code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import numpy as np
UpperCamelCase_ = [
["a", "b", "c", "d", "e"],
["f", "g", "h", "i", "k"],
["l", "m", "n", "o", "p"],
["q", "r", "s", "t", "u"],
["v", "w", "x", "y", "z"],
]
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = np.array(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = np.where(letter == self.SQUARE )
SCREAMING_SNAKE_CASE : List[Any] = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = message.lower()
SCREAMING_SNAKE_CASE : List[Any] = message.replace(' ', '' )
SCREAMING_SNAKE_CASE : Optional[int] = message.replace('j', 'i' )
SCREAMING_SNAKE_CASE : Dict = np.empty((2, len(A )) )
for letter_index in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = self.letter_to_numbers(message[letter_index] )
SCREAMING_SNAKE_CASE : Tuple = numbers[0]
SCREAMING_SNAKE_CASE : str = numbers[1]
SCREAMING_SNAKE_CASE : Any = first_step.reshape(2 * len(A ) )
SCREAMING_SNAKE_CASE : Tuple = ''
for numbers_index in range(len(A ) ):
SCREAMING_SNAKE_CASE : List[Any] = int(second_step[numbers_index * 2] )
SCREAMING_SNAKE_CASE : Dict = int(second_step[(numbers_index * 2) + 1] )
SCREAMING_SNAKE_CASE : Optional[Any] = self.numbers_to_letter(A, A )
SCREAMING_SNAKE_CASE : Dict = encoded_message + letter
return encoded_message
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = message.lower()
message.replace(' ', '' )
SCREAMING_SNAKE_CASE : int = np.empty(2 * len(A ) )
for letter_index in range(len(A ) ):
SCREAMING_SNAKE_CASE : Tuple = self.letter_to_numbers(message[letter_index] )
SCREAMING_SNAKE_CASE : str = numbers[0]
SCREAMING_SNAKE_CASE : Dict = numbers[1]
SCREAMING_SNAKE_CASE : str = first_step.reshape((2, len(A )) )
SCREAMING_SNAKE_CASE : Any = ''
for numbers_index in range(len(A ) ):
SCREAMING_SNAKE_CASE : Any = int(second_step[0, numbers_index] )
SCREAMING_SNAKE_CASE : Union[str, Any] = int(second_step[1, numbers_index] )
SCREAMING_SNAKE_CASE : Any = self.numbers_to_letter(A, A )
SCREAMING_SNAKE_CASE : Dict = decoded_message + letter
return decoded_message
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCamelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["BartphoTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_longformer": [
"LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"LongformerConfig",
"LongformerOnnxConfig",
],
"tokenization_longformer": ["LongformerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["LongformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongformerForMaskedLM",
"LongformerForMultipleChoice",
"LongformerForQuestionAnswering",
"LongformerForSequenceClassification",
"LongformerForTokenClassification",
"LongformerModel",
"LongformerPreTrainedModel",
"LongformerSelfAttention",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLongformerForMaskedLM",
"TFLongformerForMultipleChoice",
"TFLongformerForQuestionAnswering",
"TFLongformerForSequenceClassification",
"TFLongformerForTokenClassification",
"TFLongformerModel",
"TFLongformerPreTrainedModel",
"TFLongformerSelfAttention",
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
from math import ceil, sqrt
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for outer_width in range(3 ,(limit // 4) + 2 ):
if outer_width**2 > limit:
SCREAMING_SNAKE_CASE : Tuple = max(ceil(sqrt(outer_width**2 - limit ) ) ,1 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class _a ( yaml.SafeLoader ):
'''simple docstring'''
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [self.constructed_objects[key_node] for key_node, _ in node.value]
SCREAMING_SNAKE_CASE : List[Any] = [tuple(A ) if isinstance(A, A ) else key for key in keys]
SCREAMING_SNAKE_CASE : List[str] = Counter(A )
SCREAMING_SNAKE_CASE : Tuple = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" )
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = super().construct_mapping(A, deep=A )
self._check_no_duplicates_on_constructed_node(A )
return mapping
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
SCREAMING_SNAKE_CASE : Any = full_content[1:].index('---' ) + 1
SCREAMING_SNAKE_CASE : Tuple = '\n'.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(__UpperCamelCase )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Optional[Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata
@classmethod
def UpperCamelCase_ ( cls, A ):
'''simple docstring'''
with open(A, encoding='utf-8' ) as readme_file:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(A )
else:
return cls()
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if path.exists():
with open(A, encoding='utf-8' ) as readme_file:
SCREAMING_SNAKE_CASE : Optional[Any] = readme_file.read()
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : List[str] = self._to_readme(A )
with open(A, 'w', encoding='utf-8' ) as readme_file:
readme_file.write(A )
def UpperCamelCase_ ( self, A = None ):
'''simple docstring'''
if readme_content is not None:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = _split_yaml_from_readme(A )
SCREAMING_SNAKE_CASE : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' + content
else:
SCREAMING_SNAKE_CASE : Any = '---\n' + self.to_yaml_string() + '---\n'
return full_content
@classmethod
def UpperCamelCase_ ( cls, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = yaml.load(A, Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
SCREAMING_SNAKE_CASE : Union[str, Any] = {
(key.replace('-', '_' ) if key.replace('-', '_' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return yaml.safe_dump(
{
(key.replace('_', '-' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
}, sort_keys=A, allow_unicode=A, encoding='utf-8', ).decode('utf-8' )
UpperCamelCase_ = {
"image-classification": [],
"translation": [],
"image-segmentation": [],
"fill-mask": [],
"automatic-speech-recognition": [],
"token-classification": [],
"sentence-similarity": [],
"audio-classification": [],
"question-answering": [],
"summarization": [],
"zero-shot-classification": [],
"table-to-text": [],
"feature-extraction": [],
"other": [],
"multiple-choice": [],
"text-classification": [],
"text-to-image": [],
"text2text-generation": [],
"zero-shot-image-classification": [],
"tabular-classification": [],
"tabular-regression": [],
"image-to-image": [],
"tabular-to-text": [],
"unconditional-image-generation": [],
"text-retrieval": [],
"text-to-speech": [],
"object-detection": [],
"audio-to-audio": [],
"text-generation": [],
"conversational": [],
"table-question-answering": [],
"visual-question-answering": [],
"image-to-text": [],
"reinforcement-learning": [],
"voice-activity-detection": [],
"time-series-forecasting": [],
"document-question-answering": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
UpperCamelCase_ = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.")
ap.add_argument("readme_filepath")
UpperCamelCase_ = ap.parse_args()
UpperCamelCase_ = Path(args.readme_filepath)
UpperCamelCase_ = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Optional[Any] = VideoToVideoSDPipeline
A : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''}
A : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''}
A : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : Optional[Any] = False
# No `output_type`.
A : Tuple = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'), up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'), cross_attention_dim=32, attention_head_dim=4, )
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : List[Any] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 3, 32, 32), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = VideoToVideoSDPipeline(**A )
SCREAMING_SNAKE_CASE : int = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = 'np'
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**A ).frames
SCREAMING_SNAKE_CASE : Tuple = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A, expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL', torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device='cpu' ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = torch.randn((1, 10, 3, 1_024, 576), generator=A )
SCREAMING_SNAKE_CASE : Dict = video.to('cuda' )
SCREAMING_SNAKE_CASE : Tuple = 'Spiderman is surfing'
SCREAMING_SNAKE_CASE : int = pipe(A, video=A, generator=A, num_inference_steps=3, output_type='pt' ).frames
SCREAMING_SNAKE_CASE : Dict = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [1]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = 0, 0, 0
SCREAMING_SNAKE_CASE : Dict = ugly_nums[ia] * 2
SCREAMING_SNAKE_CASE : Optional[int] = ugly_nums[ia] * 3
SCREAMING_SNAKE_CASE : Any = ugly_nums[ia] * 5
for _ in range(1 ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : int = min(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
ugly_nums.append(__UpperCamelCase )
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE : Tuple = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE : Dict = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F"""{ugly_numbers(2_0_0) = }""")
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
UpperCamelCase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str ,__UpperCamelCase: int ):
"""simple docstring"""
if got_ver is None or want_ver is None:
raise ValueError(
f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"
f" reinstalling {pkg}." )
if not ops[op](version.parse(__UpperCamelCase ) ,version.parse(__UpperCamelCase ) ):
raise ImportError(
f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Optional[str] = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = f"\n{hint}" if hint is not None else ''
# non-versioned check
if re.match(r'^[\w_\-\d]+$' ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = requirement, None, None
else:
SCREAMING_SNAKE_CASE : List[Any] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' ,__UpperCamelCase )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'
f" got {requirement}" )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = match[0]
SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(',' ) # there could be multiple requirements
SCREAMING_SNAKE_CASE : List[str] = {}
for w in want_range:
SCREAMING_SNAKE_CASE : List[Any] = re.findall(r'^([\s!=<>]{1,2})(.+)' ,__UpperCamelCase )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'
f" but got {requirement}" )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = match[0]
SCREAMING_SNAKE_CASE : Optional[int] = want_ver
if op not in ops:
raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" )
# special case
if pkg == "python":
SCREAMING_SNAKE_CASE : Dict = '.'.join([str(__UpperCamelCase ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
return
# check if any version is installed
try:
SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.metadata.version(__UpperCamelCase )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f"The '{requirement}' distribution was not found and is required by this application. {hint}" )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'
return require_version(__UpperCamelCase ,__UpperCamelCase )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = ArgumentParser('Transformers CLI tool' ,usage='transformers-cli <command> [<args>]' )
SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_subparsers(help='transformers-cli command helpers' )
# Register commands
ConvertCommand.register_subcommand(__UpperCamelCase )
DownloadCommand.register_subcommand(__UpperCamelCase )
EnvironmentCommand.register_subcommand(__UpperCamelCase )
RunCommand.register_subcommand(__UpperCamelCase )
ServeCommand.register_subcommand(__UpperCamelCase )
UserCommands.register_subcommand(__UpperCamelCase )
AddNewModelCommand.register_subcommand(__UpperCamelCase )
AddNewModelLikeCommand.register_subcommand(__UpperCamelCase )
LfsCommands.register_subcommand(__UpperCamelCase )
PTtoTFCommand.register_subcommand(__UpperCamelCase )
# Let's go
SCREAMING_SNAKE_CASE : int = parser.parse_args()
if not hasattr(__UpperCamelCase ,'func' ):
parser.print_help()
exit(1 )
# Run
SCREAMING_SNAKE_CASE : List[str] = args.func(__UpperCamelCase )
service.run()
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(A ):
SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A, A )
SCREAMING_SNAKE_CASE : Tuple = FlaxAutoModel.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A, A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(A ):
SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A, A )
SCREAMING_SNAKE_CASE : str = FlaxAutoModel.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A, A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(A )
SCREAMING_SNAKE_CASE : List[str] = FlaxBertModel.from_pretrained(A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX )
@jax.jit
def eval(**A ):
return model(**A )
eval(**A ).block_until_ready()
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = FlaxRobertaModel.from_pretrained(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX )
@jax.jit
def eval(**A ):
return model(**A )
eval(**A ).block_until_ready()
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
A, 'bert-base is not a local folder and is not a valid model identifier' ):
SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('bert-base' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
A, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained(A, revision='aaaaaa' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
A, 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack', ):
SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(A, 'Use `from_pt=True` to load this model' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class _a ( logging.LoggerAdapter ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self, A, A, *A, **A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
SCREAMING_SNAKE_CASE : int = kwargs.pop('main_process_only', A )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('in_order', A )
if self.isEnabledFor(A ):
if self._should_log(A ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.process(A, A )
self.logger.log(A, A, *A, **A )
elif in_order:
SCREAMING_SNAKE_CASE : List[str] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.process(A, A )
self.logger.log(A, A, *A, **A )
state.wait_for_everyone()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str = None ):
"""simple docstring"""
if log_level is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__UpperCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__UpperCamelCase ,{} )
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = '''roformer'''
def __init__( self, A=50_000, A=None, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=1_536, A=2, A=0.02, A=1E-12, A=0, A=False, A=True, **A, ):
'''simple docstring'''
super().__init__(pad_token_id=A, **A )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE : Any = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE : str = hidden_dropout_prob
SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE : List[str] = type_vocab_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps
SCREAMING_SNAKE_CASE : Tuple = rotary_value
SCREAMING_SNAKE_CASE : str = use_cache
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'sequence'}
SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
import os
import sys
import unittest
UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase_ = os.path.join(git_repo_path, "src", "diffusers")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = find_backend(' if not is_torch_available():' )
self.assertEqual(A, 'torch' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
SCREAMING_SNAKE_CASE : Dict = find_backend(' if not (is_torch_available() and is_transformers_available()):' )
self.assertEqual(A, 'torch_and_transformers' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
SCREAMING_SNAKE_CASE : Dict = find_backend(
' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' )
self.assertEqual(A, 'torch_and_transformers_and_onnx' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch', A )
self.assertIn('torch_and_transformers', A )
self.assertIn('flax_and_transformers', A )
self.assertIn('torch_and_transformers_and_onnx', A )
# Likewise, we can't assert on the exact content of a key
self.assertIn('UNet2DModel', objects['torch'] )
self.assertIn('FlaxUNet2DConditionModel', objects['flax'] )
self.assertIn('StableDiffusionPipeline', objects['torch_and_transformers'] )
self.assertIn('FlaxStableDiffusionPipeline', objects['flax_and_transformers'] )
self.assertIn('LMSDiscreteScheduler', objects['torch_and_scipy'] )
self.assertIn('OnnxStableDiffusionPipeline', objects['torch_and_transformers_and_onnx'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = create_dummy_object('CONSTANT', '\'torch\'' )
self.assertEqual(A, '\nCONSTANT = None\n' )
SCREAMING_SNAKE_CASE : Any = create_dummy_object('function', '\'torch\'' )
self.assertEqual(
A, '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
SCREAMING_SNAKE_CASE : str = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n'
SCREAMING_SNAKE_CASE : Any = create_dummy_object('FakeClass', '\'torch\'' )
self.assertEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n'
SCREAMING_SNAKE_CASE : Tuple = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'], A )
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = '''segformer'''
def __init__( self, A=3, A=4, A=[2, 2, 2, 2], A=[8, 4, 2, 1], A=[32, 64, 160, 256], A=[7, 3, 3, 3], A=[4, 2, 2, 2], A=[1, 2, 5, 8], A=[4, 4, 4, 4], A="gelu", A=0.0, A=0.0, A=0.1, A=0.02, A=0.1, A=1E-6, A=256, A=255, **A, ):
'''simple docstring'''
super().__init__(**A )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.', A, )
SCREAMING_SNAKE_CASE : Optional[int] = num_channels
SCREAMING_SNAKE_CASE : Optional[int] = num_encoder_blocks
SCREAMING_SNAKE_CASE : int = depths
SCREAMING_SNAKE_CASE : List[Any] = sr_ratios
SCREAMING_SNAKE_CASE : List[Any] = hidden_sizes
SCREAMING_SNAKE_CASE : List[str] = patch_sizes
SCREAMING_SNAKE_CASE : str = strides
SCREAMING_SNAKE_CASE : List[Any] = mlp_ratios
SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : int = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Any = drop_path_rate
SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
SCREAMING_SNAKE_CASE : List[Any] = decoder_hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get('reshape_last_stage', A )
SCREAMING_SNAKE_CASE : List[str] = semantic_loss_ignore_index
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Optional[int] = version.parse('''1.11''' )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return 1E-4
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return 12
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : torch.FloatTensor
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@register_to_config
def __init__( self, A = 16, A = 88, A = None, A = None, A = 1, A = 0.0, A = 32, A = None, A = False, A = None, A = "geglu", A = True, A = True, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = num_attention_heads
SCREAMING_SNAKE_CASE : List[str] = attention_head_dim
SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim
SCREAMING_SNAKE_CASE : List[str] = in_channels
SCREAMING_SNAKE_CASE : Tuple = torch.nn.GroupNorm(num_groups=A, num_channels=A, eps=1E-6, affine=A )
SCREAMING_SNAKE_CASE : Dict = nn.Linear(A, A )
# 3. Define transformers blocks
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList(
[
BasicTransformerBlock(
A, A, A, dropout=A, cross_attention_dim=A, activation_fn=A, attention_bias=A, double_self_attention=A, norm_elementwise_affine=A, )
for d in range(A )
] )
SCREAMING_SNAKE_CASE : Any = nn.Linear(A, A )
def UpperCamelCase_ ( self, A, A=None, A=None, A=None, A=1, A=None, A = True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.shape
SCREAMING_SNAKE_CASE : Any = batch_frames // num_frames
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states
SCREAMING_SNAKE_CASE : str = hidden_states[None, :].reshape(A, A, A, A, A )
SCREAMING_SNAKE_CASE : Any = hidden_states.permute(0, 2, 1, 3, 4 )
SCREAMING_SNAKE_CASE : Any = self.norm(A )
SCREAMING_SNAKE_CASE : Dict = hidden_states.permute(0, 3, 4, 2, 1 ).reshape(batch_size * height * width, A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_in(A )
# 2. Blocks
for block in self.transformer_blocks:
SCREAMING_SNAKE_CASE : Optional[Any] = block(
A, encoder_hidden_states=A, timestep=A, cross_attention_kwargs=A, class_labels=A, )
# 3. Output
SCREAMING_SNAKE_CASE : List[Any] = self.proj_out(A )
SCREAMING_SNAKE_CASE : str = (
hidden_states[None, None, :]
.reshape(A, A, A, A, A )
.permute(0, 3, 4, 1, 2 )
.contiguous()
)
SCREAMING_SNAKE_CASE : Any = hidden_states.reshape(A, A, A, A )
SCREAMING_SNAKE_CASE : Tuple = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=A )
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=128, A=32, A=16, A=2, A=0.02, A=3, A=4, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : List[Any] = seq_length
SCREAMING_SNAKE_CASE : List[Any] = is_training
SCREAMING_SNAKE_CASE : Any = use_input_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : int = use_labels
SCREAMING_SNAKE_CASE : Tuple = vocab_size
SCREAMING_SNAKE_CASE : Dict = hidden_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Any = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = type_vocab_size
SCREAMING_SNAKE_CASE : int = type_sequence_label_size
SCREAMING_SNAKE_CASE : Any = initializer_range
SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels
SCREAMING_SNAKE_CASE : str = num_choices
SCREAMING_SNAKE_CASE : str = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
SCREAMING_SNAKE_CASE : int = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : int = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size], self.num_choices )
SCREAMING_SNAKE_CASE : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return NezhaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Union[str, Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = NezhaModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, token_type_ids=A )
SCREAMING_SNAKE_CASE : Dict = model(A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A, A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : Union[str, Any] = NezhaModel(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(
A, attention_mask=A, token_type_ids=A, encoder_hidden_states=A, encoder_attention_mask=A, )
SCREAMING_SNAKE_CASE : List[str] = model(
A, attention_mask=A, token_type_ids=A, encoder_hidden_states=A, )
SCREAMING_SNAKE_CASE : Tuple = model(A, attention_mask=A, token_type_ids=A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = NezhaForMaskedLM(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = NezhaForNextSentencePrediction(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(
A, attention_mask=A, token_type_ids=A, labels=A, )
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = NezhaForPreTraining(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : int = model(
A, attention_mask=A, token_type_ids=A, labels=A, next_sentence_label=A, )
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = NezhaForQuestionAnswering(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(
A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : Dict = NezhaForSequenceClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.num_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = NezhaForTokenClassification(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : int = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.num_choices
SCREAMING_SNAKE_CASE : str = NezhaForMultipleChoice(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : List[Any] = model(
A, attention_mask=A, token_type_ids=A, labels=A, )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : List[Any] = config_and_inputs
SCREAMING_SNAKE_CASE : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
A : List[str] = (
{
'''feature-extraction''': NezhaModel,
'''fill-mask''': NezhaForMaskedLM,
'''question-answering''': NezhaForQuestionAnswering,
'''text-classification''': NezhaForSequenceClassification,
'''token-classification''': NezhaForTokenClassification,
'''zero-shot''': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
A : List[str] = True
def UpperCamelCase_ ( self, A, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = super()._prepare_for_class(A, A, return_labels=A )
if return_labels:
if model_class in get_values(A ):
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=A )
SCREAMING_SNAKE_CASE : str = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=A )
return inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = NezhaModelTester(self )
SCREAMING_SNAKE_CASE : Any = ConfigTester(self, config_class=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
SCREAMING_SNAKE_CASE : int = None
self.model_tester.create_and_check_model_as_decoder(
A, A, A, A, A, A, A, A, A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[int] = NezhaModel.from_pretrained(A )
self.assertIsNotNone(A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
SCREAMING_SNAKE_CASE : int = True
SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=A )
SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(A, A )
SCREAMING_SNAKE_CASE : Tuple = torch.jit.trace(
A, (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(A, os.path.join(A, 'bert.pt' ) )
SCREAMING_SNAKE_CASE : int = torch.jit.load(os.path.join(A, 'bert.pt' ), map_location=A )
loaded(inputs_dict['input_ids'].to(A ), inputs_dict['attention_mask'].to(A ) )
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = model(A, attention_mask=A )[0]
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 6, 768) )
self.assertEqual(output.shape, A )
SCREAMING_SNAKE_CASE : Any = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[int] = model(A, attention_mask=A )[0]
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 6, 21_128) )
self.assertEqual(output.shape, A )
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = "▁"
UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model"}
UpperCamelCase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCamelCase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
UpperCamelCase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[str] = PRETRAINED_VOCAB_FILES_MAP
A : Dict = ['''input_ids''', '''attention_mask''']
A : List[int] = []
A : List[int] = []
def __init__( self, A, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, A = None, A=None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token
SCREAMING_SNAKE_CASE : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A, eos_token=A, unk_token=A, sep_token=A, cls_token=A, pad_token=A, mask_token=A, tokenizer_file=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, sp_model_kwargs=self.sp_model_kwargs, **A, )
SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
SCREAMING_SNAKE_CASE : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE : Optional[Any] = 1
SCREAMING_SNAKE_CASE : Dict = len(self.sp_model )
SCREAMING_SNAKE_CASE : Optional[Any] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A )
}
SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()}
SCREAMING_SNAKE_CASE : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
SCREAMING_SNAKE_CASE : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
SCREAMING_SNAKE_CASE : Tuple = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else 'en_XX'
SCREAMING_SNAKE_CASE : Tuple = self.lang_code_to_id[self._src_lang]
SCREAMING_SNAKE_CASE : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
SCREAMING_SNAKE_CASE : Tuple = {}
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def UpperCamelCase_ ( self, A, A = None, A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A, token_ids_a=A, already_has_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1] * len(self.prefix_tokens )
SCREAMING_SNAKE_CASE : int = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(A )) + suffix_ones
return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self, A, A, A, A, **A ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
SCREAMING_SNAKE_CASE : int = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(A, add_special_tokens=A, return_tensors=A, **A )
SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : int = tgt_lang_id
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.encode(A, out_type=A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.PieceToId(A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = ''.join(A ).replace(A, ' ' ).strip()
return out_string
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
if not os.path.isdir(A ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE : Dict = os.path.join(
A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, A )
elif not os.path.isfile(self.vocab_file ):
with open(A, 'wb' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self, A, A = "en_XX", A = None, A = "ro_RO", **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = src_lang
SCREAMING_SNAKE_CASE : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(A, A, **A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.lang_code_to_id[src_lang]
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : int = [self.eos_token_id, self.cur_lang_code]
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[lang]
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Dict = [self.eos_token_id, self.cur_lang_code]
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import numpy as np
import datasets
UpperCamelCase_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
UpperCamelCase_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
UpperCamelCase_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'X': datasets.Sequence(datasets.Value('float', id='sequence' ), id='X' ),
} ), )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = np.array(A )
SCREAMING_SNAKE_CASE : Tuple = np.array(A )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('Expected `X` to be a 2D vector' )
if len(reference_distribution.shape ) != 2:
raise ValueError('Expected `reference_distribution` to be a 2D vector' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' )
# Get mahalanobis distance for each prediction
SCREAMING_SNAKE_CASE : Any = X - np.mean(A )
SCREAMING_SNAKE_CASE : str = np.cov(reference_distribution.T )
try:
SCREAMING_SNAKE_CASE : str = np.linalg.inv(A )
except np.linalg.LinAlgError:
SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.pinv(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.dot(A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.dot(A, X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
assert x is not None
assert y is not None
SCREAMING_SNAKE_CASE : Dict = len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = len(__UpperCamelCase )
# declaring the array for storing the dp values
SCREAMING_SNAKE_CASE : Optional[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 ,m + 1 ):
for j in range(1 ,n + 1 ):
SCREAMING_SNAKE_CASE : Dict = 1 if x[i - 1] == y[j - 1] else 0
SCREAMING_SNAKE_CASE : List[Any] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match )
SCREAMING_SNAKE_CASE : Dict = ''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = m, n
while i > 0 and j > 0:
SCREAMING_SNAKE_CASE : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
SCREAMING_SNAKE_CASE : List[Any] = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
UpperCamelCase_ = "AGGTAB"
UpperCamelCase_ = "GXTXAYB"
UpperCamelCase_ = 4
UpperCamelCase_ = "GTAB"
UpperCamelCase_ , UpperCamelCase_ = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ = {
"configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
"LiltForQuestionAnswering",
"LiltForSequenceClassification",
"LiltForTokenClassification",
"LiltModel",
"LiltPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
UpperCamelCase_ = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
UpperCamelCase_ = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
UpperCamelCase_ = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
UpperCamelCase_ = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
UpperCamelCase_ = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
UpperCamelCase_ = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
UpperCamelCase_ = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
UpperCamelCase_ = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
UpperCamelCase_ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
UpperCamelCase_ = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
UpperCamelCase_ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
UpperCamelCase_ = []
UpperCamelCase_ = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
UpperCamelCase_ = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
UpperCamelCase_ = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
UpperCamelCase_ = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Tuple ):
"""simple docstring"""
for attribute in key.split('.' ):
SCREAMING_SNAKE_CASE : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase )
if weight_type is not None:
SCREAMING_SNAKE_CASE : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase ).shape
else:
SCREAMING_SNAKE_CASE : Optional[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
SCREAMING_SNAKE_CASE : int = value
elif weight_type == "weight_g":
SCREAMING_SNAKE_CASE : Dict = value
elif weight_type == "weight_v":
SCREAMING_SNAKE_CASE : List[str] = value
elif weight_type == "bias":
SCREAMING_SNAKE_CASE : str = value
elif weight_type == "running_mean":
SCREAMING_SNAKE_CASE : Union[str, Any] = value
elif weight_type == "running_var":
SCREAMING_SNAKE_CASE : Union[str, Any] = value
elif weight_type == "num_batches_tracked":
SCREAMING_SNAKE_CASE : Optional[Any] = value
else:
SCREAMING_SNAKE_CASE : Any = value
logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." )
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: str ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = []
if task == "s2t":
SCREAMING_SNAKE_CASE : int = hf_model.speechta.encoder.prenet.feature_encoder
SCREAMING_SNAKE_CASE : str = MAPPING_S2T
SCREAMING_SNAKE_CASE : List[str] = IGNORE_KEYS_S2T
elif task == "t2s":
SCREAMING_SNAKE_CASE : Dict = None
SCREAMING_SNAKE_CASE : Tuple = MAPPING_T2S
SCREAMING_SNAKE_CASE : str = IGNORE_KEYS_T2S
elif task == "s2s":
SCREAMING_SNAKE_CASE : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder
SCREAMING_SNAKE_CASE : List[str] = MAPPING_S2S
SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_S2S
else:
raise ValueError(f"Unsupported task: {task}" )
for name, value in fairseq_dict.items():
if should_ignore(__UpperCamelCase ,__UpperCamelCase ):
logger.info(f"{name} was ignored" )
continue
SCREAMING_SNAKE_CASE : str = False
if "conv_layers" in name:
load_conv_layer(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == 'group' ,)
SCREAMING_SNAKE_CASE : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = key.split('.*.' )
if prefix in name and suffix in name:
SCREAMING_SNAKE_CASE : Optional[int] = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
SCREAMING_SNAKE_CASE : int = True
if "*" in mapped_key:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(__UpperCamelCase )[0].split('.' )[-2]
SCREAMING_SNAKE_CASE : Tuple = mapped_key.replace('*' ,__UpperCamelCase )
if "weight_g" in name:
SCREAMING_SNAKE_CASE : str = 'weight_g'
elif "weight_v" in name:
SCREAMING_SNAKE_CASE : Any = 'weight_v'
elif "bias" in name:
SCREAMING_SNAKE_CASE : Any = 'bias'
elif "weight" in name:
SCREAMING_SNAKE_CASE : Any = 'weight'
elif "running_mean" in name:
SCREAMING_SNAKE_CASE : Tuple = 'running_mean'
elif "running_var" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = 'running_var'
elif "num_batches_tracked" in name:
SCREAMING_SNAKE_CASE : Dict = 'num_batches_tracked'
else:
SCREAMING_SNAKE_CASE : Tuple = None
set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
continue
if not is_used:
unused_weights.append(__UpperCamelCase )
logger.warning(f"Unused weights: {unused_weights}" )
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: List[Any] ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = full_name.split('conv_layers.' )[-1]
SCREAMING_SNAKE_CASE : int = name.split('.' )
SCREAMING_SNAKE_CASE : Any = int(items[0] )
SCREAMING_SNAKE_CASE : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
SCREAMING_SNAKE_CASE : str = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
SCREAMING_SNAKE_CASE : Union[str, Any] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
SCREAMING_SNAKE_CASE : Union[str, Any] = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
SCREAMING_SNAKE_CASE : List[Any] = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__UpperCamelCase )
@torch.no_grad()
def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: int=None ,__UpperCamelCase: Optional[Any]=None ,__UpperCamelCase: int=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : Any = SpeechTaConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaConfig()
if task == "s2t":
SCREAMING_SNAKE_CASE : Optional[Any] = config.max_text_positions
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForSpeechToText(__UpperCamelCase )
elif task == "t2s":
SCREAMING_SNAKE_CASE : Optional[Any] = 18_76
SCREAMING_SNAKE_CASE : Optional[int] = 6_00
SCREAMING_SNAKE_CASE : List[Any] = config.max_speech_positions
SCREAMING_SNAKE_CASE : List[str] = SpeechTaForTextToSpeech(__UpperCamelCase )
elif task == "s2s":
SCREAMING_SNAKE_CASE : Optional[int] = 18_76
SCREAMING_SNAKE_CASE : int = config.max_speech_positions
SCREAMING_SNAKE_CASE : Any = SpeechTaForSpeechToSpeech(__UpperCamelCase )
else:
raise ValueError(f"Unknown task name: {task}" )
if vocab_path:
SCREAMING_SNAKE_CASE : Any = SpeechTaTokenizer(__UpperCamelCase ,model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : str = AddedToken('<mask>' ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE : Dict = SpeechTaProcessor(tokenizer=__UpperCamelCase ,feature_extractor=__UpperCamelCase )
processor.save_pretrained(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = torch.load(__UpperCamelCase )
recursively_load_weights(fairseq_checkpoint['model'] ,__UpperCamelCase ,__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(__UpperCamelCase )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
from math import isqrt
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 ,isqrt(__UpperCamelCase ) + 1 ) )
def lowercase__( __UpperCamelCase: int = 10**6 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = 0
SCREAMING_SNAKE_CASE : List[Any] = 1
SCREAMING_SNAKE_CASE : List[Any] = 7
while prime_candidate < max_prime:
primes_count += is_prime(__UpperCamelCase )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A = None, A = None, A = False, A = False, A = None, A = None, **A, ):
'''simple docstring'''
super().__init__(
features=A, cache_dir=A, keep_in_memory=A, streaming=A, num_proc=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = Generator(
cache_dir=A, features=A, generator=A, gen_kwargs=A, **A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE : Optional[Any] = self.builder.as_streaming_dataset(split='train' )
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
self.builder.download_and_prepare(
download_config=A, download_mode=A, verification_mode=A, base_path=A, num_proc=self.num_proc, )
SCREAMING_SNAKE_CASE : List[str] = self.builder.as_dataset(
split='train', verification_mode=A, in_memory=self.keep_in_memory )
return dataset
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
def lowercase__( __UpperCamelCase: Union[tf.Tensor, np.ndarray] ):
"""simple docstring"""
if isinstance(__UpperCamelCase ,np.ndarray ):
return list(tensor.shape )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.shape(__UpperCamelCase )
if tensor.shape == tf.TensorShape(__UpperCamelCase ):
return dynamic
SCREAMING_SNAKE_CASE : Union[str, Any] = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(__UpperCamelCase )]
def lowercase__( __UpperCamelCase: tf.Tensor ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[str] = None ):
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1e-9 ,axis=__UpperCamelCase ,name=__UpperCamelCase )
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: str ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[Any]=1e-5 ,__UpperCamelCase: Dict=-1 ):
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' )
# Get mean and variance on the axis to be normalized
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = tf.nn.moments(__UpperCamelCase ,axes=[axis] ,keepdims=__UpperCamelCase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
SCREAMING_SNAKE_CASE : Any = [1] * inputs.shape.rank
SCREAMING_SNAKE_CASE : str = shape_list(__UpperCamelCase )[axis]
SCREAMING_SNAKE_CASE : Optional[int] = tf.reshape(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = tf.reshape(__UpperCamelCase ,__UpperCamelCase )
# Compute layer normalization using the batch_normalization
# function.
SCREAMING_SNAKE_CASE : Optional[int] = tf.nn.batch_normalization(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,offset=__UpperCamelCase ,scale=__UpperCamelCase ,variance_epsilon=__UpperCamelCase ,)
return outputs
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str=0 ,__UpperCamelCase: Optional[Any]=-1 ):
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.shape(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
SCREAMING_SNAKE_CASE : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 )
return tf.reshape(__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: tf.Tensor ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,tf.Tensor ):
SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor(__UpperCamelCase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
SCREAMING_SNAKE_CASE : Tuple = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
SCREAMING_SNAKE_CASE : Dict = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
SCREAMING_SNAKE_CASE : Optional[int] = (
tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__( __UpperCamelCase: tf.Tensor ,__UpperCamelCase: int ,__UpperCamelCase: str = "input_ids" ):
"""simple docstring"""
tf.debugging.assert_less(
__UpperCamelCase ,tf.cast(__UpperCamelCase ,dtype=tensor.dtype ) ,message=(
f"The maximum value of {tensor_name} ({tf.math.reduce_max(__UpperCamelCase )}) must be smaller than the embedding "
f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."
) ,)
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = 6_45_12
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
SCREAMING_SNAKE_CASE : int = [x for x in data if len(__UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'The following attributes cannot be saved to HDF5 file because '
f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} "
f"bytes: {bad_attributes}" )
SCREAMING_SNAKE_CASE : List[str] = np.asarray(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : Tuple = np.array_split(__UpperCamelCase ,__UpperCamelCase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
SCREAMING_SNAKE_CASE : List[Any] = np.array_split(__UpperCamelCase ,__UpperCamelCase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = chunk_data
else:
SCREAMING_SNAKE_CASE : str = data
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if name in group.attrs:
SCREAMING_SNAKE_CASE : Union[str, Any] = [n.decode('utf8' ) if hasattr(__UpperCamelCase ,'decode' ) else n for n in group.attrs[name]]
else:
SCREAMING_SNAKE_CASE : List[Any] = []
SCREAMING_SNAKE_CASE : str = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8' ) if hasattr(__UpperCamelCase ,'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__( __UpperCamelCase: Optional[int] ):
"""simple docstring"""
def _expand_single_ad_tensor(__UpperCamelCase: int ):
if isinstance(__UpperCamelCase ,tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(__UpperCamelCase ,axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor ,__UpperCamelCase )
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
UpperCamelCase_ = input("Enter image url: ").strip()
print(F"""Downloading image from {url} ...""")
UpperCamelCase_ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
UpperCamelCase_ = soup.find("meta", {"property": "og:image"})["content"]
UpperCamelCase_ = requests.get(image_url).content
UpperCamelCase_ = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(F"""Done. Image saved to disk as {file_name}.""")
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
return [ord(__UpperCamelCase ) - 96 for elem in plain]
def lowercase__( __UpperCamelCase: list[int] ):
"""simple docstring"""
return "".join(chr(elem + 96 ) for elem in encoded )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = encode(input('-> ' ).strip().lower() )
print('Encoded: ' ,__UpperCamelCase )
print('Decoded:' ,decode(__UpperCamelCase ) )
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class _a ( nn.Module ):
'''simple docstring'''
A : int
A : jnp.dtype = jnp.floataa
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = nn.Conv(
self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, )
def __call__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.shape
SCREAMING_SNAKE_CASE : Optional[int] = jax.image.resize(
A, shape=(batch, height * 2, width * 2, channels), method='nearest', )
SCREAMING_SNAKE_CASE : Optional[int] = self.conv(A )
return hidden_states
class _a ( nn.Module ):
'''simple docstring'''
A : int
A : jnp.dtype = jnp.floataa
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = nn.Conv(
self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, )
def __call__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.conv(A )
return hidden_states
class _a ( nn.Module ):
'''simple docstring'''
A : int
A : int = None
A : float = 0.0
A : bool = None
A : jnp.dtype = jnp.floataa
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.in_channels if self.out_channels is None else self.out_channels
SCREAMING_SNAKE_CASE : Optional[Any] = nn.GroupNorm(num_groups=32, epsilon=1E-5 )
SCREAMING_SNAKE_CASE : int = nn.Conv(
A, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, )
SCREAMING_SNAKE_CASE : Tuple = nn.Dense(A, dtype=self.dtype )
SCREAMING_SNAKE_CASE : Dict = nn.GroupNorm(num_groups=32, epsilon=1E-5 )
SCREAMING_SNAKE_CASE : Any = nn.Dropout(self.dropout_prob )
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Conv(
A, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, )
SCREAMING_SNAKE_CASE : List[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
SCREAMING_SNAKE_CASE : Tuple = None
if use_nin_shortcut:
SCREAMING_SNAKE_CASE : str = nn.Conv(
A, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype, )
def __call__( self, A, A, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = hidden_states
SCREAMING_SNAKE_CASE : Optional[Any] = self.norma(A )
SCREAMING_SNAKE_CASE : Optional[Any] = nn.swish(A )
SCREAMING_SNAKE_CASE : Tuple = self.conva(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.time_emb_proj(nn.swish(A ) )
SCREAMING_SNAKE_CASE : int = jnp.expand_dims(jnp.expand_dims(A, 1 ), 1 )
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states + temb
SCREAMING_SNAKE_CASE : Optional[Any] = self.norma(A )
SCREAMING_SNAKE_CASE : List[str] = nn.swish(A )
SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(A, A )
SCREAMING_SNAKE_CASE : Any = self.conva(A )
if self.conv_shortcut is not None:
SCREAMING_SNAKE_CASE : str = self.conv_shortcut(A )
return hidden_states + residual
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase_ = {ord(char) for char in VALID_CHARS}
UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: tuple[int, ...] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = ""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : int
for keychar, cipherchar in zip(cycle(__UpperCamelCase ) ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__UpperCamelCase )
return decoded
def lowercase__( __UpperCamelCase: list[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[str] = []
for key in product(__UpperCamelCase ,repeat=3 ):
SCREAMING_SNAKE_CASE : List[str] = try_key(__UpperCamelCase ,__UpperCamelCase )
if encoded is not None:
possibles.append(__UpperCamelCase )
return possibles
def lowercase__( __UpperCamelCase: list[str] ,__UpperCamelCase: str ):
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__( __UpperCamelCase: str = "p059_cipher.txt" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[int]
SCREAMING_SNAKE_CASE : list[str]
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding='utf-8' )
SCREAMING_SNAKE_CASE : Tuple = [int(__UpperCamelCase ) for number in data.strip().split(',' )]
SCREAMING_SNAKE_CASE : Dict = filter_valid_chars(__UpperCamelCase )
for common_word in COMMON_WORDS:
SCREAMING_SNAKE_CASE : List[Any] = filter_common_word(__UpperCamelCase ,__UpperCamelCase )
if len(__UpperCamelCase ) == 1:
break
SCREAMING_SNAKE_CASE : Optional[int] = possibles[0]
return sum(ord(__UpperCamelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
UpperCamelCase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class _a ( unittest.TestCase , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = load_tool('text-question-answering' )
self.tool.setup()
SCREAMING_SNAKE_CASE : Optional[Any] = load_tool('text-question-answering', remote=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.tool(A, 'What did Hugging Face do in April 2021?' )
self.assertEqual(A, 'launched the BigScience Research Workshop' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.remote_tool(A, 'What did Hugging Face do in April 2021?' )
self.assertEqual(A, 'launched the BigScience Research Workshop' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.tool(text=A, question='What did Hugging Face do in April 2021?' )
self.assertEqual(A, 'launched the BigScience Research Workshop' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.remote_tool(text=A, question='What did Hugging Face do in April 2021?' )
self.assertEqual(A, 'launched the BigScience Research Workshop' )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
UpperCamelCase_ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n"
UpperCamelCase_ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n"
UpperCamelCase_ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Any ):
"""simple docstring"""
return float((preds == labels).mean() )
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Union[str, Any]="binary" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = float(fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average=__UpperCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = {}
for id_pred, label in zip(__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = f"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"
SCREAMING_SNAKE_CASE : Any = id_pred['prediction']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = [(pred, label)]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = [], []
for question, preds_labels in question_map.items():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = zip(*__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average='macro' )
fas.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) )
ems.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Optional[int] = sum(__UpperCamelCase ) / len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = float(fa_score(y_true=__UpperCamelCase ,y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), codebase_urls=[], reference_urls=[], format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"prediction_text": datasets.Value('string' ),
},
"references": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"answers": datasets.Sequence(datasets.Value('string' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('int64' ),
"paragraph": datasets.Value('int64' ),
"question": datasets.Value('int64' ),
},
"prediction": datasets.Value('int64' ),
},
"references": datasets.Value('int64' ),
}
else:
return {
"predictions": datasets.Value('int64' ),
"references": datasets.Value('int64' ),
}
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(A, A )}
elif self.config_name == "cb":
return acc_and_fa(A, A, fa_avg='macro' )
elif self.config_name == "record":
SCREAMING_SNAKE_CASE : List[Any] = [
{
'qas': [
{'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]}
for ref in references
]
}
]
SCREAMING_SNAKE_CASE : Any = {pred['idx']['query']: pred['prediction_text'] for pred in predictions}
return evaluate_record(A, A )[0]
elif self.config_name == "multirc":
return evaluate_multirc(A, A )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(A, A )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Union[str, Any] = None
A : int = None
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(A, 'feature_size' ) )
self.assertTrue(hasattr(A, 'sampling_rate' ) )
self.assertTrue(hasattr(A, 'padding_value' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : Tuple = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(A ) == len(A ) for x, y in zip(A, processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A )
SCREAMING_SNAKE_CASE : int = BatchFeature({input_name: speech_inputs}, tensor_type='np' )
SCREAMING_SNAKE_CASE : Optional[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE : int = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : str = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs}, tensor_type='pt' )
SCREAMING_SNAKE_CASE : int = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE : Optional[Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A )
SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Tuple = BatchFeature({input_name: speech_inputs}, tensor_type='tf' )
SCREAMING_SNAKE_CASE : Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE : Tuple = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def UpperCamelCase_ ( self, A=False ):
'''simple docstring'''
def _inputs_have_equal_length(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = len(input[0] )
for input_slice in input[1:]:
if len(A ) != length:
return False
return True
def _inputs_are_equal(A, A ):
if len(A ) != len(A ):
return False
for input_slice_a, input_slice_a in zip(A, A ):
if not np.allclose(np.asarray(A ), np.asarray(A ), atol=1E-3 ):
return False
return True
SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : int = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : int = self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE : Optional[Any] = self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE : List[Any] = self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE : Optional[int] = self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE : List[str] = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE : Tuple = feat_extract.pad(A, padding=A )
SCREAMING_SNAKE_CASE : List[Any] = input_a[input_name]
SCREAMING_SNAKE_CASE : Tuple = feat_extract.pad(A, padding='longest' )
SCREAMING_SNAKE_CASE : Optional[int] = input_a[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='max_length', max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE : Optional[Any] = input_a[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='np' )
SCREAMING_SNAKE_CASE : List[Any] = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(A ):
feat_extract.pad(A, padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE : List[str] = feat_extract.pad(
A, padding='max_length', max_length=A, return_tensors='np' )
SCREAMING_SNAKE_CASE : Optional[Any] = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(A ) )
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertTrue(_inputs_are_equal(A, A ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE : Any = feat_extract.pad(A, pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE : int = input_a[input_name]
SCREAMING_SNAKE_CASE : List[Any] = feat_extract.pad(A, padding='longest', pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE : Tuple = input_a[input_name]
SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract.pad(
A, padding='max_length', pad_to_multiple_of=10, max_length=A )
SCREAMING_SNAKE_CASE : List[Any] = input_a[input_name]
SCREAMING_SNAKE_CASE : str = feat_extract.pad(
A, padding='max_length', pad_to_multiple_of=10, max_length=A, return_tensors='np', )
SCREAMING_SNAKE_CASE : List[Any] = input_a[input_name]
self.assertTrue(all(len(A ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(A, A ) )
SCREAMING_SNAKE_CASE : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(A ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2], (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE : Union[str, Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1E-3 )
def UpperCamelCase_ ( self, A=False ):
'''simple docstring'''
def _inputs_have_equal_length(A ):
SCREAMING_SNAKE_CASE : Tuple = len(input[0] )
for input_slice in input[1:]:
if len(A ) != length:
return False
return True
def _inputs_are_equal(A, A ):
if len(A ) != len(A ):
return False
for input_slice_a, input_slice_a in zip(A, A ):
if not np.allclose(np.asarray(A ), np.asarray(A ), atol=1E-3 ):
return False
return True
SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=A )
SCREAMING_SNAKE_CASE : Dict = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[0] ), truncation=A )
SCREAMING_SNAKE_CASE : Optional[int] = input_a[input_name]
SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.pad(A, padding='max_length', max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE : int = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertFalse(_inputs_have_equal_length(A ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[0] ), return_tensors='np', truncation=A, )
SCREAMING_SNAKE_CASE : Any = input_a[input_name]
SCREAMING_SNAKE_CASE : str = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[0] ), return_tensors='np' )
SCREAMING_SNAKE_CASE : str = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(A ) )
# truncate to middle
SCREAMING_SNAKE_CASE : Any = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[1] ), truncation=A, return_tensors='np', )
SCREAMING_SNAKE_CASE : Tuple = input_a[input_name]
SCREAMING_SNAKE_CASE : Any = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[1] ), truncation=A )
SCREAMING_SNAKE_CASE : Optional[int] = input_a[input_name]
SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[1] ), return_tensors='np' )
SCREAMING_SNAKE_CASE : Optional[int] = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertTrue(_inputs_are_equal(A, A ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(A ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(A ):
feat_extract.pad(A, truncation=A )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(A ):
feat_extract.pad(A, padding='longest', truncation=A )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(A ):
feat_extract.pad(A, padding='longest', truncation=A )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(A ):
feat_extract.pad(A, padding='max_length', truncation=A )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Tuple = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[0] ), pad_to_multiple_of=A, truncation=A, )
SCREAMING_SNAKE_CASE : Tuple = input_a[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(
A, padding='max_length', max_length=len(speech_inputs[0] ), pad_to_multiple_of=A, )
SCREAMING_SNAKE_CASE : List[Any] = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE : Dict = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE : Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(A ) )
self.assertFalse(_inputs_have_equal_length(A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self._check_padding(numpify=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self._check_padding(numpify=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self._check_truncation(numpify=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self._check_truncation(numpify=A )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : Any = self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Optional[Any] = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : Any = feat_extract.pad(A, padding='longest', return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
@require_tf
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.feat_extract_dict
SCREAMING_SNAKE_CASE : Dict = True
SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**A )
SCREAMING_SNAKE_CASE : Tuple = self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE : Union[str, Any] = [len(A ) for x in speech_inputs]
SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : List[Any] = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='np' )
self.assertIn('attention_mask', A )
self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.feat_extract_dict
SCREAMING_SNAKE_CASE : Optional[int] = True
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**A )
SCREAMING_SNAKE_CASE : List[str] = self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE : Tuple = [len(A ) for x in speech_inputs]
SCREAMING_SNAKE_CASE : int = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : List[str] = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : Dict = min(A )
SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.pad(
A, padding='max_length', max_length=A, truncation=A, return_tensors='np' )
self.assertIn('attention_mask', A )
self.assertListEqual(
list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] )
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase_ = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def lowercase__( __UpperCamelCase: Any ):
"""simple docstring"""
config.addinivalue_line(
'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' )
config.addinivalue_line(
'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' )
config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' )
config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' )
config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' )
config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' )
def lowercase__( __UpperCamelCase: List[str] ):
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__UpperCamelCase )
def lowercase__( __UpperCamelCase: Optional[int] ):
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE : str = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(__UpperCamelCase ,id=__UpperCamelCase )
def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
if exitstatus == 5:
SCREAMING_SNAKE_CASE : Any = 0
# Doctest custom flag to ignore output.
UpperCamelCase_ = doctest.register_optionflag("IGNORE_RESULT")
UpperCamelCase_ = doctest.OutputChecker
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self, A, A, A )
UpperCamelCase_ = CustomOutputChecker
UpperCamelCase_ = HfDoctestModule
UpperCamelCase_ = HfDocTestParser
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, **A ):
'''simple docstring'''
super().__init__(*A, **A )
requires_backends(self, 'vision' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def UpperCamelCase_ ( self, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = {}
if top_k is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = top_k
return {}, {}, postprocess_params
def __call__( self, A, **A ):
'''simple docstring'''
return super().__call__(A, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = load_image(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(images=A, return_tensors=self.framework )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=5 ):
'''simple docstring'''
if top_k > self.model.config.num_labels:
SCREAMING_SNAKE_CASE : int = self.model.config.num_labels
if self.framework == "pt":
SCREAMING_SNAKE_CASE : str = model_outputs.logits.softmax(-1 )[0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = probs.topk(A )
elif self.framework == "tf":
SCREAMING_SNAKE_CASE : Optional[Any] = stable_softmax(model_outputs.logits, axis=-1 )[0]
SCREAMING_SNAKE_CASE : int = tf.math.top_k(A, k=A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
SCREAMING_SNAKE_CASE : Optional[int] = scores.tolist()
SCREAMING_SNAKE_CASE : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A, A )]
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=A, scheduler=A )
@torch.no_grad()
def __call__( self, A = 1, A = None, A = 50, A = "pil", A = True, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=A, )
SCREAMING_SNAKE_CASE : Dict = image.to(self.device )
# set step values
self.scheduler.set_timesteps(A )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
SCREAMING_SNAKE_CASE : List[Any] = self.unet(A, A ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step(A, A, A ).prev_sample
SCREAMING_SNAKE_CASE : str = (image / 2 + 0.5).clamp(0, 1 )
SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE : Dict = self.numpy_to_pil(A )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=A ), "This is a local test"
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: list[list[str]] ,__UpperCamelCase: int ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(__UpperCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,__UpperCamelCase ,__UpperCamelCase ,)
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[list[str]] = []
depth_first_search([] ,[] ,[] ,__UpperCamelCase ,__UpperCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(__UpperCamelCase )
print('' )
print(len(__UpperCamelCase ) ,'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]]
SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(A )
self.assertTrue(isinstance(dc.token_ids, A ) )
with self.assertRaises(A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(A ):
DisjunctiveConstraint(A ) # fails here
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4]]
SCREAMING_SNAKE_CASE : List[str] = DisjunctiveConstraint(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = dc.update(1 )
SCREAMING_SNAKE_CASE : Dict = stepped is True and completed is False and reset is False
self.assertTrue(A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(2 )
SCREAMING_SNAKE_CASE : int = stepped is True and completed is False and reset is False
self.assertTrue(A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(3 )
SCREAMING_SNAKE_CASE : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
SCREAMING_SNAKE_CASE : Optional[Any] = DisjunctiveConstraint(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
UpperCamelCase_ = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = Github(os.environ['GITHUB_TOKEN'] )
SCREAMING_SNAKE_CASE : Tuple = g.get_repo('huggingface/transformers' )
SCREAMING_SNAKE_CASE : List[Any] = repo.get_issues(state='open' )
for issue in open_issues:
SCREAMING_SNAKE_CASE : Any = sorted([comment for comment in issue.get_comments()] ,key=lambda __UpperCamelCase : i.created_at ,reverse=__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = comments[0] if len(__UpperCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='closed' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
assert isinstance(__UpperCamelCase ,__UpperCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' ,[False, True] )
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Tuple ,__UpperCamelCase: Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
'features' ,[
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] ,)
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE : List[Any] = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE : str = (
Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] )
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,split=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' ,[str, list] )
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if issubclass(__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : int = parquet_path
elif issubclass(__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Dict = [parquet_path]
SCREAMING_SNAKE_CASE : Tuple = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: str=("train",) ):
"""simple docstring"""
assert isinstance(__UpperCamelCase ,__UpperCamelCase )
for split in splits:
SCREAMING_SNAKE_CASE : Dict = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' ,[False, True] )
def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader(
{'train': parquet_path} ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
'features' ,[
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] ,)
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[Any] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE : int = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE : Union[str, Any] = (
Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader({'train': parquet_path} ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] )
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
if split:
SCREAMING_SNAKE_CASE : Optional[Any] = {split: parquet_path}
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = 'train'
SCREAMING_SNAKE_CASE : List[Any] = {'train': parquet_path, 'test': parquet_path}
SCREAMING_SNAKE_CASE : List[Any] = tmp_path / 'cache'
SCREAMING_SNAKE_CASE : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase ,splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / 'foo.parquet' )
assert writer.write() > 0
SCREAMING_SNAKE_CASE : Any = pq.ParquetFile(tmp_path / 'foo.parquet' )
SCREAMING_SNAKE_CASE : List[str] = pf.read()
assert dataset.data.table == output_table
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = str(shared_datadir / 'test_image_rgb.jpg' )
SCREAMING_SNAKE_CASE : Any = {'image': [image_path]}
SCREAMING_SNAKE_CASE : Union[str, Any] = Features({'image': Image()} )
SCREAMING_SNAKE_CASE : Any = Dataset.from_dict(__UpperCamelCase ,features=__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / 'foo.parquet' )
assert writer.write() > 0
SCREAMING_SNAKE_CASE : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
SCREAMING_SNAKE_CASE : Union[str, Any] = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) ,streaming=__UpperCamelCase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' ,[
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] ,)
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ):
"""simple docstring"""
assert get_writer_batch_size(__UpperCamelCase ) == expected
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"Salesforce/codegen-350M-mono": 2_0_4_8,
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[str] = ['''input_ids''', '''attention_mask''']
A : Optional[int] = CodeGenTokenizer
def __init__( self, A=None, A=None, A=None, A="<|endoftext|>", A="<|endoftext|>", A="<|endoftext|>", A=False, **A, ):
'''simple docstring'''
super().__init__(
A, A, tokenizer_file=A, unk_token=A, bos_token=A, eos_token=A, add_prefix_space=A, **A, )
if kwargs.pop('add_bos_token', A ):
SCREAMING_SNAKE_CASE : str = kwargs.pop('name_or_path', '' )
raise ValueError(
'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'
'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'
F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'
' so that the fast tokenizer works correctly.' )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', A ) != add_prefix_space:
SCREAMING_SNAKE_CASE : Optional[int] = getattr(A, pre_tok_state.pop('type' ) )
SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space
SCREAMING_SNAKE_CASE : Optional[Any] = pre_tok_class(**A )
SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space
def UpperCamelCase_ ( self, *A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('is_split_into_words', A )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A, **A )
def UpperCamelCase_ ( self, *A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = kwargs.get('is_split_into_words', A )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A, **A )
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self._tokenizer.model.save(A, name=A )
return tuple(A )
def UpperCamelCase_ ( self, A, A = False, A = None, A = None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = super().decode(
token_ids=A, skip_special_tokens=A, clean_up_tokenization_spaces=A, **A, )
if truncate_before_pattern is not None and len(A ) > 0:
SCREAMING_SNAKE_CASE : List[str] = self.truncate(A, A )
return decoded_text
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
def find_re(A, A, A ):
SCREAMING_SNAKE_CASE : Tuple = pattern.search(A, A )
return m.start() if m else -1
SCREAMING_SNAKE_CASE : List[Any] = [re.compile(A, re.MULTILINE ) for pattern in truncate_before_pattern]
SCREAMING_SNAKE_CASE : str = list(re.finditer('^print', A, re.MULTILINE ) )
if len(A ) > 1:
SCREAMING_SNAKE_CASE : Optional[Any] = completion[: prints[1].start()]
SCREAMING_SNAKE_CASE : str = list(re.finditer('^def', A, re.MULTILINE ) )
if len(A ) > 1:
SCREAMING_SNAKE_CASE : str = completion[: defs[1].start()]
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = [
pos for pos in [find_re(A, A, A ) for terminal in terminals] if pos != -1
]
if len(A ) > 0:
return completion[: min(A )]
else:
return completion
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: dict ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = set(__UpperCamelCase ), [start]
while stack:
SCREAMING_SNAKE_CASE : Any = stack.pop()
explored.add(__UpperCamelCase )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(__UpperCamelCase )
return explored
UpperCamelCase_ = {
"A": ["B", "C", "D"],
"B": ["A", "D", "E"],
"C": ["A", "F"],
"D": ["B", "D"],
"E": ["B", "F"],
"F": ["C", "E", "G"],
"G": ["F"],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, "A"))
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
UpperCamelCase_ = "docs/source/en/_toctree.yml"
def lowercase__( __UpperCamelCase: List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = defaultdict(__UpperCamelCase )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE : int = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE : Any = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE : str = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(__UpperCamelCase ) > 1:
raise ValueError(
f"{duplicate_key} is present several times in the documentation table of content at "
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : s["title"].lower() )
def lowercase__( __UpperCamelCase: Union[str, Any]=False ):
"""simple docstring"""
with open(__UpperCamelCase ,encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE : Optional[int] = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE : Dict = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE : Dict = content[api_idx]['sections']
# Then to the model doc
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE : Optional[int] = api_doc[model_idx]['sections']
SCREAMING_SNAKE_CASE : List[Any] = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section]
SCREAMING_SNAKE_CASE : Tuple = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE : Optional[int] = modality_doc['sections']
SCREAMING_SNAKE_CASE : Optional[int] = clean_model_doc_toc(__UpperCamelCase )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE : Optional[Any] = True
if overwrite:
SCREAMING_SNAKE_CASE : Optional[int] = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE : Optional[int] = model_doc
SCREAMING_SNAKE_CASE : List[Any] = api_doc
with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f:
f.write(yaml.dump(__UpperCamelCase ,allow_unicode=__UpperCamelCase ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
UpperCamelCase_ = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = data
SCREAMING_SNAKE_CASE : List[str] = None
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.head
while temp is not None:
print(temp.data, end=' ' )
SCREAMING_SNAKE_CASE : Optional[int] = temp.next
print()
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = Node(A )
SCREAMING_SNAKE_CASE : Optional[int] = self.head
SCREAMING_SNAKE_CASE : Tuple = new_node
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node_a is not None and node_a.data != node_data_a:
SCREAMING_SNAKE_CASE : Any = node_a.next
SCREAMING_SNAKE_CASE : Tuple = self.head
while node_a is not None and node_a.data != node_data_a:
SCREAMING_SNAKE_CASE : Dict = node_a.next
if node_a is None or node_a is None:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = node_a.data, node_a.data
if __name__ == "__main__":
UpperCamelCase_ = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("After swapping")
ll.print_list()
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
from jiwer import compute_measures
import datasets
UpperCamelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
UpperCamelCase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
UpperCamelCase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': datasets.Value('string', id='sequence' ),
'references': datasets.Value('string', id='sequence' ),
} ), codebase_urls=['https://github.com/jitsi/jiwer/'], reference_urls=[
'https://en.wikipedia.org/wiki/Word_error_rate',
], )
def UpperCamelCase_ ( self, A=None, A=None, A=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(A, A )["wer"]
else:
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = 0
for prediction, reference in zip(A, A ):
SCREAMING_SNAKE_CASE : Any = compute_measures(A, A )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
UpperCamelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)]
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : List[str] = os.path.join(__UpperCamelCase ,'words.txt' )
SCREAMING_SNAKE_CASE : Any = ''
with open(__UpperCamelCase ) as f:
SCREAMING_SNAKE_CASE : Dict = f.readline()
SCREAMING_SNAKE_CASE : Union[str, Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
SCREAMING_SNAKE_CASE : str = [
word
for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__UpperCamelCase )
if __name__ == "__main__":
print(solution())
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def lowercase__( __UpperCamelCase: Namespace ):
"""simple docstring"""
return ConvertCommand(
args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name )
UpperCamelCase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parser.add_parser(
'convert', help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.', )
train_parser.add_argument('--model_type', type=A, required=A, help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint', type=A, required=A, help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output', type=A, required=A, help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config', type=A, default='', help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name', type=A, default=A, help='Optional fine-tuning task name if the TF model was a finetuned model.', )
train_parser.set_defaults(func=A )
def __init__( self, A, A, A, A, A, *A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger('transformers-cli/converting' )
self._logger.info(F"Loading model {model_type}" )
SCREAMING_SNAKE_CASE : Any = model_type
SCREAMING_SNAKE_CASE : Tuple = tf_checkpoint
SCREAMING_SNAKE_CASE : Optional[Any] = pytorch_dump_output
SCREAMING_SNAKE_CASE : Optional[int] = config
SCREAMING_SNAKE_CASE : Optional[Any] = finetuning_task_name
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
if "ckpt" in self._tf_checkpoint.lower():
SCREAMING_SNAKE_CASE : Dict = self._tf_checkpoint
SCREAMING_SNAKE_CASE : List[str] = ''
else:
SCREAMING_SNAKE_CASE : List[Any] = self._tf_checkpoint
SCREAMING_SNAKE_CASE : int = ''
convert_transfo_xl_checkpoint_to_pytorch(
A, self._config, self._pytorch_dump_output, A )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = ArgumentParser(
description=(
'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores' ,type=__UpperCamelCase ,default=1 ,help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script' ,type=__UpperCamelCase ,help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
) ,)
# rest from the training program
parser.add_argument('training_script_args' ,nargs=__UpperCamelCase )
return parser.parse_args()
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = parse_args()
# Import training_script as a module.
SCREAMING_SNAKE_CASE : int = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
SCREAMING_SNAKE_CASE : Optional[int] = script_fpath.stem
SCREAMING_SNAKE_CASE : str = importlib.import_module(__UpperCamelCase )
# Patch sys.argv
SCREAMING_SNAKE_CASE : Dict = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ):
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
SCREAMING_SNAKE_CASE : Any = str(bin(__UpperCamelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ):
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
SCREAMING_SNAKE_CASE : str = str(bin(__UpperCamelCase ) )[2:]
if shift_amount >= len(__UpperCamelCase ):
return "0b0"
SCREAMING_SNAKE_CASE : Any = binary_number[: len(__UpperCamelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ):
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
SCREAMING_SNAKE_CASE : Union[str, Any] = '0' + str(bin(__UpperCamelCase ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
SCREAMING_SNAKE_CASE : Optional[Any] = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number
SCREAMING_SNAKE_CASE : str = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:]
SCREAMING_SNAKE_CASE : Union[str, Any] = (
'1' + '0' * (binary_number_length - len(__UpperCamelCase )) + binary_number
)
if shift_amount >= len(__UpperCamelCase ):
return "0b" + binary_number[0] * len(__UpperCamelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__UpperCamelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
self.assertEqual(len(A ), len(A ) )
for a, b in zip(A, A ):
self.assertAlmostEqual(A, A, delta=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(A ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step, 3 )
self.assertEqual(len(accumulator.gradients ), 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1E-2 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
ops.enable_eager_execution_internal()
SCREAMING_SNAKE_CASE : str = tf.config.list_physical_devices('CPU' )
if len(A ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.config.list_logical_devices(device_type='CPU' )
SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
SCREAMING_SNAKE_CASE : Optional[int] = GradientAccumulator()
SCREAMING_SNAKE_CASE : Optional[int] = tf.Variable([4.0, 3.0] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = create_optimizer(5E-5, 10, 5 )
SCREAMING_SNAKE_CASE : List[Any] = tf.Variable([0.0, 0.0], trainable=A )
def accumulate_on_replica(A ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) )
@tf.function
def accumulate(A, A ):
with strategy.scope():
SCREAMING_SNAKE_CASE : Any = strategy.experimental_local_results(A )
local_variables[0].assign(A )
local_variables[1].assign(A )
strategy.run(A, args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(A )
def _check_local_values(A, A ):
SCREAMING_SNAKE_CASE : str = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value(), A, tol=1E-2 )
self.assertListAlmostEqual(values[1].value(), A, tol=1E-2 )
accumulate([1.0, 2.0], [-1.0, 1.0] )
accumulate([3.0, -1.0], [-1.0, -1.0] )
accumulate([-2.0, 2.0], [3.0, -2.0] )
self.assertEqual(accumulator.step, 3 )
_check_local_values([2.0, 3.0], [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
_check_local_values([0.0, 0.0], [0.0, 0.0] )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, **A ):
'''simple docstring'''
warnings.warn(
'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use VideoMAEImageProcessor instead.', A, )
super().__init__(*A, **A )
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: list[int | str] ):
"""simple docstring"""
create_state_space_tree(__UpperCamelCase ,[] ,0 ,[0 for i in range(len(__UpperCamelCase ) )] )
def lowercase__( __UpperCamelCase: list[int | str] ,__UpperCamelCase: list[int | str] ,__UpperCamelCase: int ,__UpperCamelCase: list[int] ,):
"""simple docstring"""
if index == len(__UpperCamelCase ):
print(__UpperCamelCase )
return
for i in range(len(__UpperCamelCase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
SCREAMING_SNAKE_CASE : int = True
create_state_space_tree(__UpperCamelCase ,__UpperCamelCase ,index + 1 ,__UpperCamelCase )
current_sequence.pop()
SCREAMING_SNAKE_CASE : Tuple = False
UpperCamelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
UpperCamelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = ['''pixel_values''']
def __init__( self, A = True, A = None, A = PILImageResampling.BICUBIC, A = True, A = None, A = True, A = 1 / 255, A = True, A = IMAGENET_DEFAULT_MEAN, A = IMAGENET_DEFAULT_STD, **A, ):
'''simple docstring'''
super().__init__(**A )
SCREAMING_SNAKE_CASE : Any = size if size is not None else {'shortest_edge': 224}
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(A, default_to_square=A )
SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(A, param_name='crop_size' )
SCREAMING_SNAKE_CASE : Any = do_resize
SCREAMING_SNAKE_CASE : List[str] = size
SCREAMING_SNAKE_CASE : Any = resample
SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop
SCREAMING_SNAKE_CASE : Any = crop_size
SCREAMING_SNAKE_CASE : Tuple = do_rescale
SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor
SCREAMING_SNAKE_CASE : List[Any] = do_normalize
SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BICUBIC, A = None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = get_size_dict(A, default_to_square=A )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
SCREAMING_SNAKE_CASE : str = int((256 / 224) * size['shortest_edge'] )
SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(A, size=A, default_to_square=A )
SCREAMING_SNAKE_CASE : Dict = {'height': output_size[0], 'width': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" )
return resize(
A, size=(size_dict['height'], size_dict['width']), resample=A, data_format=A, **A )
def UpperCamelCase_ ( self, A, A, A = None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" )
return center_crop(A, size=(size['height'], size['width']), data_format=A, **A )
def UpperCamelCase_ ( self, A, A, A = None, **A, ):
'''simple docstring'''
return rescale(A, scale=A, data_format=A, **A )
def UpperCamelCase_ ( self, A, A, A, A = None, **A, ):
'''simple docstring'''
return normalize(A, mean=A, std=A, data_format=A, **A )
def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(A, default_to_square=A )
SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(A, param_name='crop_size' )
SCREAMING_SNAKE_CASE : int = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(A ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE : List[str] = [self.resize(A, A, A ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE : int = [self.center_crop(A, A ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE : int = [self.rescale(A, A ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE : List[str] = [self.normalize(A, A, A ) for image in images]
SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(A, A ) for image in images]
SCREAMING_SNAKE_CASE : Tuple = {'pixel_values': images}
return BatchFeature(data=A, tensor_type=A )
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def lowercase__( __UpperCamelCase: Any ):
"""simple docstring"""
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
SCREAMING_SNAKE_CASE : List[Any] = key.replace('heads.cmd.mim_head.cls.predictions' ,'mmm_image_head' )
SCREAMING_SNAKE_CASE : int = key.replace('heads.cmd.mlm_head.cls.predictions' ,'mmm_text_head' )
SCREAMING_SNAKE_CASE : str = key.replace('heads.cmd.itm_head.cls' ,'itm_head' )
SCREAMING_SNAKE_CASE : Dict = key.replace('heads.cmd.itm_head.pooler' ,'itm_head.pooler' )
SCREAMING_SNAKE_CASE : Dict = key.replace('heads.cmd.clip_head.logit_scale' ,'flava.logit_scale' )
SCREAMING_SNAKE_CASE : List[Any] = key.replace('heads.fairseq_mlm.cls.predictions' ,'mlm_head' )
SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('heads.imagenet.mim_head.cls.predictions' ,'mim_head' )
SCREAMING_SNAKE_CASE : List[Any] = key.replace('mm_text_projection' ,'flava.text_to_mm_projection' )
SCREAMING_SNAKE_CASE : List[str] = key.replace('mm_image_projection' ,'flava.image_to_mm_projection' )
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('image_encoder.module' ,'flava.image_model' )
SCREAMING_SNAKE_CASE : Optional[int] = key.replace('text_encoder.module' ,'flava.text_model' )
SCREAMING_SNAKE_CASE : Dict = key.replace('mm_encoder.module.encoder.cls_token' ,'flava.multimodal_model.cls_token' )
SCREAMING_SNAKE_CASE : Optional[int] = key.replace('mm_encoder.module' ,'flava.multimodal_model' )
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('text_projection' ,'flava.text_projection' )
SCREAMING_SNAKE_CASE : Optional[int] = key.replace('image_projection' ,'flava.image_projection' )
SCREAMING_SNAKE_CASE : Dict = value.float()
for key, value in codebook_state_dict.items():
SCREAMING_SNAKE_CASE : int = value
return upgrade
@torch.no_grad()
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: str ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[int]=None ):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : int = FlavaConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = FlavaConfig()
SCREAMING_SNAKE_CASE : str = FlavaForPreTraining(__UpperCamelCase ).eval()
SCREAMING_SNAKE_CASE : int = convert_dalle_checkpoint(__UpperCamelCase ,__UpperCamelCase ,save_checkpoint=__UpperCamelCase )
if os.path.exists(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : int = torch.load(__UpperCamelCase ,map_location='cpu' )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location='cpu' )
SCREAMING_SNAKE_CASE : int = upgrade_state_dict(__UpperCamelCase ,__UpperCamelCase )
hf_model.load_state_dict(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = hf_model.state_dict()
SCREAMING_SNAKE_CASE : Optional[int] = count_parameters(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = count_parameters(__UpperCamelCase ) + count_parameters(__UpperCamelCase )
assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 )
hf_model.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCamelCase_ = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = set(range(3 ,__UpperCamelCase ,2 ) )
primes.add(2 )
for p in range(3 ,__UpperCamelCase ,2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p ,__UpperCamelCase ,__UpperCamelCase ) ) )
SCREAMING_SNAKE_CASE : Any = [float(__UpperCamelCase ) for n in range(limit + 1 )]
for p in primes:
for n in range(__UpperCamelCase ,limit + 1 ,__UpperCamelCase ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = 0
if start < end:
SCREAMING_SNAKE_CASE : Dict = randint(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = a[end]
SCREAMING_SNAKE_CASE : Dict = a[pivot]
SCREAMING_SNAKE_CASE : str = temp
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = _in_place_partition(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
count += _in_place_quick_sort(__UpperCamelCase ,__UpperCamelCase ,p - 1 )
count += _in_place_quick_sort(__UpperCamelCase ,p + 1 ,__UpperCamelCase )
return count
def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Tuple ,__UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = randint(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = a[end]
SCREAMING_SNAKE_CASE : int = a[pivot]
SCREAMING_SNAKE_CASE : int = temp
SCREAMING_SNAKE_CASE : str = start - 1
for index in range(__UpperCamelCase ,__UpperCamelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
SCREAMING_SNAKE_CASE : Any = new_pivot_index + 1
SCREAMING_SNAKE_CASE : Tuple = a[new_pivot_index]
SCREAMING_SNAKE_CASE : Tuple = a[index]
SCREAMING_SNAKE_CASE : str = temp
SCREAMING_SNAKE_CASE : List[Any] = a[new_pivot_index + 1]
SCREAMING_SNAKE_CASE : Tuple = a[end]
SCREAMING_SNAKE_CASE : Optional[int] = temp
return new_pivot_index + 1, count
UpperCamelCase_ = TemporaryFile()
UpperCamelCase_ = 1_0_0 # 1000 elements are to be sorted
UpperCamelCase_ , UpperCamelCase_ = 0, 1 # mean and standard deviation
UpperCamelCase_ = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCamelCase_ = np.load(outfile)
UpperCamelCase_ = len(M) - 1
UpperCamelCase_ = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
import numpy as np
def lowercase__( __UpperCamelCase: np.array ):
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
from timeit import timeit
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if number < 0:
raise ValueError('the value of input must not be negative' )
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while number:
number &= number - 1
result += 1
return result
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if number < 0:
raise ValueError('the value of input must not be negative' )
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def lowercase__( ):
"""simple docstring"""
def do_benchmark(__UpperCamelCase: int ) -> None:
SCREAMING_SNAKE_CASE : Any = 'import __main__ as z'
print(f"Benchmark when {number = }:" )
print(f"{get_set_bits_count_using_modulo_operator(__UpperCamelCase ) = }" )
SCREAMING_SNAKE_CASE : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' ,setup=__UpperCamelCase )
print(f"timeit() runs in {timing} seconds" )
print(f"{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCamelCase ) = }" )
SCREAMING_SNAKE_CASE : str = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' ,setup=__UpperCamelCase ,)
print(f"timeit() runs in {timing} seconds" )
for number in (25, 37, 58, 0):
do_benchmark(__UpperCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase_ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["OwlViTFeatureExtractor"]
UpperCamelCase_ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase__( __UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image.size
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
SCREAMING_SNAKE_CASE : Optional[int] = image.resize((w, h) ,resample=PIL_INTERPOLATION['lanczos'] )
SCREAMING_SNAKE_CASE : Optional[Any] = np.array(__UpperCamelCase ).astype(np.floataa ) / 2_5_5.0
SCREAMING_SNAKE_CASE : int = image[None].transpose(0 ,3 ,1 ,2 )
SCREAMING_SNAKE_CASE : int = torch.from_numpy(__UpperCamelCase )
return 2.0 * image - 1.0
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A, A, ):
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=A, unet=A, scheduler=A )
@torch.no_grad()
def __call__( self, A = None, A = 1, A = 100, A = 0.0, A = None, A = "pil", A = True, ):
'''simple docstring'''
if isinstance(A, PIL.Image.Image ):
SCREAMING_SNAKE_CASE : int = 1
elif isinstance(A, torch.Tensor ):
SCREAMING_SNAKE_CASE : Optional[Any] = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A )}" )
if isinstance(A, PIL.Image.Image ):
SCREAMING_SNAKE_CASE : List[str] = preprocess(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width)
SCREAMING_SNAKE_CASE : Any = next(self.unet.parameters() ).dtype
SCREAMING_SNAKE_CASE : int = randn_tensor(A, generator=A, device=self.device, dtype=A )
SCREAMING_SNAKE_CASE : Optional[Any] = image.to(device=self.device, dtype=A )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A, device=self.device )
SCREAMING_SNAKE_CASE : str = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
SCREAMING_SNAKE_CASE : List[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
SCREAMING_SNAKE_CASE : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
SCREAMING_SNAKE_CASE : Tuple = {}
if accepts_eta:
SCREAMING_SNAKE_CASE : Any = eta
for t in self.progress_bar(A ):
# concat latents and low resolution image in the channel dimension.
SCREAMING_SNAKE_CASE : List[str] = torch.cat([latents, image], dim=1 )
SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(A, A )
# predict the noise residual
SCREAMING_SNAKE_CASE : List[str] = self.unet(A, A ).sample
# compute the previous noisy sample x_t -> x_t-1
SCREAMING_SNAKE_CASE : str = self.scheduler.step(A, A, A, **A ).prev_sample
# decode the image latents with the VQVAE
SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(A ).sample
SCREAMING_SNAKE_CASE : Dict = torch.clamp(A, -1.0, 1.0 )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
SCREAMING_SNAKE_CASE : List[str] = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
import warnings
from functools import wraps
from typing import Callable
def lowercase__( __UpperCamelCase: Callable ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def _inner_fn(*__UpperCamelCase: List[Any] ,**__UpperCamelCase: Any ):
warnings.warn(
(f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") ,__UpperCamelCase ,)
return fn(*__UpperCamelCase ,**__UpperCamelCase )
return _inner_fn
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def lowercase__( __UpperCamelCase: Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = VideoMAEConfig()
set_architecture_configs(__UpperCamelCase ,__UpperCamelCase )
if "finetuned" not in model_name:
SCREAMING_SNAKE_CASE : Optional[int] = False
if "finetuned" in model_name:
SCREAMING_SNAKE_CASE : Optional[Any] = 'huggingface/label-files'
if "kinetics" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 4_00
SCREAMING_SNAKE_CASE : str = 'kinetics400-id2label.json'
elif "ssv2" in model_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = 1_74
SCREAMING_SNAKE_CASE : Union[str, Any] = 'something-something-v2-id2label.json'
else:
raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) )
SCREAMING_SNAKE_CASE : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[int] = idalabel
SCREAMING_SNAKE_CASE : str = {v: k for k, v in idalabel.items()}
return config
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Any ):
"""simple docstring"""
if "small" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 3_84
SCREAMING_SNAKE_CASE : int = 15_36
SCREAMING_SNAKE_CASE : int = 12
SCREAMING_SNAKE_CASE : Optional[Any] = 16
SCREAMING_SNAKE_CASE : int = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 3
SCREAMING_SNAKE_CASE : Optional[Any] = 1_92
SCREAMING_SNAKE_CASE : int = 7_68
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Any = 10_24
SCREAMING_SNAKE_CASE : Optional[Any] = 40_96
SCREAMING_SNAKE_CASE : Optional[Any] = 24
SCREAMING_SNAKE_CASE : Optional[int] = 16
SCREAMING_SNAKE_CASE : List[str] = 12
SCREAMING_SNAKE_CASE : Any = 8
SCREAMING_SNAKE_CASE : Optional[Any] = 5_12
SCREAMING_SNAKE_CASE : Optional[int] = 20_48
elif "huge" in model_name:
SCREAMING_SNAKE_CASE : Optional[int] = 12_80
SCREAMING_SNAKE_CASE : List[str] = 51_20
SCREAMING_SNAKE_CASE : Tuple = 32
SCREAMING_SNAKE_CASE : List[Any] = 16
SCREAMING_SNAKE_CASE : Any = 12
SCREAMING_SNAKE_CASE : str = 8
SCREAMING_SNAKE_CASE : Union[str, Any] = 6_40
SCREAMING_SNAKE_CASE : Tuple = 25_60
elif "base" not in model_name:
raise ValueError('Model name should include either "small", "base", "large", or "huge"' )
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
if "encoder." in name:
SCREAMING_SNAKE_CASE : int = name.replace('encoder.' ,'' )
if "cls_token" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('cls_token' ,'videomae.embeddings.cls_token' )
if "decoder_pos_embed" in name:
SCREAMING_SNAKE_CASE : List[Any] = name.replace('decoder_pos_embed' ,'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
SCREAMING_SNAKE_CASE : Any = name.replace('pos_embed' ,'videomae.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('patch_embed.proj' ,'videomae.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('patch_embed.norm' ,'videomae.embeddings.norm' )
if "decoder.blocks" in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace('decoder.blocks' ,'decoder.decoder_layers' )
if "blocks" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('blocks' ,'videomae.encoder.layer' )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('attn.proj' ,'attention.output.dense' )
if "attn" in name and "bias" not in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace('attn' ,'attention.self' )
if "attn" in name:
SCREAMING_SNAKE_CASE : str = name.replace('attn' ,'attention.attention' )
if "norm1" in name:
SCREAMING_SNAKE_CASE : str = name.replace('norm1' ,'layernorm_before' )
if "norm2" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('norm2' ,'layernorm_after' )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE : Tuple = name.replace('mlp.fc1' ,'intermediate.dense' )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('mlp.fc2' ,'output.dense' )
if "decoder_embed" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('decoder_embed' ,'decoder.decoder_embed' )
if "decoder_norm" in name:
SCREAMING_SNAKE_CASE : Optional[int] = name.replace('decoder_norm' ,'decoder.decoder_norm' )
if "decoder_pred" in name:
SCREAMING_SNAKE_CASE : List[Any] = name.replace('decoder_pred' ,'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace('norm.weight' ,'videomae.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace('norm.bias' ,'videomae.layernorm.bias' )
if "head" in name and "decoder" not in name:
SCREAMING_SNAKE_CASE : Any = name.replace('head' ,'classifier' )
return name
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE : int = orig_state_dict.pop(__UpperCamelCase )
if key.startswith('encoder.' ):
SCREAMING_SNAKE_CASE : List[str] = key.replace('encoder.' ,'' )
if "qkv" in key:
SCREAMING_SNAKE_CASE : Optional[Any] = key.split('.' )
if key.startswith('decoder.blocks' ):
SCREAMING_SNAKE_CASE : Any = config.decoder_hidden_size
SCREAMING_SNAKE_CASE : str = int(key_split[2] )
SCREAMING_SNAKE_CASE : Dict = 'decoder.decoder_layers.'
if "weight" in key:
SCREAMING_SNAKE_CASE : int = val[:dim, :]
SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE : str = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE : Optional[int] = config.hidden_size
SCREAMING_SNAKE_CASE : Optional[int] = int(key_split[1] )
SCREAMING_SNAKE_CASE : Tuple = 'videomae.encoder.layer.'
if "weight" in key:
SCREAMING_SNAKE_CASE : Any = val[:dim, :]
SCREAMING_SNAKE_CASE : Union[str, Any] = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE : List[Any] = val
return orig_state_dict
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' ,filename='eating_spaghetti.npy' ,repo_type='dataset' )
SCREAMING_SNAKE_CASE : Optional[Any] = np.load(__UpperCamelCase )
return list(__UpperCamelCase )
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = get_videomae_config(__UpperCamelCase )
if "finetuned" in model_name:
SCREAMING_SNAKE_CASE : Tuple = VideoMAEForVideoClassification(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = VideoMAEForPreTraining(__UpperCamelCase )
# download original checkpoint, hosted on Google Drive
SCREAMING_SNAKE_CASE : List[str] = 'pytorch_model.bin'
gdown.cached_download(__UpperCamelCase ,__UpperCamelCase ,quiet=__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.load(__UpperCamelCase ,map_location='cpu' )
if "model" in files:
SCREAMING_SNAKE_CASE : Optional[int] = files['model']
else:
SCREAMING_SNAKE_CASE : Optional[Any] = files['module']
SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(__UpperCamelCase ,__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# verify model on basic input
SCREAMING_SNAKE_CASE : Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_video()
SCREAMING_SNAKE_CASE : Any = image_processor(__UpperCamelCase ,return_tensors='pt' )
if "finetuned" not in model_name:
SCREAMING_SNAKE_CASE : int = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' )
SCREAMING_SNAKE_CASE : List[Any] = torch.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = model(**__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits
SCREAMING_SNAKE_CASE : int = [
'videomae-small-finetuned-kinetics',
'videomae-small-finetuned-ssv2',
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
'videomae-base-short',
'videomae-base-short-finetuned-kinetics',
'videomae-base',
'videomae-base-finetuned-kinetics',
'videomae-large',
'videomae-large-finetuned-kinetics',
'videomae-huge-finetuned-kinetics',
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
'videomae-base-short-ssv2',
'videomae-base-short-finetuned-ssv2',
'videomae-base-ssv2',
'videomae-base-finetuned-ssv2',
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([1, 4_00] )
SCREAMING_SNAKE_CASE : int = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] )
elif model_name == "videomae-small-finetuned-ssv2":
SCREAMING_SNAKE_CASE : Any = torch.Size([1, 1_74] )
SCREAMING_SNAKE_CASE : str = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] )
elif model_name == "videomae-base":
SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 14_08, 15_36] )
SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] )
elif model_name == "videomae-base-short":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 14_08, 15_36] )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] )
# we verified the loss both for normalized and unnormalized targets for this one
SCREAMING_SNAKE_CASE : str = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] )
elif model_name == "videomae-large":
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 14_08, 15_36] )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] )
elif model_name == "videomae-large-finetuned-kinetics":
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 4_00] )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] )
elif model_name == "videomae-huge-finetuned-kinetics":
SCREAMING_SNAKE_CASE : int = torch.Size([1, 4_00] )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] )
elif model_name == "videomae-base-short-finetuned-kinetics":
SCREAMING_SNAKE_CASE : Any = torch.Size([1, 4_00] )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] )
elif model_name == "videomae-base-finetuned-kinetics":
SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 4_00] )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] )
elif model_name == "videomae-base-short-ssv2":
SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 14_08, 15_36] )
SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
SCREAMING_SNAKE_CASE : Any = torch.Size([1, 1_74] )
SCREAMING_SNAKE_CASE : Any = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] )
elif model_name == "videomae-base-ssv2":
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([1, 14_08, 15_36] )
SCREAMING_SNAKE_CASE : str = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] )
elif model_name == "videomae-base-finetuned-ssv2":
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 1_74] )
SCREAMING_SNAKE_CASE : int = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] )
else:
raise ValueError(f"Model name not supported. Should be one of {model_names}" )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1e-4 )
else:
print('Logits:' ,logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 )
print('Logits ok!' )
# verify loss, if applicable
if model_name == "videomae-base-short":
SCREAMING_SNAKE_CASE : Optional[Any] = outputs.loss
assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-4 )
print('Loss ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
if push_to_hub:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase ,organization='nielsr' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4",
type=str,
help=(
"URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"
" download link."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="/Users/nielsrogge/Documents/VideoMAE/Test",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.")
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Optional[int] = CpmAntTokenizer
A : Dict = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : List[str] = [
'<d>',
'</d>',
'<s>',
'</s>',
'</_>',
'<unk>',
'<pad>',
'</n>',
'我',
'是',
'C',
'P',
'M',
'A',
'n',
't',
]
SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
@tooslow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' )
SCREAMING_SNAKE_CASE : Tuple = '今天天气真好!'
SCREAMING_SNAKE_CASE : Tuple = ['今天', '天气', '真', '好', '!']
SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : int = '今天天气真好!'
SCREAMING_SNAKE_CASE : Dict = [tokenizer.bos_token] + tokens
SCREAMING_SNAKE_CASE : List[Any] = [6, 9_802, 14_962, 2_082, 831, 244]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(A )
self.assertEqual(A, A )
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase_ = "▁"
UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Dict = BigBirdTokenizer
A : Any = BigBirdTokenizerFast
A : Optional[int] = True
A : Any = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class(A, keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = '<s>'
SCREAMING_SNAKE_CASE : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '<unk>' )
self.assertEqual(vocab_keys[1], '<s>' )
self.assertEqual(vocab_keys[-1], '[MASK]' )
self.assertEqual(len(A ), 1_004 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 1_000 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = 'I was born in 92000, and this is falsé.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(A )
SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(A, add_special_tokens=A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.encode(A )
self.assertListEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = BigBirdTokenizer(A, keep_accents=A )
SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('This is a test' )
self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ), [285, 46, 10, 170, 382], )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
], )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
], )
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 'Hello World!'
SCREAMING_SNAKE_CASE : int = [65, 18_536, 2_260, 101, 66]
self.assertListEqual(A, self.big_tokenizer.encode(A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
# fmt: off
SCREAMING_SNAKE_CASE : int = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231
# fmt: on
self.assertListEqual(A, self.big_tokenizer.encode(A ) )
@require_torch
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
SCREAMING_SNAKE_CASE : str = list(self.big_tokenizer.get_vocab().keys() )[:10]
SCREAMING_SNAKE_CASE : Any = ' '.join(A )
SCREAMING_SNAKE_CASE : str = self.big_tokenizer.encode_plus(A, return_tensors='pt', return_token_type_ids=A )
SCREAMING_SNAKE_CASE : List[str] = self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence], return_tensors='pt', return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[int] = BigBirdConfig(attention_type='original_full' )
SCREAMING_SNAKE_CASE : Optional[int] = BigBirdModel(A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**A )
model(**A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids )
self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = {'input_ids': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A, model_name='google/bigbird-roberta-base', revision='215c99f1600e06f83acce68422f2035b2b5c3510', )
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=64, A=3, A=3, A=2, A=1, A=16, A=[128, 256, 384], A=[4, 6, 8], A=[2, 3, 4], A=[16, 16, 16], A=0, A=[2, 2, 2], A=[2, 2, 2], A=0.02, A=True, A=True, A=2, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : List[Any] = kernel_size
SCREAMING_SNAKE_CASE : Tuple = stride
SCREAMING_SNAKE_CASE : Optional[int] = padding
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Tuple = key_dim
SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate
SCREAMING_SNAKE_CASE : Any = patch_size
SCREAMING_SNAKE_CASE : Any = attention_ratio
SCREAMING_SNAKE_CASE : List[str] = mlp_ratio
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE : str = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_labels
SCREAMING_SNAKE_CASE : Optional[Any] = num_labels
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : str = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return LevitConfig(
image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = LevitModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A )
SCREAMING_SNAKE_CASE : int = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.num_labels
SCREAMING_SNAKE_CASE : Optional[int] = LevitForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Dict = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
A : Optional[int] = (
{
'''feature-extraction''': LevitModel,
'''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
A : Optional[Any] = False
A : List[Any] = False
A : str = False
A : Dict = False
A : Dict = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = LevitModelTester(self )
SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
'''simple docstring'''
return
@unittest.skip(reason='Levit does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='Levit does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='Levit does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states
SCREAMING_SNAKE_CASE : Dict = len(self.model_tester.depths ) + 1
self.assertEqual(len(A ), A )
SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE : List[str] = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE : str = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [
height * width,
self.model_tester.hidden_sizes[0],
], )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self, A, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(A, A, return_labels=A )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Dict = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(A )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE : Tuple = False
SCREAMING_SNAKE_CASE : Union[str, Any] = True
for model_class in self.all_model_classes:
if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
model.gradient_checkpointing_enable()
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : Any = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[Any] = [
{'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float},
{'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long},
{'title': 'regression', 'num_labels': 1, 'dtype': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(A ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE : List[str] = problem_type['title']
SCREAMING_SNAKE_CASE : Tuple = problem_type['num_labels']
SCREAMING_SNAKE_CASE : Tuple = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] )
SCREAMING_SNAKE_CASE : Optional[int] = inputs['labels'].to(problem_type['dtype'] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=A ) as warning_list:
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : List[str] = LevitModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
A )
SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : int = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCamelCase_ = pytest.mark.integration
UpperCamelCase_ = {"comet"}
UpperCamelCase_ = importlib.util.find_spec("fairseq") is not None
UpperCamelCase_ = {"code_eval"}
UpperCamelCase_ = os.name == "nt"
UpperCamelCase_ = {"bertscore", "frugalscore", "perplexity"}
UpperCamelCase_ = importlib.util.find_spec("transformers") is not None
def lowercase__( __UpperCamelCase: Tuple ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self: Optional[Any] ,__UpperCamelCase: Tuple ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self: Any ,__UpperCamelCase: Optional[int] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def lowercase__( __UpperCamelCase: Optional[int] ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self: Optional[int] ,__UpperCamelCase: Tuple ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@local
class _a ( parameterized.TestCase ):
'''simple docstring'''
A : Any = {}
A : List[Any] = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = '[...]'
SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics', A ) ).module_path )
SCREAMING_SNAKE_CASE : int = datasets.load.import_main_class(metric_module.__name__, dataset=A )
# check parameters
SCREAMING_SNAKE_CASE : int = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(A, metric_module.__name__ ):
with self.use_local_metrics():
try:
SCREAMING_SNAKE_CASE : Any = doctest.testmod(A, verbose=A, raise_on_error=A )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed, 0 )
self.assertGreater(results.attempted, 1 )
@slow
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = '[...]'
SCREAMING_SNAKE_CASE : str = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics', A ) ).module_path )
# run doctest
with self.use_local_metrics():
SCREAMING_SNAKE_CASE : Tuple = doctest.testmod(A, verbose=A, raise_on_error=A )
self.assertEqual(results.failed, 0 )
self.assertGreater(results.attempted, 1 )
@contextmanager
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](A ):
yield
else:
yield
@contextmanager
def UpperCamelCase_ ( self ):
'''simple docstring'''
def load_local_metric(A, *A, **A ):
return load_metric(os.path.join('metrics', A ), *A, **A )
with patch('datasets.load_metric' ) as mock_load_metric:
SCREAMING_SNAKE_CASE : Tuple = load_local_metric
yield
@classmethod
def UpperCamelCase_ ( cls, A ):
'''simple docstring'''
def wrapper(A ):
SCREAMING_SNAKE_CASE : str = contextmanager(A )
SCREAMING_SNAKE_CASE : int = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def lowercase__( __UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' ,'' ,'' ) # handle pytest cli flags
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
SCREAMING_SNAKE_CASE : Optional[Any] = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def lowercase__( __UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
import torch
def bert_cos_score_idf(__UpperCamelCase: int ,__UpperCamelCase: List[Any] ,*__UpperCamelCase: Optional[Any] ,**__UpperCamelCase: Dict ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCamelCase ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
SCREAMING_SNAKE_CASE : str = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def lowercase__( __UpperCamelCase: Dict ):
"""simple docstring"""
def load_from_checkpoint(__UpperCamelCase: Any ):
class _a :
'''simple docstring'''
def UpperCamelCase_ ( self, A, *A, **A ):
'''simple docstring'''
assert len(A ) == 2
SCREAMING_SNAKE_CASE : Optional[int] = [0.19, 0.92]
return scores, sum(A ) / len(A )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
SCREAMING_SNAKE_CASE : Any = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
SCREAMING_SNAKE_CASE : Dict = load_from_checkpoint
yield
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = load_metric(os.path.join('metrics' ,'seqeval' ) )
SCREAMING_SNAKE_CASE : List[Any] = 'ERROR'
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"
with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ):
metric.compute(predictions=[] ,references=[] ,scheme=__UpperCamelCase )
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
if height >= 1:
move_tower(height - 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
move_disk(__UpperCamelCase ,__UpperCamelCase )
move_tower(height - 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: str ):
"""simple docstring"""
print('moving disk from' ,__UpperCamelCase ,'to' ,__UpperCamelCase )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = int(input('Height of hanoi: ' ).strip() )
move_tower(__UpperCamelCase ,'A' ,'B' ,'C' )
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : torch.FloatTensor
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@register_to_config
def __init__( self, A = 3, A = 3, A = ("DownEncoderBlock2D",), A = ("UpDecoderBlock2D",), A = (64,), A = 1, A = "silu", A = 3, A = 32, A = 256, A = 32, A = None, A = 0.1_82_15, A = "group", ):
'''simple docstring'''
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE : Optional[int] = Encoder(
in_channels=A, out_channels=A, down_block_types=A, block_out_channels=A, layers_per_block=A, act_fn=A, norm_num_groups=A, double_z=A, )
SCREAMING_SNAKE_CASE : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE : str = nn.Convad(A, A, 1 )
SCREAMING_SNAKE_CASE : List[str] = VectorQuantizer(A, A, beta=0.25, remap=A, sane_index_shape=A )
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(A, A, 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE : str = Decoder(
in_channels=A, out_channels=A, up_block_types=A, block_out_channels=A, layers_per_block=A, act_fn=A, norm_num_groups=A, norm_type=A, )
@apply_forward_hook
def UpperCamelCase_ ( self, A, A = True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.encoder(A )
SCREAMING_SNAKE_CASE : Dict = self.quant_conv(A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=A )
@apply_forward_hook
def UpperCamelCase_ ( self, A, A = False, A = True ):
'''simple docstring'''
if not force_not_quantize:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.quantize(A )
else:
SCREAMING_SNAKE_CASE : List[Any] = h
SCREAMING_SNAKE_CASE : List[Any] = self.post_quant_conv(A )
SCREAMING_SNAKE_CASE : Tuple = self.decoder(A, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=A )
def UpperCamelCase_ ( self, A, A = True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = sample
SCREAMING_SNAKE_CASE : List[str] = self.encode(A ).latents
SCREAMING_SNAKE_CASE : str = self.decode(A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=A )
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A = 101 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = length
def __len__( self ):
'''simple docstring'''
return self.length
def __getitem__( self, A ):
'''simple docstring'''
return i
class _a :
'''simple docstring'''
def __call__( self, A ):
'''simple docstring'''
return {"input_ids": torch.tensor(A ), "labels": torch.tensor(A )}
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
SCREAMING_SNAKE_CASE : List[str] = nn.Linear(120, 80 )
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0, device=input_ids.device ), input_ids
else:
return input_ids
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch_neuroncore
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split()
SCREAMING_SNAKE_CASE : Tuple = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE : str = F"--output_dir {output_dir}".split()
SCREAMING_SNAKE_CASE : Dict = ['torchrun'] + distributed_args + args
execute_subprocess_async(A, env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch_multi_gpu
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split()
SCREAMING_SNAKE_CASE : Optional[int] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE : Optional[int] = F"--output_dir {output_dir}".split()
SCREAMING_SNAKE_CASE : Optional[int] = ['torchrun'] + distributed_args + args
execute_subprocess_async(A, env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
UpperCamelCase_ = HfArgumentParser((TrainingArguments,))
UpperCamelCase_ = parser.parse_args_into_dataclasses()[0]
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """
F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"""
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [1_0_1, 4_0, 7]:
UpperCamelCase_ = DummyDataset(dataset_length)
def lowercase__( __UpperCamelCase: EvalPrediction ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = list(range(len(__UpperCamelCase ) ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'Predictions and/or labels do not match expected results:\n - predictions: '
f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" )
return {"success": success}
UpperCamelCase_ = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
UpperCamelCase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
UpperCamelCase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
UpperCamelCase_ = 2
UpperCamelCase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
UpperCamelCase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
UpperCamelCase_ = None
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Optional[Any] = MgpstrTokenizer
A : Any = False
A : Any = {}
A : List[str] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
SCREAMING_SNAKE_CASE : List[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'tester'
SCREAMING_SNAKE_CASE : List[Any] = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers(do_lower_case=A )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE : Union[str, Any] = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode([special_token], add_special_tokens=A )
self.assertEqual(len(A ), 1 )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A, skip_special_tokens=A )
self.assertTrue(special_token not in decoded )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.get_input_output_texts(A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A )
SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(A, add_special_tokens=A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(A )
self.assertNotEqual(len(A ), 0 )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A )
self.assertIsInstance(A, A )
self.assertEqual(text_a.replace(' ', '' ), A )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=3, A=4, A=[10, 20, 30, 40], A=[2, 2, 3, 2], A=True, A=True, A=37, A="gelu", A=10, A=0.02, A=["stage2", "stage3", "stage4"], A=3, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : str = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Dict = is_training
SCREAMING_SNAKE_CASE : Dict = use_labels
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size
SCREAMING_SNAKE_CASE : Any = initializer_range
SCREAMING_SNAKE_CASE : List[Any] = out_features
SCREAMING_SNAKE_CASE : Any = num_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = scope
SCREAMING_SNAKE_CASE : Any = num_stages
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : int = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=A, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=A, loss_ignore_index=255, num_labels=self.num_labels, )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = UperNetForSemanticSegmentation(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Any = model(A )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Dict = config_and_inputs
SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
A : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
A : List[Any] = False
A : Tuple = False
A : Optional[Any] = False
A : str = False
A : List[str] = False
A : int = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Any = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
'''simple docstring'''
return
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : List[Any] = model_class(A )
SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : str = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(A ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : List[str] = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Any = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Any = _config_zero_init(A )
SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : str = model_class(config=A )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"Parameter {name} of model {model_class} seems not properly initialized", )
@unittest.skip(reason='UperNet does not have tied weights' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k' ,repo_type='dataset' ,filename='ADE_val_00000001.jpg' )
SCREAMING_SNAKE_CASE : Optional[int] = Image.open(__UpperCamelCase ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(A )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : str = processor(images=A, return_tensors='pt' ).to(A )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = model(**A )
SCREAMING_SNAKE_CASE : str = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], A, atol=1E-4 ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(A )
SCREAMING_SNAKE_CASE : Tuple = prepare_img()
SCREAMING_SNAKE_CASE : int = processor(images=A, return_tensors='pt' ).to(A )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**A )
SCREAMING_SNAKE_CASE : Any = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : Any = torch.tensor(
[[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
UpperCamelCase_ = 1_2_8_0_2_2
UpperCamelCase_ = 1_2_8_0_2_8
@require_sentencepiece
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[str] = MaMaaaTokenizer
A : Optional[int] = False
A : Tuple = False
A : Optional[Any] = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : str = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>']
SCREAMING_SNAKE_CASE : List[str] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : List[str] = Path(self.tmpdirname )
save_json(A, save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(A, save_dir / VOCAB_FILES_NAMES['spm_file'] )
SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = '</s>'
SCREAMING_SNAKE_CASE : List[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Tuple = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0], '</s>' )
self.assertEqual(vocab_keys[1], '<unk>' )
self.assertEqual(vocab_keys[-1], '<s>' )
self.assertEqual(len(A ), tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip('Skip this test while all models are still to be uploaded.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ), [2, 3, 4, 5, 6], )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_string(A )
self.assertEqual(A, 'This is a test' )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A, model_name='facebook/m2m100_418M', revision='c168bae485c864188cf9aa0e4108b0b6934dc91e', )
@require_torch
@require_sentencepiece
@require_tokenizers
class _a ( unittest.TestCase ):
'''simple docstring'''
A : Dict = '''facebook/m2m100_418M'''
A : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
A : Optional[int] = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
A : Dict = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2]
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name, src_lang='en', tgt_lang='fr' )
SCREAMING_SNAKE_CASE : List[Any] = 1
return cls
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id('ar' ), 128_006 )
self.assertEqual(self.tokenizer.get_lang_id('en' ), 128_022 )
self.assertEqual(self.tokenizer.get_lang_id('ro' ), 128_076 )
self.assertEqual(self.tokenizer.get_lang_id('mr' ), 128_063 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_vocab()
self.assertEqual(len(A ), self.tokenizer.vocab_size )
self.assertEqual(vocab['<unk>'], 3 )
self.assertIn(self.tokenizer.get_lang_token('en' ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 'en'
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertIn(A, self.tokenizer.all_special_ids )
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(A, skip_special_tokens=A )
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=A )
self.assertEqual(A, A )
self.assertNotIn(self.tokenizer.eos_token, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(A )
SCREAMING_SNAKE_CASE : Optional[int] = MaMaaaTokenizer.from_pretrained(A )
self.assertDictEqual(new_tok.lang_token_to_id, A )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 'en'
SCREAMING_SNAKE_CASE : Tuple = 'fr'
SCREAMING_SNAKE_CASE : Any = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : List[str] = shift_tokens_right(
batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id )
for k in batch:
SCREAMING_SNAKE_CASE : Any = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 'mr'
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] )
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] )
SCREAMING_SNAKE_CASE : str = 'zh'
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] )
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = 'mr'
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] )
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
SCREAMING_SNAKE_CASE : int = 'zh'
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] )
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs('A test', return_tensors='pt', src_lang='en', tgt_lang='ar' )
self.assertEqual(
nested_simplify(A ), {
# en_XX, A, test, EOS
'input_ids': [[128_022, 58, 4_183, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 128_006,
}, )
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Tuple = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : int = (1 - _cos) / 2
SCREAMING_SNAKE_CASE : List[str] = 1 - _cos
SCREAMING_SNAKE_CASE : List[Any] = 1 + alpha
SCREAMING_SNAKE_CASE : Union[str, Any] = -2 * _cos
SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha
SCREAMING_SNAKE_CASE : Any = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Any = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : str = (1 + _cos) / 2
SCREAMING_SNAKE_CASE : int = -1 - _cos
SCREAMING_SNAKE_CASE : Tuple = 1 + alpha
SCREAMING_SNAKE_CASE : Union[str, Any] = -2 * _cos
SCREAMING_SNAKE_CASE : Tuple = 1 - alpha
SCREAMING_SNAKE_CASE : Any = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Tuple = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : List[str] = _sin / 2
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : int = -ba
SCREAMING_SNAKE_CASE : List[str] = 1 + alpha
SCREAMING_SNAKE_CASE : Optional[int] = -2 * _cos
SCREAMING_SNAKE_CASE : Dict = 1 - alpha
SCREAMING_SNAKE_CASE : str = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Optional[Any] = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : Dict = 1 - alpha
SCREAMING_SNAKE_CASE : int = -2 * _cos
SCREAMING_SNAKE_CASE : Tuple = 1 + alpha
SCREAMING_SNAKE_CASE : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: float = 1 / sqrt(2 ) ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Tuple = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : List[str] = 10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE : Union[str, Any] = 1 + alpha * big_a
SCREAMING_SNAKE_CASE : str = -2 * _cos
SCREAMING_SNAKE_CASE : List[Any] = 1 - alpha * big_a
SCREAMING_SNAKE_CASE : List[str] = 1 + alpha / big_a
SCREAMING_SNAKE_CASE : Optional[int] = -2 * _cos
SCREAMING_SNAKE_CASE : Any = 1 - alpha / big_a
SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: float = 1 / sqrt(2 ) ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : List[Any] = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : Tuple = 10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE : str = (big_a + 1) - (big_a - 1) * _cos
SCREAMING_SNAKE_CASE : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos
SCREAMING_SNAKE_CASE : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
SCREAMING_SNAKE_CASE : str = (big_a - 1) + (big_a + 1) * _cos
SCREAMING_SNAKE_CASE : Optional[Any] = 2 * sqrt(__UpperCamelCase ) * alpha
SCREAMING_SNAKE_CASE : Optional[Any] = big_a * (pmc + aaa)
SCREAMING_SNAKE_CASE : str = 2 * big_a * mpc
SCREAMING_SNAKE_CASE : Dict = big_a * (pmc - aaa)
SCREAMING_SNAKE_CASE : str = ppmc + aaa
SCREAMING_SNAKE_CASE : Union[str, Any] = -2 * pmpc
SCREAMING_SNAKE_CASE : List[Any] = ppmc - aaa
SCREAMING_SNAKE_CASE : List[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: float = 1 / sqrt(2 ) ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = tau * frequency / samplerate
SCREAMING_SNAKE_CASE : Any = sin(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[str] = cos(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = _sin / (2 * q_factor)
SCREAMING_SNAKE_CASE : List[Any] = 10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE : Dict = (big_a + 1) - (big_a - 1) * _cos
SCREAMING_SNAKE_CASE : str = (big_a + 1) + (big_a - 1) * _cos
SCREAMING_SNAKE_CASE : Optional[int] = (big_a - 1) - (big_a + 1) * _cos
SCREAMING_SNAKE_CASE : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
SCREAMING_SNAKE_CASE : Dict = 2 * sqrt(__UpperCamelCase ) * alpha
SCREAMING_SNAKE_CASE : List[str] = big_a * (ppmc + aaa)
SCREAMING_SNAKE_CASE : Tuple = -2 * big_a * pmpc
SCREAMING_SNAKE_CASE : Optional[Any] = big_a * (ppmc - aaa)
SCREAMING_SNAKE_CASE : Optional[Any] = pmc + aaa
SCREAMING_SNAKE_CASE : Dict = 2 * mpc
SCREAMING_SNAKE_CASE : int = pmc - aaa
SCREAMING_SNAKE_CASE : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] )
return filt
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
UpperCamelCase_ = "CompVis/stable-diffusion-v1-1"
UpperCamelCase_ = "CompVis/stable-diffusion-v1-2"
UpperCamelCase_ = "CompVis/stable-diffusion-v1-3"
UpperCamelCase_ = "CompVis/stable-diffusion-v1-4"
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A, A, A, A, A, A, A = True, ):
'''simple docstring'''
super()._init_()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained(A )
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(A )
SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline(
vae=A, text_encoder=A, tokenizer=A, unet=A, scheduler=A, safety_checker=A, feature_extractor=A, requires_safety_checker=A, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {k: getattr(self, A ) for k in self.config.keys() if not k.startswith('_' )}
def UpperCamelCase_ ( self, A = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
SCREAMING_SNAKE_CASE : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.enable_attention_slicing(A )
@torch.no_grad()
def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ):
'''simple docstring'''
return self.pipea(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
@torch.no_grad()
def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ):
'''simple docstring'''
return self.pipea(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
@torch.no_grad()
def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ):
'''simple docstring'''
return self.pipea(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
@torch.no_grad()
def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ):
'''simple docstring'''
return self.pipea(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
@torch.no_grad()
def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu'
self.to(A )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." )
# Get first result from Stable Diffusion Checkpoint v1.1
SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
# Get first result from Stable Diffusion Checkpoint v1.2
SCREAMING_SNAKE_CASE : List[Any] = self.textaimg_sda_a(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
# Get first result from Stable Diffusion Checkpoint v1.3
SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
# Get first result from Stable Diffusion Checkpoint v1.4
SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a(
prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
UpperCamelCase_ = HfArgumentParser(InitializationArguments)
UpperCamelCase_ = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
UpperCamelCase_ = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
UpperCamelCase_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
UpperCamelCase_ = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
UpperCamelCase_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
UpperCamelCase_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
UpperCamelCase_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ), codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions}
SCREAMING_SNAKE_CASE : Any = [
{
'paragraphs': [
{
'qas': [
{
'answers': [{'text': answer_text} for answer_text in ref['answers']['text']],
'id': ref['id'],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : str = evaluate(dataset=A, predictions=A )
return score
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: float ,__UpperCamelCase: float ,__UpperCamelCase: float ):
"""simple docstring"""
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance < 0:
raise ValueError('Resistance cannot be negative' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = parent
SCREAMING_SNAKE_CASE : List[Any] = batch_size
SCREAMING_SNAKE_CASE : List[Any] = seq_length
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask
SCREAMING_SNAKE_CASE : Dict = use_token_type_ids
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : List[str] = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : Any = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE : int = type_vocab_size
SCREAMING_SNAKE_CASE : int = type_sequence_label_size
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Optional[Any] = num_labels
SCREAMING_SNAKE_CASE : Tuple = num_choices
SCREAMING_SNAKE_CASE : Union[str, Any] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size], self.num_choices )
SCREAMING_SNAKE_CASE : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return NystromformerConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = NystromformerModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(A, attention_mask=A, token_type_ids=A )
SCREAMING_SNAKE_CASE : Any = model(A, token_type_ids=A )
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = NystromformerForMaskedLM(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = NystromformerForQuestionAnswering(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : int = model(
A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE : List[str] = NystromformerForSequenceClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.num_labels
SCREAMING_SNAKE_CASE : List[str] = NystromformerForTokenClassification(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices
SCREAMING_SNAKE_CASE : Tuple = NystromformerForMultipleChoice(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Dict = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : str = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(
A, attention_mask=A, token_type_ids=A, labels=A, )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
A : Tuple = (
{
'''feature-extraction''': NystromformerModel,
'''fill-mask''': NystromformerForMaskedLM,
'''question-answering''': NystromformerForQuestionAnswering,
'''text-classification''': NystromformerForSequenceClassification,
'''token-classification''': NystromformerForTokenClassification,
'''zero-shot''': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = NystromformerModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self, config_class=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE : List[str] = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[int] = NystromformerModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[int] = model(A )[0]
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 6, 768) )
self.assertEqual(output.shape, A )
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = 'the [MASK] of Belgium is Brussels'
SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' )
SCREAMING_SNAKE_CASE : Dict = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' )
SCREAMING_SNAKE_CASE : Dict = tokenizer(A, return_tensors='pt' )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(encoding.input_ids ).logits
SCREAMING_SNAKE_CASE : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(A ), 'capital' )
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = nn.Linear(3, 4 )
SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(4 )
SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(4, 5 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(A ) ) )
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A, model.state_dict() )
SCREAMING_SNAKE_CASE : Tuple = os.path.join(A, 'index.json' )
self.assertTrue(os.path.isfile(A ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, F"{key}.dat" )
self.assertTrue(os.path.isfile(A ) )
# TODO: add tests on the fact weights are properly loaded
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
SCREAMING_SNAKE_CASE : int = torch.randn(2, 3, dtype=A )
with TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : str = offload_weight(A, 'weight', A, {} )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, 'weight.dat' )
self.assertTrue(os.path.isfile(A ) )
self.assertDictEqual(A, {'weight': {'shape': [2, 3], 'dtype': str(A ).split('.' )[1]}} )
SCREAMING_SNAKE_CASE : Any = load_offloaded_weight(A, index['weight'] )
self.assertTrue(torch.equal(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ModelForTest()
SCREAMING_SNAKE_CASE : List[str] = model.state_dict()
SCREAMING_SNAKE_CASE : str = {k: v for k, v in state_dict.items() if 'linear2' not in k}
SCREAMING_SNAKE_CASE : Optional[Any] = {k: v for k, v in state_dict.items() if 'linear2' in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A, A )
SCREAMING_SNAKE_CASE : Any = OffloadedWeightsLoader(state_dict=A, save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ), sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A, weight_map[key] ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v for k, v in state_dict.items() if 'weight' in k}
SCREAMING_SNAKE_CASE : int = {k: v for k, v in state_dict.items() if 'weight' not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A, A )
SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ), sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A, weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A, A )
# Duplicates are removed
SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ), sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A, weight_map[key] ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = {'a.1': 0, 'a.10': 1, 'a.2': 2}
SCREAMING_SNAKE_CASE : Dict = extract_submodules_state_dict(A, ['a.1', 'a.2'] )
self.assertDictEqual(A, {'a.1': 0, 'a.2': 2} )
SCREAMING_SNAKE_CASE : Tuple = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2}
SCREAMING_SNAKE_CASE : str = extract_submodules_state_dict(A, ['a.1', 'a.2'] )
self.assertDictEqual(A, {'a.1.a': 0, 'a.2.a': 2} )
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "spiece.model"}
UpperCamelCase_ = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
UpperCamelCase_ = {
"AI-Sweden/gpt-sw3-126m": 2_0_4_8,
"AI-Sweden/gpt-sw3-350m": 2_0_4_8,
"AI-Sweden/gpt-sw3-1.6b": 2_0_4_8,
"AI-Sweden/gpt-sw3-6.7b": 2_0_4_8,
"AI-Sweden/gpt-sw3-20b": 2_0_4_8,
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : int = VOCAB_FILES_NAMES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ['''input_ids''', '''attention_mask''']
def __init__( self, A, A=False, A=False, A=False, A=None, A=None, A=None, A=None, A = None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('name_or_path' )
if name_or_path is None:
logger.warning(
'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'
' you are testing the model, this can safely be ignored' )
SCREAMING_SNAKE_CASE : Dict = 'None'
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
SCREAMING_SNAKE_CASE : Optional[Any] = '<|endoftext|>' if eos_token is None else eos_token
SCREAMING_SNAKE_CASE : int = '<unk>' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
SCREAMING_SNAKE_CASE : Dict = unk_token if pad_token is None else pad_token
SCREAMING_SNAKE_CASE : List[Any] = eos_token if bos_token is None else bos_token
else:
SCREAMING_SNAKE_CASE : Optional[int] = '<pad>' if pad_token is None else pad_token
SCREAMING_SNAKE_CASE : int = '<s>' if bos_token is None else bos_token
super().__init__(
do_lower_case=A, remove_space=A, keep_accents=A, bos_token=A, eos_token=A, unk_token=A, pad_token=A, sp_model_kwargs=self.sp_model_kwargs, **A, )
SCREAMING_SNAKE_CASE : Tuple = do_lower_case
SCREAMING_SNAKE_CASE : Optional[Any] = remove_space
SCREAMING_SNAKE_CASE : List[Any] = keep_accents
SCREAMING_SNAKE_CASE : Tuple = vocab_file
SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
SCREAMING_SNAKE_CASE : Any = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', ''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
SCREAMING_SNAKE_CASE : str = re.compile(
F"[{''.join(map(A, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8_203] ) )}]" )
def __getstate__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.__dict__.copy()
SCREAMING_SNAKE_CASE : Optional[int] = None
return state
def __setstate__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self ):
'''simple docstring'''
return len(self.sp_model )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.non_printing_characters_re.sub('', A )
# Normalize whitespaces
SCREAMING_SNAKE_CASE : Any = ''.join([char if char not in self.whitespaces else ' ' for char in text] )
# NFC Unicode normalization
SCREAMING_SNAKE_CASE : List[str] = unicodedata.normalize('NFC', A )
return text
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.preprocess_text(A )
return self.sp_model.encode(A, out_type=A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A ):
'''simple docstring'''
return out_string
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : str = ''
SCREAMING_SNAKE_CASE : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : List[str] = []
else:
current_sub_tokens.append(A )
SCREAMING_SNAKE_CASE : int = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
if not os.path.isdir(A ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE : Any = os.path.join(
A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, A )
elif not os.path.isfile(self.vocab_file ):
with open(A, 'wb' ) as fi:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self, A, A = False ):
'''simple docstring'''
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(A )
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.encode(A )
else:
SCREAMING_SNAKE_CASE : List[Any] = [self.preprocess_text(A ) for t in text]
SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()]
SCREAMING_SNAKE_CASE : Any = (
F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(A ) + F"{self.bos_token}Bot:"
)
return self.encode(text=A )
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = ""
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = tweepy.OAuthHandler(__UpperCamelCase ,__UpperCamelCase )
auth.set_access_token(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = tweepy.API(__UpperCamelCase )
# initialize a list to hold all the tweepy Tweets
SCREAMING_SNAKE_CASE : Optional[int] = []
# make initial request for most recent tweets (200 is the maximum allowed count)
SCREAMING_SNAKE_CASE : str = api.user_timeline(screen_name=__UpperCamelCase ,count=2_00 )
# save most recent tweets
alltweets.extend(__UpperCamelCase )
# save the id of the oldest tweet less one
SCREAMING_SNAKE_CASE : Optional[Any] = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(__UpperCamelCase ) > 0:
print(f"getting tweets before {oldest}" )
# all subsequent requests use the max_id param to prevent duplicates
SCREAMING_SNAKE_CASE : str = api.user_timeline(
screen_name=__UpperCamelCase ,count=2_00 ,max_id=__UpperCamelCase )
# save most recent tweets
alltweets.extend(__UpperCamelCase )
# update the id of the oldest tweet less one
SCREAMING_SNAKE_CASE : Optional[Any] = alltweets[-1].id - 1
print(f"...{len(__UpperCamelCase )} tweets downloaded so far" )
# transform the tweepy tweets into a 2D array that will populate the csv
SCREAMING_SNAKE_CASE : Tuple = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"new_{screen_name}_tweets.csv" ,'w' ) as f:
SCREAMING_SNAKE_CASE : Optional[int] = csv.writer(__UpperCamelCase )
writer.writerow(['id', 'created_at', 'text'] )
writer.writerows(__UpperCamelCase )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
import itertools
import math
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def lowercase__( __UpperCamelCase: int = 1_00_01 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
import os
import sys
import unittest
UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase_ = os.path.join(git_repo_path, "src", "transformers")
UpperCamelCase_ = "\n{0} = None\n"
UpperCamelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n"
UpperCamelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' )
self.assertIsNone(A )
SCREAMING_SNAKE_CASE : List[str] = find_backend(' if not is_tokenizers_available():' )
self.assertEqual(A, 'tokenizers' )
SCREAMING_SNAKE_CASE : Optional[int] = find_backend(' if not is_tensorflow_text_available():' )
self.assertEqual(A, 'tensorflow_text' )
SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' )
self.assertEqual(A, 'sentencepiece_and_tokenizers' )
SCREAMING_SNAKE_CASE : Dict = find_backend(
' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' )
self.assertEqual(A, 'sentencepiece_and_tensorflow_text' )
SCREAMING_SNAKE_CASE : List[Any] = find_backend(
' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' )
self.assertEqual(A, 'sentencepiece_and_tokenizers_and_vision' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch', A )
self.assertIn('tensorflow_text', A )
self.assertIn('sentencepiece_and_tokenizers', A )
# Likewise, we can't assert on the exact content of a key
self.assertIn('BertModel', objects['torch'] )
self.assertIn('TFBertModel', objects['tf'] )
self.assertIn('FlaxBertModel', objects['flax'] )
self.assertIn('BertModel', objects['torch'] )
self.assertIn('TFBertTokenizer', objects['tensorflow_text'] )
self.assertIn('convert_slow_tokenizer', objects['sentencepiece_and_tokenizers'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('CONSTANT', '\'torch\'' )
self.assertEqual(A, '\nCONSTANT = None\n' )
SCREAMING_SNAKE_CASE : str = create_dummy_object('function', '\'torch\'' )
self.assertEqual(
A, '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
SCREAMING_SNAKE_CASE : str = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n'
SCREAMING_SNAKE_CASE : Optional[int] = create_dummy_object('FakeClass', '\'torch\'' )
self.assertEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n'
SCREAMING_SNAKE_CASE : Dict = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'], A )
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = MvpTokenizer
A : Union[str, Any] = MvpTokenizerFast
A : Tuple = True
A : List[Any] = filter_roberta_detectors
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : Optional[Any] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Optional[Any] = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MvpTokenizer.from_pretrained('RUCAIBox/mvp' )
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
SCREAMING_SNAKE_CASE : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(A, max_length=len(A ), padding=A, return_tensors='pt' )
self.assertIsInstance(A, A )
self.assertEqual((2, 9), batch.input_ids.shape )
self.assertEqual((2, 9), batch.attention_mask.shape )
SCREAMING_SNAKE_CASE : Dict = batch.input_ids.tolist()[0]
self.assertListEqual(A, A )
# Test that special tokens are reset
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Dict = tokenizer(A, padding=A, return_tensors='pt' )
# check if input_ids are returned and no labels
self.assertIn('input_ids', A )
self.assertIn('attention_mask', A )
self.assertNotIn('labels', A )
self.assertNotIn('decoder_attention_mask', A )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [
'Summary of the text.',
'Another summary.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : int = tokenizer(text_target=A, max_length=32, padding='max_length', return_tensors='pt' )
self.assertEqual(32, targets['input_ids'].shape[1] )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
['I am a small frog' * 1_024, 'I am a small frog'], padding=A, truncation=A, return_tensors='pt' )
self.assertIsInstance(A, A )
self.assertEqual(batch.input_ids.shape, (2, 1_024) )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ['A long paragraph for summarization.']
SCREAMING_SNAKE_CASE : Dict = [
'Summary of the text.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Tuple = tokenizer(A, text_target=A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Optional[Any] = inputs['input_ids']
SCREAMING_SNAKE_CASE : List[Any] = inputs['labels']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : List[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
UpperCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, **A ):
'''simple docstring'''
super().__init__(**A )
requires_backends(self, 'vision' )
requires_backends(self, 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = {}
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Tuple = {}
# preprocess args
if "points_per_batch" in kwargs:
SCREAMING_SNAKE_CASE : List[Any] = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
SCREAMING_SNAKE_CASE : str = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
SCREAMING_SNAKE_CASE : Any = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
SCREAMING_SNAKE_CASE : Dict = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
SCREAMING_SNAKE_CASE : Tuple = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
SCREAMING_SNAKE_CASE : Tuple = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
SCREAMING_SNAKE_CASE : Dict = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
SCREAMING_SNAKE_CASE : Optional[int] = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
SCREAMING_SNAKE_CASE : int = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
SCREAMING_SNAKE_CASE : List[str] = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
SCREAMING_SNAKE_CASE : Dict = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self, A, *A, A=None, A=None, **A ):
'''simple docstring'''
return super().__call__(A, *A, num_workers=A, batch_size=A, **A )
def UpperCamelCase_ ( self, A, A=64, A = 0, A = 512 / 1_500, A = 32, A = 1, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = load_image(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.size['longest_edge']
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor.generate_crop_boxes(
A, A, A, A, A, A )
SCREAMING_SNAKE_CASE : Any = self.image_processor(images=A, return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
SCREAMING_SNAKE_CASE : int = self.get_inference_context()
with inference_context():
SCREAMING_SNAKE_CASE : Optional[int] = self._ensure_tensor_on_device(A, device=self.device )
SCREAMING_SNAKE_CASE : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
SCREAMING_SNAKE_CASE : str = image_embeddings
SCREAMING_SNAKE_CASE : List[str] = grid_points.shape[1]
SCREAMING_SNAKE_CASE : Dict = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0, A, A ):
SCREAMING_SNAKE_CASE : Optional[int] = grid_points[:, i : i + points_per_batch, :, :]
SCREAMING_SNAKE_CASE : Union[str, Any] = input_labels[:, i : i + points_per_batch]
SCREAMING_SNAKE_CASE : str = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase_ ( self, A, A=0.88, A=0.95, A=0, A=1, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = model_inputs.pop('input_boxes' )
SCREAMING_SNAKE_CASE : Any = model_inputs.pop('is_last' )
SCREAMING_SNAKE_CASE : Union[str, Any] = model_inputs.pop('original_sizes' ).tolist()
SCREAMING_SNAKE_CASE : Dict = model_inputs.pop('reshaped_input_sizes' ).tolist()
SCREAMING_SNAKE_CASE : List[str] = self.model(**A )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
SCREAMING_SNAKE_CASE : List[str] = model_outputs['pred_masks']
SCREAMING_SNAKE_CASE : Dict = self.image_processor.post_process_masks(
A, A, A, A, binarize=A )
SCREAMING_SNAKE_CASE : List[str] = model_outputs['iou_scores']
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor.filter_masks(
masks[0], iou_scores[0], original_sizes[0], input_boxes[0], A, A, A, A, )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase_ ( self, A, A=False, A=False, A=0.7, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : List[Any] = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
SCREAMING_SNAKE_CASE : str = torch.cat(A )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.post_process_for_mask_generation(
A, A, A, A )
SCREAMING_SNAKE_CASE : Optional[Any] = defaultdict(A )
for output in model_outputs:
for k, v in output.items():
extra[k].append(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
if output_rle_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = rle_mask
if output_bboxes_mask:
SCREAMING_SNAKE_CASE : str = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
UpperCamelCase_ = False
try:
UpperCamelCase_ = _is_package_available("google.colab")
except ModuleNotFoundError:
pass
@input.register
class _a :
'''simple docstring'''
def __init__( self, A = None, A = [] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 0
SCREAMING_SNAKE_CASE : int = choices
SCREAMING_SNAKE_CASE : Optional[Any] = prompt
if sys.platform == "win32":
SCREAMING_SNAKE_CASE : Dict = '*'
else:
SCREAMING_SNAKE_CASE : List[str] = '➔ '
def UpperCamelCase_ ( self, A, A = "" ):
'''simple docstring'''
if sys.platform != "win32":
writeColor(self.choices[index], 32, A )
else:
forceWrite(self.choices[index], A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if index == self.position:
forceWrite(F" {self.arrow_char} " )
self.write_choice(A )
else:
forceWrite(F" {self.choices[index]}" )
reset_cursor()
def UpperCamelCase_ ( self, A, A = 1 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(A )
move_cursor(A, direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP['up'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.move_direction(Direction.UP )
@input.mark(KEYMAP['down'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP['newline'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
move_cursor(len(self.choices ) - self.position, 'DOWN' )
return self.position
@input.mark(KEYMAP['interrupt'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
move_cursor(len(self.choices ) - self.position, 'DOWN' )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(A )] for number in range(10 )] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = int(chr(self.current_selection ) )
SCREAMING_SNAKE_CASE : Dict = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP, -movement )
elif self.position < index:
self.move_direction(Direction.DOWN, A )
else:
return
else:
return
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if self.prompt:
linebreak()
forceWrite(self.prompt, '\n' )
if in_colab:
forceWrite('Please input a choice index (starting from 0), and press enter', '\n' )
else:
forceWrite('Please select a choice using the arrow or number keys, and selecting with enter', '\n' )
SCREAMING_SNAKE_CASE : Tuple = default_choice
for i in range(len(self.choices ) ):
self.print_choice(A )
forceWrite('\n' )
move_cursor(len(self.choices ) - self.position, 'UP' )
with cursor.hide():
while True:
if in_colab:
try:
SCREAMING_SNAKE_CASE : List[str] = int(builtins.input() )
except ValueError:
SCREAMING_SNAKE_CASE : Optional[int] = default_choice
else:
SCREAMING_SNAKE_CASE : Any = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1, 'UP' )
clear_line()
self.write_choice(A, '\n' )
return choice
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = mock.Mock()
SCREAMING_SNAKE_CASE : Tuple = 500
SCREAMING_SNAKE_CASE : int = {}
SCREAMING_SNAKE_CASE : Union[str, Any] = HTTPError
SCREAMING_SNAKE_CASE : Tuple = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(A )
feature_extractor.push_to_hub('test-feature-extractor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A, repo_id='test-feature-extractor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor.from_pretrained(A )
feature_extractor.push_to_hub('valid_org/test-feature-extractor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A, repo_id='valid_org/test-feature-extractor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
SCREAMING_SNAKE_CASE : str = CustomFeatureExtractor.from_pretrained(A )
feature_extractor.push_to_hub('test-dynamic-feature-extractor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map, {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'}, )
SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(
F"{USER}/test-dynamic-feature-extractor", trust_remote_code=A )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, 'CustomFeatureExtractor' )
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Any = ReformerTokenizer
A : Any = ReformerTokenizerFast
A : Any = True
A : Tuple = False
A : Optional[Any] = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : Optional[Any] = ReformerTokenizer(A, keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = '<s>'
SCREAMING_SNAKE_CASE : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '<unk>' )
self.assertEqual(vocab_keys[1], '<s>' )
self.assertEqual(vocab_keys[-1], 'j' )
self.assertEqual(len(A ), 1_000 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 1_000 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE : Tuple = 'I was born in 92000, and this is falsé.'
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize(A )
SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.tokenize(A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(A, add_special_tokens=A )
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(A )
self.assertListEqual(A, A )
def UpperCamelCase_ ( self, A=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(A, **A )
# Simple input
SCREAMING_SNAKE_CASE : Tuple = 'This is a simple input'
SCREAMING_SNAKE_CASE : List[Any] = ['This is a simple input 1', 'This is a simple input 2']
SCREAMING_SNAKE_CASE : int = ('This is a simple input', 'This is a pair')
SCREAMING_SNAKE_CASE : List[Any] = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(A, tokenizer_r.encode, A, max_length=A, padding='max_length' )
# Simple input
self.assertRaises(A, tokenizer_r.encode_plus, A, max_length=A, padding='max_length' )
# Simple input
self.assertRaises(
A, tokenizer_r.batch_encode_plus, A, max_length=A, padding='max_length', )
# Pair input
self.assertRaises(A, tokenizer_r.encode, A, max_length=A, padding='max_length' )
# Pair input
self.assertRaises(A, tokenizer_r.encode_plus, A, max_length=A, padding='max_length' )
# Pair input
self.assertRaises(
A, tokenizer_r.batch_encode_plus, A, max_length=A, padding='max_length', )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ReformerTokenizer(A, keep_accents=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ), [285, 46, 10, 170, 382], )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
], )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
], )
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 'Hello World!'
SCREAMING_SNAKE_CASE : Optional[int] = [126, 32, 262, 152, 38, 72, 287]
self.assertListEqual(A, self.big_tokenizer.encode(A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
SCREAMING_SNAKE_CASE : List[Any] = [
108,
265,
24,
111,
4,
258,
156,
35,
28,
275,
3,
259,
297,
260,
84,
4,
35,
110,
44,
8,
259,
91,
268,
21,
11,
209,
274,
109,
266,
277,
117,
86,
93,
315,
258,
278,
258,
277,
258,
0,
258,
288,
258,
319,
258,
0,
258,
0,
258,
0,
258,
0,
258,
287,
258,
315,
258,
289,
258,
278,
99,
269,
266,
262,
8,
259,
241,
4,
217,
230,
268,
266,
55,
168,
106,
75,
193,
266,
223,
27,
49,
26,
282,
25,
264,
299,
19,
26,
0,
258,
277,
117,
86,
93,
176,
183,
270,
11,
262,
42,
61,
265,
]
self.assertListEqual(A, self.big_tokenizer.encode(A ) )
@require_torch
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
SCREAMING_SNAKE_CASE : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10]
SCREAMING_SNAKE_CASE : Union[str, Any] = ' '.join(A )
SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.encode_plus(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors='pt' )
SCREAMING_SNAKE_CASE : str = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
SCREAMING_SNAKE_CASE : List[Any] = encoded_sequence['input_ids'].shape
SCREAMING_SNAKE_CASE : List[str] = ReformerModel(A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**A )
model(**A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
SCREAMING_SNAKE_CASE : Dict = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=A, model_name='google/reformer-crime-and-punishment', revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a', padding=A, sequences=A, )
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
UpperCamelCase_ = [
[0, 1_6, 1_3, 0, 0, 0],
[0, 0, 1_0, 1_2, 0, 0],
[0, 4, 0, 0, 1_4, 0],
[0, 0, 9, 0, 0, 2_0],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = [False] * len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [s]
SCREAMING_SNAKE_CASE : Optional[Any] = True
while queue:
SCREAMING_SNAKE_CASE : Tuple = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = True
SCREAMING_SNAKE_CASE : Any = u
return visited[t]
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [-1] * (len(__UpperCamelCase ))
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : List[Any] = [i[:] for i in graph] # Record original cut, copy.
while bfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = float('Inf' )
SCREAMING_SNAKE_CASE : str = sink
while s != source:
# Find the minimum value in select path
SCREAMING_SNAKE_CASE : List[str] = min(__UpperCamelCase ,graph[parent[s]][s] )
SCREAMING_SNAKE_CASE : Optional[Any] = parent[s]
max_flow += path_flow
SCREAMING_SNAKE_CASE : Union[str, Any] = sink
while v != source:
SCREAMING_SNAKE_CASE : Any = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
SCREAMING_SNAKE_CASE : Dict = parent[v]
for i in range(len(__UpperCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase_ = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError('n must be an integer' )
if n <= 0:
raise ValueError('n must be >= 0' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
for num in range(len(__UpperCamelCase ) ):
SCREAMING_SNAKE_CASE : List[Any] = 0
while 2 * i * i <= odd_composites[num]:
SCREAMING_SNAKE_CASE : Any = odd_composites[num] - 2 * i * i
if is_prime(__UpperCamelCase ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__UpperCamelCase ) == n:
return list_nums
return []
def lowercase__( ):
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def lowercase__( __UpperCamelCase: Tuple ):
"""simple docstring"""
return x + 2
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 'x = 3'
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate(A, {}, state=A )
assert result == 3
self.assertDictEqual(A, {'x': 3} )
SCREAMING_SNAKE_CASE : Any = 'x = y'
SCREAMING_SNAKE_CASE : Tuple = {'y': 5}
SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(A, {'x': 5, 'y': 5} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 'y = add_two(x)'
SCREAMING_SNAKE_CASE : str = {'x': 3}
SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(A, {'add_two': add_two}, state=A )
assert result == 5
self.assertDictEqual(A, {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A )
assert result is None
assert "tried to execute add_two" in out.out
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 'x = 3'
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A )
assert result == 3
self.assertDictEqual(A, {'x': 3} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
SCREAMING_SNAKE_CASE : List[Any] = {'x': 3}
SCREAMING_SNAKE_CASE : List[Any] = evaluate(A, {'add_two': add_two}, state=A )
self.assertDictEqual(A, {'x': 3, 'y': 5} )
self.assertDictEqual(A, {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = 'x = 3\ny = 5'
SCREAMING_SNAKE_CASE : Tuple = {}
SCREAMING_SNAKE_CASE : str = evaluate(A, {}, state=A )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(A, {'x': 3, 'y': 5} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 'text = f\'This is x: {x}.\''
SCREAMING_SNAKE_CASE : Any = {'x': 3}
SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate(A, {}, state=A )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(A, {'x': 3, 'text': 'This is x: 3.'} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'if x <= 3:\n y = 2\nelse:\n y = 5'
SCREAMING_SNAKE_CASE : List[Any] = {'x': 3}
SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {}, state=A )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(A, {'x': 3, 'y': 2} )
SCREAMING_SNAKE_CASE : Optional[int] = {'x': 8}
SCREAMING_SNAKE_CASE : str = evaluate(A, {}, state=A )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(A, {'x': 8, 'y': 5} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'test_list = [x, add_two(x)]'
SCREAMING_SNAKE_CASE : Dict = {'x': 3}
SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {'add_two': add_two}, state=A )
self.assertListEqual(A, [3, 5] )
self.assertDictEqual(A, {'x': 3, 'test_list': [3, 5]} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 'y = x'
SCREAMING_SNAKE_CASE : Any = {'x': 3}
SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A )
assert result == 3
self.assertDictEqual(A, {'x': 3, 'y': 3} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = 'test_list = [x, add_two(x)]\ntest_list[1]'
SCREAMING_SNAKE_CASE : Any = {'x': 3}
SCREAMING_SNAKE_CASE : str = evaluate(A, {'add_two': add_two}, state=A )
assert result == 5
self.assertDictEqual(A, {'x': 3, 'test_list': [3, 5]} )
SCREAMING_SNAKE_CASE : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
SCREAMING_SNAKE_CASE : Optional[int] = {'x': 3}
SCREAMING_SNAKE_CASE : List[Any] = evaluate(A, {'add_two': add_two}, state=A )
assert result == 5
self.assertDictEqual(A, {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = 'x = 0\nfor i in range(3):\n x = i'
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {'range': range}, state=A )
assert result == 2
self.assertDictEqual(A, {'x': 2, 'i': 2} )
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : list[dict] = []
self.adlist.append(
{'value': '', 'next_states': [], 'fail_state': 0, 'output': []} )
for keyword in keywords:
self.add_keyword(A )
self.set_fail_transitions()
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = 0
for character in keyword:
SCREAMING_SNAKE_CASE : Any = self.find_next_state(A, A )
if next_state is None:
self.adlist.append(
{
'value': character,
'next_states': [],
'fail_state': 0,
'output': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
SCREAMING_SNAKE_CASE : List[str] = len(self.adlist ) - 1
else:
SCREAMING_SNAKE_CASE : int = next_state
self.adlist[current_state]["output"].append(A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while q:
SCREAMING_SNAKE_CASE : List[Any] = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.adlist[r]['fail_state']
while (
self.find_next_state(A, self.adlist[child]['value'] ) is None
and state != 0
):
SCREAMING_SNAKE_CASE : str = self.adlist[state]['fail_state']
SCREAMING_SNAKE_CASE : int = self.find_next_state(
A, self.adlist[child]['value'] )
if self.adlist[child]["fail_state"] is None:
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : int = (
self.adlist[child]['output']
+ self.adlist[self.adlist[child]['fail_state']]['output']
)
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : dict = {} # returns a dict with keywords and list of its occurrences
SCREAMING_SNAKE_CASE : Optional[Any] = 0
for i in range(len(A ) ):
while (
self.find_next_state(A, string[i] ) is None
and current_state != 0
):
SCREAMING_SNAKE_CASE : Union[str, Any] = self.adlist[current_state]['fail_state']
SCREAMING_SNAKE_CASE : Tuple = self.find_next_state(A, string[i] )
if next_state is None:
SCREAMING_SNAKE_CASE : Any = 0
else:
SCREAMING_SNAKE_CASE : Dict = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
SCREAMING_SNAKE_CASE : Dict = []
result[key].append(i - len(A ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.