = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) __SCREAMING_SNAKE_CASE: Any = '''A robot, 4k photo''' __SCREAMING_SNAKE_CASE: List[Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Dict = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __SCREAMING_SNAKE_CASE: Optional[Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE: Dict = pipeline( image_embeds=snake_case_ , negative_image_embeds=snake_case_ , hint=snake_case_ , generator=snake_case_ , num_inference_steps=100 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE: Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
202
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = Dict[str, Any] __snake_case = List[Prediction] @add_end_docstrings(__snake_case ) class _a ( __snake_case ): """simple docstring""" def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : Dict ): '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase__ ( self : Dict , **lowercase_ : int ): '''simple docstring''' lowercase_ = {} if "threshold" in kwargs: lowercase_ = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : str ): '''simple docstring''' return super().__call__(*snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self : Optional[int] , lowercase_ : Optional[int] ): '''simple docstring''' lowercase_ = load_image(snake_case_ ) lowercase_ = torch.IntTensor([[image.height, image.width]] ) lowercase_ = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: lowercase_ = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) lowercase_ = target_size return inputs def lowerCamelCase__ ( self : List[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = model_inputs.pop("""target_size""" ) lowercase_ = self.model(**snake_case_ ) lowercase_ = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: lowercase_ = model_inputs["""bbox"""] return model_outputs def lowerCamelCase__ ( self : str , lowercase_ : int , lowercase_ : Optional[Any]=0.9 ): '''simple docstring''' lowercase_ = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase_ , lowercase_ = target_size[0].tolist() def unnormalize(lowercase_ : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) lowercase_ , lowercase_ = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase_ = [unnormalize(snake_case_ ) for bbox in model_outputs["""bbox"""].squeeze(0 )] lowercase_ = ["""score""", """label""", """box"""] lowercase_ = [dict(zip(snake_case_ , snake_case_ ) ) for vals in zip(scores.tolist() , snake_case_ , snake_case_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase_ = self.image_processor.post_process_object_detection(snake_case_ , snake_case_ , snake_case_ ) lowercase_ = raw_annotations[0] lowercase_ = raw_annotation["""scores"""] lowercase_ = raw_annotation["""labels"""] lowercase_ = raw_annotation["""boxes"""] lowercase_ = scores.tolist() lowercase_ = [self.model.config.idalabel[label.item()] for label in labels] lowercase_ = [self._get_bounding_box(snake_case_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase_ = ["""score""", """label""", """box"""] lowercase_ = [ dict(zip(snake_case_ , snake_case_ ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def lowerCamelCase__ ( self : Optional[int] , lowercase_ : str ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = box.int().tolist() lowercase_ = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
451
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __SCREAMING_SNAKE_CASE = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __snake_case : """simple docstring""" def __init__( self :Union[str, Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int]=16 , UpperCamelCase__ :List[str]=13 , UpperCamelCase__ :Dict=7 , UpperCamelCase__ :List[Any]=14 , UpperCamelCase__ :Union[str, Any]=10 , UpperCamelCase__ :List[str]=19 , UpperCamelCase__ :int=5 , UpperCamelCase__ :List[Any]=4 , UpperCamelCase__ :int=True , UpperCamelCase__ :int=16 , UpperCamelCase__ :Union[str, Any]=2 , UpperCamelCase__ :List[Any]=4 , UpperCamelCase__ :int=4 , UpperCamelCase__ :str="gelu" , UpperCamelCase__ :int=0.1 , UpperCamelCase__ :Union[str, Any]=0.1 , UpperCamelCase__ :List[Any]=[1, 2, 3, 4, 5] , UpperCamelCase__ :int=25 , UpperCamelCase__ :Any=5 , ): _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def SCREAMING_SNAKE_CASE_ ( self :Any ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :List[Any] ): _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self :List[Any] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :str ): _a = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() _a = model(**snake_case_ ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(snake_case_ ) _a = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) _a , _a , _a , _a , _a = model.create_network_inputs(**snake_case_ ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(snake_case_ ) _a = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) _a = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __snake_case ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ : str = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Tuple = False def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :int ): _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _a , _a = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["missing_keys"] , [] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): pass def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = inspect.signature(getattr(snake_case_ , "forward" ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( self :str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , "seq_length" , snake_case_ ) _a = getattr(self.model_tester , "decoder_seq_length" , snake_case_ ) _a = getattr(self.model_tester , "encoder_seq_length" , snake_case_ ) _a = getattr(self.model_tester , "d_model" , snake_case_ ) _a = getattr(self.model_tester , "num_attention_heads" , snake_case_ ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(snake_case_ ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self :int ): super().test_retain_grad_hidden_states_attentions() def __a ( a="train-batch.pt" ): """simple docstring""" _a = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch", filename=_SCREAMING_SNAKE_CASE, repo_type="dataset" ) _a = torch.load(_SCREAMING_SNAKE_CASE, map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _a = prepare_batch("val-batch.pt" ) with torch.no_grad(): _a = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _a = prepare_batch("val-batch.pt" ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=snake_case_ ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1E-1 ) )
388
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=snake_case_ , dtype=jnp.bfloataa ) __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=snake_case_ , from_pt=snake_case_ , dtype=jnp.bfloataa ) __lowerCAmelCase : Tuple = controlnet_params __lowerCAmelCase : Union[str, Any] = '''bird''' __lowerCAmelCase : Dict = jax.device_count() __lowerCAmelCase : Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCAmelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __lowerCAmelCase : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) __lowerCAmelCase : List[str] = jax.random.PRNGKey(0 ) __lowerCAmelCase : Tuple = jax.random.split(snake_case_ , jax.device_count() ) __lowerCAmelCase : Union[str, Any] = replicate(snake_case_ ) __lowerCAmelCase : Optional[Any] = shard(snake_case_ ) __lowerCAmelCase : Tuple = shard(snake_case_ ) __lowerCAmelCase : Tuple = pipe( prompt_ids=snake_case_ , image=snake_case_ , params=snake_case_ , prng_seed=snake_case_ , num_inference_steps=50 , jit=snake_case_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __lowerCAmelCase : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : Union[str, Any] = images[0, 253:256, 253:256, -1] __lowerCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : Union[str, Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=snake_case_ , dtype=jnp.bfloataa ) __lowerCAmelCase, __lowerCAmelCase : List[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=snake_case_ , from_pt=snake_case_ , dtype=jnp.bfloataa ) __lowerCAmelCase : Optional[Any] = controlnet_params __lowerCAmelCase : List[str] = '''Chef in the kitchen''' __lowerCAmelCase : Union[str, Any] = jax.device_count() __lowerCAmelCase : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCAmelCase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __lowerCAmelCase : Optional[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) __lowerCAmelCase : int = jax.random.PRNGKey(0 ) __lowerCAmelCase : Tuple = jax.random.split(snake_case_ , jax.device_count() ) __lowerCAmelCase : Optional[Any] = replicate(snake_case_ ) __lowerCAmelCase : Dict = shard(snake_case_ ) __lowerCAmelCase : Dict = shard(snake_case_ ) __lowerCAmelCase : Optional[Any] = pipe( prompt_ids=snake_case_ , image=snake_case_ , params=snake_case_ , prng_seed=snake_case_ , num_inference_steps=50 , jit=snake_case_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : int = images[0, 253:256, 253:256, -1] __lowerCAmelCase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
492
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __snake_case : _a : Union[str, Any]= None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase : List[str] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Tuple = os.path.join(snake_case_ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(snake_case_ ) lowercase : Optional[Any] = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Tuple = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) lowercase : Dict = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
336
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } a = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_SCREAMING_SNAKE_CASE ) < 1_1: raise ValueError('''Must be 10 characters long''' ) # Get month a = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''' ) a = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day a = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator a = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year a = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation a = datetime.date(int(_SCREAMING_SNAKE_CASE ), int(_SCREAMING_SNAKE_CASE ), int(_SCREAMING_SNAKE_CASE ) ) # Start math if m <= 2: a = y - 1 a = m + 1_2 # maths var a = int(str(_SCREAMING_SNAKE_CASE )[:2] ) a = int(str(_SCREAMING_SNAKE_CASE )[2:] ) a = int(2.6 * m - 5.39 ) a = int(c / 4 ) a = int(k / 4 ) a = int(d + k ) a = int(t + u + v + x ) a = int(z - (2 * c) ) a = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response a = f"""Your date {date_input}, is a {days[str(_SCREAMING_SNAKE_CASE )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Tuple = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) UpperCamelCase__ : Tuple = parser.parse_args() zeller(args.date_input)
387
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" _UpperCAmelCase = '''''' _UpperCAmelCase = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _UpperCAmelCase , _UpperCAmelCase = 0, 0 # length[i] shows the length of palindromic substring with center i _UpperCAmelCase = [1 for i in range(len(_SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string _UpperCAmelCase = 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _UpperCAmelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _UpperCAmelCase = j - k + 1 # noqa: E741 _UpperCAmelCase = j + k - 1 # update max_length and start position if max_length < length[j]: _UpperCAmelCase = length[j] _UpperCAmelCase = j # create that string _UpperCAmelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
602
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> Tuple: _snake_case = original_name.split('''.''' )[0] _snake_case = key.split('''.''' ) _snake_case = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 2] ) _snake_case = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 1] ) _snake_case = orig_block_num - offset _snake_case = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> Optional[Any]: _snake_case = OrderedDict() _snake_case , _snake_case = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _snake_case = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _snake_case = key[: key.find('''proj''' )] _snake_case = key.replace(_SCREAMING_SNAKE_CASE , f'''patch_embeddings.{total_embed_found}.''' ) _snake_case = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _snake_case = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: _snake_case = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: _snake_case = key.replace('''head''' , '''classifier''' ) _snake_case = value return new_state_dict def _UpperCAmelCase ( ) -> List[Any]: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: _snake_case = PoolFormerConfig() # set attributes based on model_name _snake_case = '''huggingface/label-files''' _snake_case = model_name[-3:] _snake_case = 10_00 _snake_case = '''imagenet-1k-id2label.json''' _snake_case = (1, 10_00) # set config attributes _snake_case = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _snake_case = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} if size == "s12": _snake_case = [2, 2, 6, 2] _snake_case = [64, 1_28, 3_20, 5_12] _snake_case = 4.0 _snake_case = 0.9 elif size == "s24": _snake_case = [4, 4, 12, 4] _snake_case = [64, 1_28, 3_20, 5_12] _snake_case = 4.0 _snake_case = 0.9 elif size == "s36": _snake_case = [6, 6, 18, 6] _snake_case = [64, 1_28, 3_20, 5_12] _snake_case = 4.0 _snake_case = 1E-6 _snake_case = 0.9 elif size == "m36": _snake_case = [6, 6, 18, 6] _snake_case = [96, 1_92, 3_84, 7_68] _snake_case = 4.0 _snake_case = 1E-6 _snake_case = 0.95 elif size == "m48": _snake_case = [8, 8, 24, 8] _snake_case = [96, 1_92, 3_84, 7_68] _snake_case = 4.0 _snake_case = 1E-6 _snake_case = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor _snake_case = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) # Prepare image _snake_case = prepare_img() _snake_case = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys _snake_case = rename_keys(_SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict _snake_case = PoolFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # Define image processor _snake_case = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) _snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass _snake_case = model(_SCREAMING_SNAKE_CASE ) _snake_case = outputs.logits # define expected logit slices for different models if size == "s12": _snake_case = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _snake_case = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _snake_case = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _snake_case = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _snake_case = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
def lowerCamelCase__ ( _a = 100): SCREAMING_SNAKE_CASE : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 SCREAMING_SNAKE_CASE : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares) if __name__ == "__main__": print(F'''{solution() = }''')
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0